Chapter 3 Railway Technical Standards”
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NSG 604 Indicators and Signs
This is an uncontrolled copy. Before use, make sure that this is the current version by visiting www.railsafe.org.au/nsg NSG 604 signals and signs Indicators and signs General To describe the types of indicators and signs used in the Network. ............................................................................................... NOTE The Figures in this Rule show examples of the indicators and signs used in the Network. White or lunar white lights are shown in blue . ............................................................................................... Clearance posts Clearance posts may be located between two converging lines to show the clearance limit. Some clearance posts have: • a reflective background, or • a white light that must be illuminated at night or in conditions of low visibility. White reflective post forms Illuminated post form FIGURE 1: Examples of clearance posts ............................................................................................... NETWORK RULES MARCH 2019 V10.0 © SYDNEY TRAINS 2019 PAGE 1 OF 38 This is an uncontrolled copy. Before use, make sure that this is the current version by visiting www.railsafe.org.au/nsg NSG 604 signals and signs Indicators and signs Dead end lights Dead end lights are small red lights to indicate the end of dead end sidings. The lights display STOP indications only. If it is possible for a dead end light to be mistaken as a running signal at STOP, a white light above the red light is used to distinguish it from a running signal. FIGURE 2: Examples of dead end lights ............................................................................................... NETWORK RULES MARCH 2019 V10.0 © SYDNEY TRAINS 2019 PAGE 2 OF 38 This is an uncontrolled copy. Before use, make sure that this is the current version by visiting www.railsafe.org.au/nsg NSG 604 signals and signs Indicators and signs Guard’s indicator If it is possible for the signal at the exit-end of a platform to be obscured from a Guard’s view, a Guard’s indicator is placed over the platform. -
RAIB Report: Freight Train Derailment at Angerstein Junction on 3 June 2015
Oliver Stewart Senior Executive, RAIB Relationship and Recommendation Handling Telephone 020 7282 3864 E-mail [email protected] 4 June 2020 Mr Andrew Hall Deputy Chief Inspector of Rail Accidents Cullen House Berkshire Copse Rd Aldershot Hampshire GU11 2HP Dear Andrew, RAIB Report: Freight train derailment at Angerstein Junction on 3 June 2015 I write to provide an update1 on the action taken in respect of recommendation 3 addressed to ORR in the above report, published on 1 June 2016. The annex to this letter provides details of the action taken regarding the recommendation. The status of recommendation 3 is ‘Implemented’. We do not propose to take any further action in respect of the recommendation, unless we become aware that any of the information provided has become inaccurate, in which case I will write to you again. We will publish this response on the ORR website on 5 June 2020. Yours sincerely, Oliver Stewart 1 In accordance with Regulation 12(2)(b) of the Railways (Accident Investigation and Reporting) Regulations 2005 Annex A Recommendation 3 The intent of this recommendation is to ensure that the derailment risk at Angerstein Junction is adequately controlled. Network Rail should review and, if appropriate, alter the infrastructure configuration on the line between Angerstein Junction and Angerstein Wharf sidings to reduce its contribution to the derailment risk in the immediate vicinity of the 851A trap points. This review should include, but not be limited to, consideration of: • the wagon types and loads normally using the line; • the layout of the check rail; • the speed and braking profiles of trains using the line; • the locations and operation of signalling equipment; and • the location of the trap points, or the provision of alternative risk mitigation measures ORR decision 1. -
INDIAN RAILWAYS SCHEDULE of DIMENSIONS 1676Mm Gauge (BG)
INDIAN RAILWAYS SCHEDULE OF DIMENSIONS 1676mm Gauge (BG) REVISED, 2004 SCHEDULE OF DIMENSIONS-1676mm, GAUGE SHEDULE OF DIMENSIONS-1676MM GAUGE Schedule of Dimensions for Indian Railways, 1676mm Gauge Dear Sir/Dear Sirs, With their circular letter No. 735-W. of 1922, the Railway Board issued a Schedule of Maximum, Minimum and Recommended Dimensions to be observed on all 1676mm gauge Railways in India. In that Schedule, certain dimensions of the previous schedule of the year 1913 were modified with the object of permitting the use of enlarged rolling stock. 2. The Schedule of Dimensions of 1922 contained two distinct sections, namely, a schedule of "Maximum and Minimum Dimensions" which was considered to enable the proposed larger vehicles to run with about the same degree of safety as that which was previously obtained on the older Railways with existing stock, and a schedule of "Recommended Dimensions" intended to provide approximately the same clearances from fixed structures for the future larger vehicles as the 1913 schedule gave for existing vehicles. 3. In their circular letter No. 232-Tech.dated the 8th February, 1926, the Railway Board gave instructions that the Recommended Dimensions given in the 1922 Schedule were to be observed on important Railways in all new works and alterations to existing works. These orders were modified in letter No. 232-Tech. of the 26th April, 1926, which allowed a relaxation in the case of certain recommended dimensions, the adoption of which would involve heavy expenditure in remodeling works. 4. In 1929, it was found desirable further to amend the Schedule of 1922 in order to introduce certain improve- ments in the light of experience gained since it was issued, and to provide the clearances required by electric traction equipment on lines which were likely to be electrified in the future. -
NORTH WEST Freight Transport Strategy
NORTH WEST Freight Transport Strategy Department of Infrastructure NORTH WEST FREIGHT TRANSPORT STRATEGY Final Report May 2002 This report has been prepared by the Department of Infrastructure, VicRoads, Mildura Rural City Council, Swan Hill Rural City Council and the North West Municipalities Association to guide planning and development of the freight transport network in the north-west of Victoria. The State Government acknowledges the participation and support of the Councils of the north-west in preparing the strategy and the many stakeholders and individuals who contributed comments and ideas. Department of Infrastructure Strategic Planning Division Level 23, 80 Collins St Melbourne VIC 3000 www.doi.vic.gov.au Final Report North West Freight Transport Strategy Table of Contents Executive Summary ......................................................................................................................... i 1. Strategy Outline. ...........................................................................................................................1 1.1 Background .............................................................................................................................1 1.2 Strategy Outcomes.................................................................................................................1 1.3 Planning Horizon.....................................................................................................................1 1.4 Other Investigations ................................................................................................................1 -
High-Strength, Lightweight Car Bodies for High-Speed Rail Vehicles
High-Speed Rail IDEA Program High-Strength, Lightweight Car Bodies for High-Speed Rail Vehicles Final Report for High-Speed Rail IDEA Project 32 Prepared by: Timothy Langan and W. Mark Buchta Surface Treatment Technologies Baltimore, MD October 2003 INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD This investigation was performed as part of the High-Speed Rail IDEA program supports innovative methods and technology in support of the Federal Railroad Administration’s (FRA) next-generation high-speed rail technology development program. The High-Speed Rail IDEA program is one of four IDEA programs managed by TRB. The other IDEA programs are listed below. • NCHRP Highway IDEA focuses on advances in the design, construction, safety, and maintenance of highway systems, is part of the National Cooperative Highway Research Program. • Transit IDEA focuses on development and testing of innovative concepts and methods for improving transit practice. The Transit IDEA Program is part of the Transit Cooperative Research Program, a cooperative effort of the Federal Transit Administration (FTA), the Transportation Research Board (TRB) and the Transit Development Corporation, a nonprofit educational and research organization of the American Public Transportation Association. The program is funded by the FTA and is managed by TRB. • Safety IDEA focuses on innovative approaches to improving motor carrier, railroad, and highway safety. The program is supported by the Federal Motor Carrier Safety Administration -
New Principle Schemes of Freight Cars Bogies
April 2018, Vol. 18, No. 2 MANUFACTURING TECHNOLOGY ISSN 1213–2489 New Principle Schemes of Freight Cars Bogies Mykola Gorbunov1, Juraj Gerlici2, Sergey Kara1, Olena Nozhenko2, Ganna Chernyak1, Kateryna Kravchenko2, Tomas Lack2 1Institute transport and logistics, Volodymyr Dahl East Ukrainian National University, 03406 Tscentralny av., 59a, Se- werodonetsk, Ukraine. E-mail: [email protected], [email protected], [email protected] 2Faculty Mechanical Engineering, University of Zilina, 01026 Univerzitna 8215/1, Zilina, Slovakia. E-mail: juraj.ger- [email protected], [email protected], [email protected], [email protected] In the article the issue of perspective running parts for freight cars of new generation is considered and additions to the outdated existing classification of bogie are developed, namely introduction of such types of suspension is suggested.The results of theoretical studies are presented by means of modeling the movement of the car in the software "Universal Mechanism" to determine the influence of the first stage of spring suspension in Barber type bogie (type 18-100 and analogues) on energy efficiency (resistance to movement) and the estimated value of the decrease in resistance to movement.A concept for a fundamentally new design of a freight car bogie for high-speed traffic has been prepared, based on fundamentally new technical solutions with elastic-dissipative bearing ele- ments, as well as a concept for the modernization of the Barber-type bogie (type 18-100 and -
HO Scale Price List 2019
GAUGEMASTER HO Scale price list 2019 Prices correct at time of going to press and are subject to change at any time Post free option is available for orders above a value of £15 to mainland UK addresses*. Non-mainland UK orders are posted at cost. Orders to non-EC destinations are VAT free. *Except orders containing one or more items above a length of 600mm and below a total order value of £25. Order conforming to this exception will be charged carriage at cost (not to exceed £4.95) Gaugemaster Controls Ltd Gaugemaster House Ford Road Arundel West Sussex BN18 0BN Tel - (01903) 884321 Fax - (01903) 884377 [email protected] [email protected] [email protected] Printed: 06/09/2019 KEY TO PRICE LISTS The following legends appear at the front of the Product Name for certain entries: * : New Item not yet available # : Not in production, stock available #D# : Discontinued, few remaining #P# : New Item, limited availability www.gaugemaster.com Registered in England No: 2714470. Registered Office: Gaugemaster House, Ford Road, Arundel, West Sussex, BN18 0BN. Directors: R K Taylor, D J Taylor. Bankers: Royal Bank of Scotland PLC, South Street, Chichester, West Sussex, England. Sort Code: 16-16-20 Account No: 11318851 VAT reg: 587 8089 71 1 Contents Atlas 3 Magazines/Books 38 Atlas O 5 Marklin 38 Bachmann 5 Marklin Club 42 Busch 5 Mehano 43 Cararama 8 Merten 43 Dapol 9 Model Power 43 Dapol Kits 9 Modelcraft 43 DCC Concepts 9 MRC 44 Deluxe Materials 11 myWorld 44 DM Toys 11 Noch 44 Electrotren 11 Oxford Diecast 53 Faller 12 -
Safety Distances on Platforms Danger Zone
Bundesamt für Verkehr BAV Office fédéral des transports OFT Ufficio federale dei trasporti UFT Federal Office of Transport FOT Safety Distances on Platforms Danger Zone – Safety Zone Research Report 2011 Publication details Published by Federal Office of Transport (FOT) CH-3003 Bern Project coordination Federal Office of Transport (FOT) Safety department Nicolas Keusen Text Federal Office of Transport (FOT), Bern Swiss Federal Railways (SBB), Bern Figures Federal Office of Transport (FOT), Bern Daamen, W., Delft, Netherlands (photographs in Figure 8) [8] VSS, Zurich (Figure 9) [5] Citations Federal Office of Transport (FOT), 2011, Research Report - Safety Distances on Platforms, Bern Available from Free of charge from the internet: www.bav.admin.ch French edition: Distances sur les quais – Rapport de recherche Title photo Warning notice for rail passengers 'Safety Distances on Platforms' Research Report Contents III CONTENTS ABBREVIATIONS AND DESIGNATIONS 5 1. SUMMARY 6 1.1 Danger zone 6 1.2 Safety zone 6 2. INTRODUCTION 7 2.1 Background to this report 7 2.2 Layout of the report 7 3. TERMINOLOGY 8 DANGER ZONE 9 4. INTRODUCTION 10 4.1 Subject matter 10 4.2 Purpose 10 4.3 Scope of the study and area to which it applies 10 5. REFERENCE DOCUMENTS 11 6. PROCEDURE AND METHODOLOGY 12 7. DETERMINING PERMISSIBLE AND IMPERMISSIBLE RISKS 13 8. DETERMINING THE STUDY PARAMETERS 14 9. STUDY AND DISCUSSION OF PARAMETERS AND CONSEQUENCES 15 9.1 Clearance profile 15 9.2 Contact 15 9.3 Aerodynamics 17 9.3.1 Theoretical and experimental documents 18 9.3.2 Danger threshold 19 9.3.3 Analysis of the results 20 9.3.4 A comparison between the two studies 21 9.4 Effect of surprise 22 9.4.1 Cause 22 9.4.2 Reaction 22 9.4.3 Conclusion 22 9.5 Noise level 22 9.5.1 Beneficial effect 23 9.5.2 Unfavourable effect 23 9.6 Dust 23 9.7 Behaviour of people on the platform 23 9.8 Local circumstances 24 'Safety Distances on Platforms' Research Report IV Contents 10. -
Annual Environmental Report 2000
Annual Environmental Report 2000 Committee on Ecology 2. Efforts regarding global environmental conservation Disruption of the global environment has global environmental issues lies in the fact that become an important concern for us all. Global we are assailants and victims at the same time. warming—believed to be caused by green- As the unit of CO2 emission from railways in house gases such as CO2—could have a seriously proportion to transportation volume is low in detrimental impact on our future, in terms of comparison to other means of transportation, both time and space. The effects of further notably the automobile (see page 34), railways global warming include a change in overall cli- are in relative terms an environment-friendly mate, which will in turn effect the worldwide means of getting from one point to the next. ecosystem and bring about a rise in sea levels. Moreover, electric trains do not emit any CO2 in The emission of large volumes of CO2 into operation, since their power source is electricity. the air—a result of the use of fossil fuels— The volume of energy consumption by JR places the blame for global warming on us, the East, however, has reached 58.7 billion MJ citizens of our environment. Therefore, while (worth 1.52 million kl of crude oil) in fiscal 1999. the products of industry and technology have This means that, however indirectly, we still produced real and lasting benefits, it is undeni- emit a large volume of CO2. JR East is striving to able that they have created problems that, prevent further global warming through reduc- unless they are resolved, will forever impact life tions in energy consumption and CO2 emission. -
Case of High-Speed Ground Transportation Systems
MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THESIS N° 2568 (2002) PRESENTED AT THE CIVIL ENGINEERING DEPARTMENT SWISS FEDERAL INSTITUTE OF TECHNOLOGY - LAUSANNE BY GUILLAUME DE TILIÈRE Civil Engineer, EPFL French nationality Approved by the proposition of the jury: Prof. F.L. Perret, thesis director Prof. M. Hirt, jury director Prof. D. Foray Prof. J.Ph. Deschamps Prof. M. Finger Prof. M. Bassand Lausanne, EPFL 2002 MANAGING PROJECTS WITH STRONG TECHNOLOGICAL RUPTURE Case of High-Speed Ground Transportation Systems THÈSE N° 2568 (2002) PRÉSENTÉE AU DÉPARTEMENT DE GÉNIE CIVIL ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE PAR GUILLAUME DE TILIÈRE Ingénieur Génie-Civil diplômé EPFL de nationalité française acceptée sur proposition du jury : Prof. F.L. Perret, directeur de thèse Prof. M. Hirt, rapporteur Prof. D. Foray, corapporteur Prof. J.Ph. Deschamps, corapporteur Prof. M. Finger, corapporteur Prof. M. Bassand, corapporteur Document approuvé lors de l’examen oral le 19.04.2002 Abstract 2 ACKNOWLEDGEMENTS I would like to extend my deep gratitude to Prof. Francis-Luc Perret, my Supervisory Committee Chairman, as well as to Prof. Dominique Foray for their enthusiasm, encouragements and guidance. I also express my gratitude to the members of my Committee, Prof. Jean-Philippe Deschamps, Prof. Mathias Finger, Prof. Michel Bassand and Prof. Manfred Hirt for their comments and remarks. They have contributed to making this multidisciplinary approach more pertinent. I would also like to extend my gratitude to our Research Institute, the LEM, the support of which has been very helpful. Concerning the exchange program at ITS -Berkeley (2000-2001), I would like to acknowledge the support of the Swiss National Science Foundation. -
Notes on Curves for Railways
NOTES ON CURVES FOR RAILWAYS BY V B SOOD PROFESSOR BRIDGES INDIAN RAILWAYS INSTITUTE OF CIVIL ENGINEERING PUNE- 411001 Notes on —Curves“ Dated 040809 1 COMMONLY USED TERMS IN THE BOOK BG Broad Gauge track, 1676 mm gauge MG Meter Gauge track, 1000 mm gauge NG Narrow Gauge track, 762 mm or 610 mm gauge G Dynamic Gauge or center to center of the running rails, 1750 mm for BG and 1080 mm for MG g Acceleration due to gravity, 9.81 m/sec2 KMPH Speed in Kilometers Per Hour m/sec Speed in metres per second m/sec2 Acceleration in metre per second square m Length or distance in metres cm Length or distance in centimetres mm Length or distance in millimetres D Degree of curve R Radius of curve Ca Actual Cant or superelevation provided Cd Cant Deficiency Cex Cant Excess Camax Maximum actual Cant or superelevation permissible Cdmax Maximum Cant Deficiency permissible Cexmax Maximum Cant Excess permissible Veq Equilibrium Speed Vg Booked speed of goods trains Vmax Maximum speed permissible on the curve BG SOD Indian Railways Schedule of Dimensions 1676 mm Gauge, Revised 2004 IR Indian Railways IRPWM Indian Railways Permanent Way Manual second reprint 2004 IRTMM Indian railways Track Machines Manual , March 2000 LWR Manual Manual of Instructions on Long Welded Rails, 1996 Notes on —Curves“ Dated 040809 2 PWI Permanent Way Inspector, Refers to Senior Section Engineer, Section Engineer or Junior Engineer looking after the Permanent Way or Track on Indian railways. The term may also include the Permanent Way Supervisor/ Gang Mate etc who might look after the maintenance work in the track. -
Premium Performance Brake Lines Car Application Guide
PREMIUM PERFORMANCE BRAKE LINES CAR APPLICATION GUIDE Over 160,000 variations of kit to suit every make and model of vehicle Like us on Facebook www.facebook.com/GoodridgeLTD CONTENTS AC Cars 3 Montreal 67 Acura 3 Morgan 67 Alfa Romeo 3 Morris 67 Alvis 5 Nissan 67 Aston Martin 5 Opel 69 Audi 6 Peugeot 70 Austin 13 Pontiac 75 BMW 14 Porsche 75 Bond 25 Proton 76 Bugatti 25 Reliant 76 Buick 26 Renault 77 Cadillac 26 Rover 81 Caterham 26 Saab 83 Chevrolet 26 Seat 84 Citroen 29 Singer 88 Dacia 32 Skoda 88 Daewoo 32 Smart Car 89 Daihatsu 33 Subaru 89 Daimler 33 Sunbeam 90 Datsun 33 Suzuki 90 De Tomaso 33 Talbot 90 DE Lorean 33 Toyota 91 Ferrari 34 Triumph 94 Fiat 34 TVR 94 Ford 38 Ultima 95 FSO 46 Vauxhall 95 Ginetta 46 Volkswagen 99 Hillman 46 Volvo 106 Hindustan 47 GOODRIDGE Honda 47 Clutch Lines 109 Hyundai 49 Isuzu 51 BRAKE LINE KITS Jaguar 51 At Goodridge we are frequently asked Jenson 52 what makes our brake lines superior to our Kia 52 competitors. Goodridge stainless braided Lada 53 brake lines are the standard in professional Lamborghini 53 Lancia 53 motorsport where the ultimate in braking Land Rover 54 is required. With the largest application Lexus 56 listing of any company and an unmatched Lotus 56 reputation backed by champions worldwide, Marcos 57 there is no reason to choose anyone else. Maserati 57 Matra 57 Mazda 57 Every kit is tested to 2000psi Mercedes 59 MG 64 and comes complete with a Mitsubishi 65 Lifetime Guarantee Made in the UK 1 Premium Performance Brakelines - Car Application Guide www.goodridge.com Premium Performance Brake Lines HOW TO USE THIS APPLICATION GUIDE All Stainless kits are supplied with black hose as standard.