City of Fitchburg

Total Page:16

File Type:pdf, Size:1020Kb

City of Fitchburg CITY OF FITCHBURG 2020 HAZARD MITIGATION PLAN– MUNICIPAL VULNERABILITY PREPAREDNESS PLAN Prepared by: westonandsampson.com TABLE OF CONTENTS Page EXECUTIVE SUMMARY .............................................................................................................. ES-1 LIST OF FIGURES ............................................................................................................................ iii LIST OF TABLES .............................................................................................................................. iv LIST OF APPENDICES ..................................................................................................................... vi 1.0 INTRODUCTION ......................................................................................................................1-1 1.1 What is a Hazard Mitigation Plan?......................................................................................1-1 1.2 What is a Municipal Vulnerability Preparedness Plan? .......................................................1-2 1.3 Hazard Mitigation and Municipal Vulnerability Preparedness Planning in Fitchburg ..........1-3 1.4 Planning Process Summary ...............................................................................................1-4 1.4.1 Core Team ................................................................................................................1-4 1.4.2 Stakeholder Involvement: CRB Workshop and Beyond ............................................1-5 1.4.3 Listening Session ......................................................................................................1-6 1.4.4 Report Layout ...........................................................................................................1-7 1.5 Planning Timeline ...............................................................................................................1-8 2.0 HAZARD MITIGATION AND CLIMATE ADAPTATION GOALS ..................................................2-1 3.0 COMMUNITY PROFILE ............................................................................................................3-1 3.1 Community Background ....................................................................................................3-1 3.2 Societal Features ...............................................................................................................3-1 3.2.1 CRB Workshop Discussion of Societal Features .......................................................3-3 3.3 Economic Features ............................................................................................................3-5 3.4 Infrastructure Features .......................................................................................................3-5 3.4.1 CRB Workshop Discussion of Existing Infrastructure ................................................3-6 3.5 Environmental Features .....................................................................................................3-6 3.5.1 CRB Workshop Discussion of the Environment ........................................................3-7 3.6 Land Use and Recent Development .................................................................................3-7 3.7 Critical Facilities and Vulnerable Populations ................................................................... 3-11 4.0 HAZARD PROFILES, RISK ASSESSMENT & VULNERABILITIES .............................................4-1 4.1 Overview of Hazards and Impacts .....................................................................................4-1 4.1.1 Massachusetts State Hazard Mitigation and Climate Adaptation ..............................4-1 4.1.2 Federally Declared Disasters in Massachusetts ........................................................4-3 4.1.3 Impacts of Climate Change ......................................................................................4-3 4.1.4 Top Hazards as Defined in the CRB Workshop ........................................................4-4 4.2 Flood-Related Hazards ......................................................................................................4-4 4.2.1 Areas Vulnerable to Flooding ....................................................................................4-5 4.2.2 Historic Flood Events .............................................................................................. 4-10 4.2.3 GIS Flooding Exposure Analysis ............................................................................. 4-13 4.2.4 Dams and Dam Failure ........................................................................................... 4-22 4.2.5 Flooding and Climate Change ................................................................................ 4-25 4.3 Wind Related Hazards ..................................................................................................... 4-25 4.3.1 Severe Storms and Thunderstorms ......................................................................... 4-26 i 4.3.2 Hurricanes and Tropical Storms .............................................................................. 4-26 4.3.3 Tornadoes ............................................................................................................... 4-30 4.3.4 Nor’easters ............................................................................................................. 4-32 4.3.5 Climate Change and Severe Storms ....................................................................... 4-33 4.4 Winter Storms ................................................................................................................. 4-33 4.4.1 Heavy Snow and Blizzards ...................................................................................... 4-34 4.4.2 Ice Storms ............................................................................................................... 4-35 4.5 Geological Hazards ......................................................................................................... 4-35 4.5.1 Earthquakes ............................................................................................................ 4-36 4.5.2 Landslides .............................................................................................................. 4-39 4.6 Fire Related Hazards ....................................................................................................... 4-41 4.7 Extreme Temperatures ..................................................................................................... 4-43 4.7.1 Extreme Cold .......................................................................................................... 4-43 4.7.2 Extreme Heat .......................................................................................................... 4-44 4.7.3 Climate Change Impacts: Extreme Temperatures................................................... 4-46 4.8 Drought ............................................................................................................................ 4-47 4.8.1 Drought and Climate Change ................................................................................. 4-53 5.0 EXISTING MITIGATION MEASURES ........................................................................................5-1 5.1 Existing Multi-Hazard Mitigation Measures ........................................................................5-2 5.2 Existing City-Wide Mitigation for Flood Related Hazards ...................................................5-5 5.3 Existing Dam Mitigation Measures .....................................................................................5-8 5.4 Existing City-Wide Mitigation for Wind-Related Hazards ....................................................5-9 5.5 Existing City-Wide Mitigation for Winter-Related Hazards ..................................................5-9 5.6 Existing City-Wide Mitigation for Drought-Related Hazards ...............................................5-9 5.7 Existing City-Wide Mitigation for Fire-Related Hazards .................................................... 5-10 5.8 Existing City-Wide Mitigation for Extreme Temperature Related Hazards ........................ 5-11 5.9 Existing City-Wide Mitigation for Geologic Hazards ......................................................... 5-11 5.10 Existing City-Wide Sustainability Measures .................................................................... 5-12 5.11 Mitigation Capacities and Local Capacity for Implementation ....................................... 5-12 6.0 STATUS OF MITIGATION MEASURES FROM THE 2015 DRAFT PLAN ...................................6-1 6.1 Implementation Progress of the Previous Plan ...................................................................6-1 7.0 HAZARD MITIGATION AND CLIMATE ADAPTATION STRATEGY ............................................7-1 7.1 Identification of Hazard Mitigation and Climate Adaptation Strategies ...............................7-1 7.2 Potential Funding Sources ...................................................................................................7-9 7.3 Regional Partnerships ........................................................................................................7-14 8.0 PLAN ADOPTION AND MAINTENANCE ..................................................................................8-1 8.1 Plan Adoption ....................................................................................................................8-1
Recommended publications
  • Guidelines for Storm Preparedness
    Eleven Days after Hurricane Carol slammed the Island in August 1964, Hurricane Edna struck on September 11, flooding Edgartown (Vineyard Gazette Archive) Guidelines for Storm Preparedness West Tisbury Climate Action Committee May 2020 May 3-9, 2020: Hurricane Preparedness Week National Weather Service 1 of 11 Storm Preparedness It should come as no surprise that Martha’s Vineyard is vulnerable Nor’easter storms formed over the cold Atlantic between September and April; and hurricanes formed over warm tropical waters from June to November. The absence of hurricanes in recent years have lulled some into thinking they are no longer a serious threat to the Vineyard. The truth is that storms and hurricanes will lash the Vineyard, flooding low-lying portions of our villages, uprooting trees, bringing down power lines, snatching boats from their moorings, and disruption ferry service to the mainland. It is not a question of if; it is a matter of when and with what degree of severity. What is equally sure is that with a modicum of preparedness, your chances of riding out a storm and coping with the inevitable disruptions in the aftermath — the loss of power, telephone and internet connections, and delayed resupplying from the mainland — increase substantially. This manual breaks down emergency preparedness into stages; What you can do immediately without a storm in sight. What you can do when you know a storm is on its way. And, what you can do to make your surroundings as safe as possible when the storm hits. Storm risk varies by the size and path of the storm and by the population of the Vineyard.
    [Show full text]
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Town of Kent Hazard Mitigation Plan
    TOWN OF KENT HAZARD MITIGATION PLAN DECEMBER 2014 MMI #3843-04 Prepared for the: TOWN OF KENT, CONNECTICUT Kent Town Hall 41 Kent Green Boulevard Kent, Connecticut (860) 927-3433 www.townofkentct.com Prepared by: MILONE & MACBROOM, INC. 99 Realty Drive Cheshire, Connecticut 06410 (203) 271-1773 www.miloneandmacbroom.com The preparation of this report has been financed in part through funds provided by the Connecticut Department of Emergency Services and Public Protection (DESPP) Division of Emergency Management and Homeland Security (DEMHS) under a grant from the Federal Emergency Management Agency. The contents of this report reflect the views of the Town of Kent and do not necessarily reflect the official views of DEMHS. The report does not constitute a specification or regulation. Copyright 2014 Milone & MacBroom, Inc. ACKNOWLEDGEMENTS & CONTACT INFORMATION This plan was prepared under the direction of the Town of Kent. The following individual should be contacted with questions or comments regarding the plan: Mr. Bruce Adams First Selectman Town of Kent 41 Kent Green Boulevard Kent, CT 06757 (860) 927-4627 This Natural Hazard Mitigation Plan could not have been completed without the time and dedication of the following individuals at the local level: Mr. Rick Osborne, Highway Department Mr. Bruce Adams, First Selectman The consulting firm of Milone & MacBroom, Inc. (MMI) prepared the subject plan. The following individuals at MMI may be contacted prior to plan adoption with questions or comments using the contact information on the title page or the electronic mail addresses below: Mr. David Murphy, P.E., CFM Associate, Water Resources [email protected] Copyright 2014 Milone & MacBroom, Inc.
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • Assessing Interactions Between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-Sensor Remote Sensing
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2017 Assessing Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing Chandan Mostafiz University of Central Florida Part of the Environmental Engineering Commons, and the Water Resource Management Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Mostafiz, Chandan, Assessing" Interactions between Estuary Water Quality and Terrestrial Land Cover in Hurricane Events with Multi-sensor Remote Sensing" (2017). Electronic Theses and Dissertations, 2004-2019. 5688. https://stars.library.ucf.edu/etd/5688 ASSESSING INTERACTIONS BETWEEN ESTUARY WATER QUALITY AND TERRESTRIAL LAND COVER IN HURRICANE EVENTS WITH MULTI-SENSOR REMOTE SENSING by CHANDAN MOSTAFIZ B.S. Bangladesh University of Engineering and Technology, 2014 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Civil, Environmental, and Construction Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Fall Term 2017 Major Professor: Ni-Bin Chang © 2017 Chandan Mostafiz ii ABSTRACT Estuaries are environmentally, ecologically and environmentally important places as they act as a meeting place for land, freshwater and marine ecosystems. They are also called nurseries of the sea as they often provide nesting and feeding habitats for many aquatic plants and animals.
    [Show full text]
  • Massachusetts Tropical Cyclone Profile August 2021
    Commonwealth of Massachusetts Tropical Cyclone Profile August 2021 Commonwealth of Massachusetts Tropical Cyclone Profile Description Tropical cyclones, a general term for tropical storms and hurricanes, are low pressure systems that usually form over the tropics. These storms are referred to as “cyclones” due to their rotation. Tropical cyclones are among the most powerful and destructive meteorological systems on earth. Their destructive phenomena include storm surge, high winds, heavy rain, tornadoes, and rip currents. As tropical storms move inland, they can cause severe flooding, downed trees and power lines, and structural damage. Once a tropical cyclone no longer has tropical characteristics, it is then classified as a post-tropical system. The National Hurricane Center (NHC) has classified four stages of tropical cyclones: • Tropical Depression: A tropical cyclone with maximum sustained winds of 38 mph (33 knots) or less. • Tropical Storm: A tropical cyclone with maximum sustained winds of 39 to 73 mph (34 to 63 knots). • Hurricane: A tropical cyclone with maximum sustained winds of 74 mph (64 knots) or higher. • Major Hurricane: A tropical cyclone with maximum sustained winds of 111 mph (96 knots) or higher, corresponding to a Category 3, 4 or 5 on the Saffir-Simpson Hurricane Wind Scale. Primary Hazards Storm Surge and Storm Tide Storm surge is an abnormal rise of water generated by a storm, over and above the predicted astronomical tide. Storm surge and large waves produced by hurricanes pose the greatest threat to life and property along the coast. They also pose a significant risk for drowning. Storm tide is the total water level rise during a storm due to the combination of storm surge and the astronomical tide.
    [Show full text]
  • National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast
    National Assessment of Hurricane-Induced Coastal Erosion Hazards: Northeast Atlantic Coast By Justin J. Birchler, Hilary F. Stockdon, Kara S. Doran, and David M. Thompson Open-File Report 2014–1243 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2014 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Birchler, J.J., Stockdon, H.F., Doran, K.S., and Thompson, D.M., 2014, National assessment of hurricane-induced coastal erosion hazards—Northeast Atlantic Coast: U.S. Geological Survey Open-File Report 2014–1243, 34 p., http://dx.doi.org/10.3133/ofr20141243. ISSN 2331-1258 (online) ii Contents 1. Introduction ............................................................................................................................................................. 1 1.1 Impacts of Hurricanes on Coastal Communities ............................................................................................... 1 1.2 Prediction of Hurricane-Induced Coastal Erosion.............................................................................................. 4 1.3 Storm-Impact Scaling Model ............................................................................................................................. 4 2.
    [Show full text]
  • Historical Perspective
    kZ ­­_!% L , Ti Historical Perspective 2.1 Introduction CROSS REFERENCE Through the years, FEMA, other Federal agencies, State and For resources that augment local agencies, and other private groups have documented and the guidance and other evaluated the effects of coastal flood and wind events and the information in this Manual, performance of buildings located in coastal areas during those see the Residential Coastal Construction Web site events. These evaluations provide a historical perspective on the siting, design, and construction of buildings along the Atlantic, Pacific, Gulf of Mexico, and Great Lakes coasts. These studies provide a baseline against which the effects of later coastal flood events can be measured. Within this context, certain hurricanes, coastal storms, and other coastal flood events stand out as being especially important, either Hurricane categories reported because of the nature and extent of the damage they caused or in this Manual should be because of particular flaws they exposed in hazard identification, interpreted cautiously. Storm siting, design, construction, or maintenance practices. Many of categorization based on wind speed may differ from that these events—particularly those occurring since 1979—have been based on barometric pressure documented by FEMA in Flood Damage Assessment Reports, or storm surge. Also, storm Building Performance Assessment Team (BPAT) reports, and effects vary geographically— Mitigation Assessment Team (MAT) reports. These reports only the area near the point of summarize investigations that FEMA conducts shortly after landfall will experience effects associated with the reported major disasters. Drawing on the combined resources of a Federal, storm category. State, local, and private sector partnership, a team of investigators COASTAL CONSTRUCTION MANUAL 2-1 2 HISTORICAL PERSPECTIVE is tasked with evaluating the performance of buildings and related infrastructure in response to the effects of natural and man-made hazards.
    [Show full text]
  • TRANSIT Introduction Transit Service
    Transit TRANSIT Introduction Montachusett Regional Transit Authority (MART) provides a variety of transportation services for residents of the Montachusett Region and other areas throughout the Commonwealth. The communities served by MART have grown steadily over the years. Initially comprised of Fitchburg, Gardner, Leominster and their immediate neighbors, MART now serves 22 communities in and out of the MRPC region. In 2013, the town of Athol formally became a member of MART’s Twenty-two communities in the region utilize MART services. Member communities are Fitchburg, Leominster, Gardner, Ashburnham, Shirley, Ayer, Lancaster, Sterling, Hubbardston, Royalston, Littleton, Winchendon, Ashby, Templeton, Westminster, Hardwick, Lunenburg, Harvard, Bolton, Boxborough, Stow and Athol. Fixed route bus services, paratransit and subscription services are operated by a private management company, namely, Management of Transportation Services, Inc. All other transportation is operated by a variety of private vendors in Massachusetts. The Massachusetts Bay Transportation Authority (MBTA) is responsible for commuter rail services from Fitchburg to Boston. Transit Service Fixed Route The backbone of the region’s public transportation system is the local transit bus service. Local fixed route bus service operates along set routes and follows set schedules. Local Bus service is available in the three cities of Fitchburg, Leominster and Gardner and limited sections of Lunenburg and Lancaster. Sixteen (16) bus routes are provided by MART, eleven (11) in Fitchburg and Leominster, four (4) in Gardner and one (1) intercity route between the three cities. Service operates Monday through Saturday (except for the G-Link and Intercity routes which run Monday to Friday). Three (3) peak services routes also run Monday thru Friday in Fitchburg during the school year.
    [Show full text]
  • The Perfect Storm
    The Perfect Storm A True Story of Men Against the Sea by Sebastian Junger Contents FOREWORD GEORGES BANK, 1896 GLOUCESTER, MASS., 1991 GOD’S COUNTRY THE FLEMISH CAP THE BARREL OF THE GUN GRAVEYARD OF THE ATLANTIC THE ZERO-MOMENT POINT THE WORLD OF THE LIVING INTO THE ABYSS THE DREAMS OF THE DEAD AFTERWORD ACKNOWLEDGMENTS THIS BOOK IS DEDICATED TO MY FATHER, WHO FIRST INTRODUCED ME TO THE SEA. FOREWORD Recreating the last days of six men who disappeared at sea presented some obvious problems for me. On the one hand, I wanted to write a completely factual book that would stand on its own as a piece of journalism. On the other hand, I didn’t want the narrative to asphyxiate under a mass of technical detail and conjecture. I toyed with the idea of fictionalizing minor parts of the story—conversations, personal thoughts, day-to-day routines—to make it more readable, but that risked diminishing the value of whatever facts I was able to determine. In the end I wound up sticking strictly to the facts, but in as wide-ranging a way as possible. If I didn’t know exactly what happened aboard the doomed boat, for example, I would interview people who had been through similar situations, and survived. Their experiences, I felt, would provide a fairly good description of what the six men on the Andrea Gail had gone through, and said, and perhaps even felt. As a result, there are varying kinds of information in the book. Anything in direct quotes was recorded by me in a formal interview, either in person or on the telephone, and was altered as little as possible for grammar and clarity.
    [Show full text]
  • Impact of Parameterized Boundary Layer Structure on Tropical Cyclone Rapid Intensification Forecasts in HWRF
    APRIL 2017 Z H A N G E T A L . 1413 Impact of Parameterized Boundary Layer Structure on Tropical Cyclone Rapid Intensification Forecasts in HWRF JUN A. ZHANG NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida ROBERT F. ROGERS NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida VIJAY TALLAPRAGADA NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland (Manuscript received 5 April 2016, in final form 27 October 2016) ABSTRACT This study evaluates the impact of the modification of the vertical eddy diffusivity (Km) in the boundary layer parameterization of the Hurricane Weather Research and Forecasting (HWRF) Model on forecasts of tropical cyclone (TC) rapid intensification (RI). Composites of HWRF forecasts of Hurricanes Earl (2010) and Karl (2010) were compared for two versions of the planetary boundary layer (PBL) scheme in HWRF. The results show that using a smaller value of Km, in better agreement with observations, improves RI forecasts. The composite-mean, inner-core structures for the two sets of runs at the time of RI onset are compared with observational, theoretical, and modeling studies of RI to determine why the runs with reduced Km are more likely to undergo RI. It is found that the forecasts with reduced Km at the RI onset have a shallower boundary layer with stronger inflow, more unstable near-surface air outside the eyewall, stronger and deeper updrafts in regions farther inward from the radius of maximum wind (RMW), and stronger boundary layer convergence closer to the storm center, although the mean storm intensity (as measured by the 10-m winds) is similar for the two groups.
    [Show full text]
  • New England Hurricanes of Note (PDF)
    THE COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF PUBLIC SAFETY _____________________________ MASSACHUSETTS EMERGENCY MANAGEMENT AGENCY 400 Worcester Road Framingham, MA 01702-5399 Cristine McCombs Mitt Romney Director Governor Tel: 508-820-2000 Fax: 508-820-2030 Website: www.mass.gov/mema Kerry Healey Lieutenant Governor Robert C. Haas Secretary FOR IMMEDIATE RELEASE CONTACT: Peter Judge June 1, 2006 (508) 820-2002 NEW ENGLAND HURRICANES OF NOTE FRAMINGHAM, MA – Although the approaching Hurricane Season in New England is defined as June 1st through November 30th, the vast majority of the 40 tropical systems that have impacted our region over the past century have struck during the months of August and September. Because Massachusetts is such a relatively small state, it is important to realize that these are not just ‘coastal events’, but, in fact, everyone in the Commonwealth can be severely impacted by a major storm. “New England is in the unenviable position of receiving all three types of Hurricane Threats,” states Massachusetts Emergency Management Agency Director Cristine McCombs. “Depending upon the storm’s track and landfall location, we can experience coastal inundation from storm surge, widespread inland river flooding, and widespread wind damage.” To best prepare ourselves for the future, it is important to revisit the past, and examine a dozen of the most notable New England Hurricanes and their catastrophic impact upon our region. The Great Colonial Hurricane of 1635 August 25, 1635 This was the first historical record of an intense hurricane striking New England. The highest winds have been estimated at Category 3 or greater, with winds of 115-plus mph.
    [Show full text]