Hairy Cell Leukemia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pancytopenia; Study for Clinical Features and Etiological Pattern at Tertiary Care Settings in Abbottabad
The Professional Medical Journal www.theprofesional.com ORIGINAL PROF-2253 PANCYTOPENIA; STUDY FOR CLINICAL FEATURES AND ETIOLOGICAL PATTERN AT TERTIARY CARE SETTINGS IN ABBOTTABAD Dr. Atif Sitwat Hayat1, Dr. Abdul Haque Khan2, Dr. Ghulam Hussian Baloch3, Dr.Naila Shaikh4 1. MBBS, M.D (Medicine) Assistant Professor of Medicine, ABSTRACT... Background: Pancytopenia is an important hematological problem encountered Isra University Hospital, Hala Road in our day-to-day clinical practice. The aim of our study was to evaluate clinical features and Hyderabad, Sind, Pakistan. 2. MBBS, FCPS (Medicine) etiological pattern of pancytopenia at tertiary care settings in Abbottabad. Methods: This Associate Professor of Medicine prospective study was conducted at Northern Institue of Medical Sciences (NIMS) and Ayub Liaquat University of Medical and Health Sciences Jamshoro, Sind, Pakistan. Teaching Hospital Abbottabad from 25th August 2009 to 31st July 2010. A total of 85 patients 3. MBBS, Dip Card, M.D (Medicine) fulfilling the criteria of pancytopenia were randomly selected by time-based sampling. Associate Professor of Medicine Pancytopenia was diagnosed by anemia (hemoglobin ≤ 10.0g/dl), leucopenia (WBC ≤ 4.0×109/L) Liaquat University of Medical and 9 Health Sciences Jamshoro, Sind, Pakistan. and thrombocytopenia (platelets ≤ 150×10 /L). All data has been entered and analyzed by SPSS 4. MBBS, DCP version 10.0. Results: Out of 85 patients, 62(72.94%) were males and 23(27.05%) females with Senior Lecturer, Liaquat University of Medical and M to F ratio of 2.69:1. The mean age (±SD) of males was 30.20±15.42 years, while that of females Health Sciences Jamshoro, Sind, Pakistan. -
Section 8: Hematology CHAPTER 47: ANEMIA
Section 8: Hematology CHAPTER 47: ANEMIA Q.1. A 56-year-old man presents with symptoms of severe dyspnea on exertion and fatigue. His laboratory values are as follows: Hemoglobin 6.0 g/dL (normal: 12–15 g/dL) Hematocrit 18% (normal: 36%–46%) RBC count 2 million/L (normal: 4–5.2 million/L) Reticulocyte count 3% (normal: 0.5%–1.5%) Which of the following caused this man’s anemia? A. Decreased red cell production B. Increased red cell destruction C. Acute blood loss (hemorrhage) D. There is insufficient information to make a determination Answer: A. This man presents with anemia and an elevated reticulocyte count which seems to suggest a hemolytic process. His reticulocyte count, however, has not been corrected for the degree of anemia he displays. This can be done by calculating his corrected reticulocyte count ([3% × (18%/45%)] = 1.2%), which is less than 2 and thus suggestive of a hypoproliferative process (decreased red cell production). Q.2. A 25-year-old man with pancytopenia undergoes bone marrow aspiration and biopsy, which reveals profound hypocellularity and virtual absence of hematopoietic cells. Cytogenetic analysis of the bone marrow does not reveal any abnormalities. Despite red blood cell and platelet transfusions, his pancytopenia worsens. Histocompatibility testing of his only sister fails to reveal a match. What would be the most appropriate course of therapy? A. Antithymocyte globulin, cyclosporine, and prednisone B. Prednisone alone C. Supportive therapy with chronic blood and platelet transfusions only D. Methotrexate and prednisone E. Bone marrow transplant Answer: A. Although supportive care with transfusions is necessary for treating this patient with aplastic anemia, most cases are not self-limited. -
Clinical Utility of Recently Identified Diagnostic, Prognostic, And
Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms. -
The Hematological Complications of Alcoholism
The Hematological Complications of Alcoholism HAROLD S. BALLARD, M.D. Alcohol has numerous adverse effects on the various types of blood cells and their functions. For example, heavy alcohol consumption can cause generalized suppression of blood cell production and the production of structurally abnormal blood cell precursors that cannot mature into functional cells. Alcoholics frequently have defective red blood cells that are destroyed prematurely, possibly resulting in anemia. Alcohol also interferes with the production and function of white blood cells, especially those that defend the body against invading bacteria. Consequently, alcoholics frequently suffer from bacterial infections. Finally, alcohol adversely affects the platelets and other components of the blood-clotting system. Heavy alcohol consumption thus may increase the drinker’s risk of suffering a stroke. KEY WORDS: adverse drug effect; AODE (alcohol and other drug effects); blood function; cell growth and differentiation; erythrocytes; leukocytes; platelets; plasma proteins; bone marrow; anemia; blood coagulation; thrombocytopenia; fibrinolysis; macrophage; monocyte; stroke; bacterial disease; literature review eople who abuse alcohol1 are at both direct and indirect. The direct in the number and function of WBC’s risk for numerous alcohol-related consequences of excessive alcohol increases the drinker’s risk of serious Pmedical complications, includ- consumption include toxic effects on infection, and impaired platelet produc- ing those affecting the blood (i.e., the the bone marrow; the blood cell pre- tion and function interfere with blood cursors; and the mature red blood blood cells as well as proteins present clotting, leading to symptoms ranging in the blood plasma) and the bone cells (RBC’s), white blood cells from a simple nosebleed to bleeding in marrow, where the blood cells are (WBC’s), and platelets. -
Implications of Plasma Lymphoblastic Cells In
REVIEW ARTICLE Implications of Plasma Lymphoblastic Cells in Lymphoreticular Disorders: An Overview Marin Abraham1 , SV Sowmya2 , Roopa S Rao3,DominicAugustine4 , Vanishri C Haragannavar5 ABSTRACT Aim: The aim of this review was to emphasize the diverse morphologic features of plasma lymphoblastic cells in lymphoreticular disorders to arrive at a precise diagnosis. Background: The lymphoreticular system comprises of a group of cells with a common lineage and primary function of immunoregulation. Specific immunity is achieved by the combined effects of macrophages and lymphocytes, and, therefore, it is the lymphoreticular system. These cells are scattered in different parts of the body and share some functional characteristics. At both functional and anatomical levels, lymphoreticular tissue can be categorized into primary and secondary lymphoid organs that predominantly produce lymphocytes and plasma cells. Review results: The plasma lymphoblastic lesions/malignancies comprise of characteristic cells like buttock cells, cells with irregular nuclei, cells with cleaved nuclear outlines, etc. Identification of such cells amidst sheets of malignant lymphoblastic cells is challenging. However, sound knowledge about the morphology of these cells and their immunohistochemical panel of markers may provide a clue for diagnosis. Conclusion: The predominant cell types noted in plasma lymphoblastic lesions histopathologically are immature lymphocytes and plasma cells in their varied cell activity suggest the biologic behavior of the lesion. Clinical significance: Understanding and identifying the normal and pathological cellular and nuclear morphology of the lymphoreticular cells can aid in the definitive diagnosis of the plasma lymphoblastic disorders and predict its biological nature. Keywords: Hematopoietic stem cells, Immunoglobulins, Lymphoreticular system, Lymphoblasts, Plasmablasts. World Journal of Dentistry (2019): 10.5005/jp-journals-10015-1636 INTRODUCTION 1–5 Department of Oral Pathology and Microbiology, M. -
©Ferrata Storti Foundation
Lymphoproliferative Disorders original paper haematologica 2001; 86:1046-1050 Efficacy of anti-CD20 monoclonal http://www.haematologica.it/2001_10/1046.htm antibodies (Mabthera) in patients with progressed hairy cell leukemia FRANCESCO LAURIA, MARIAPIA LENOCI, LUCIANA ANNINO,* DONATELLA RASPADORI, GIUSEPPE MAROTTA, MONICA BOCCHIA, FRANCESCO FORCONI, SARA GENTILI, MICHELA LA MANDA,* SILVIA MARCONCINI, MONICA TOZZI, LUCA BALDINI,# PIER LUIGI ZINZANI,° ROBIN FOÀ* Department of Hematology, University of Siena; *Department of Hematology, University “La Sapienza”, Rome; °Institute of Correspondence: Francesco Lauria, MD, Department of Hematology “A. Sclavo” Hospital, via Tufi 1, 53100 Siena, Italy. Hematology and Clinical Oncology “Seragnoli”, University of Phone: international +39.0577.586798. Bologna; #Centro G. Marcora, University of Milan, Italy Fax: international +39.0577.586185. E-mail: [email protected] Background and Objectives. Recently, a chimeric Interpretation and Conclusions. On the basis of monoclonal antibody (MoAb) directed against the these preliminary results observed in 10 patients CD20 antigen (rituximab) has been successfully with progressed HCL, it appears that treatment with introduced in the treatment of several CD20-posi- anti-CD20 MoAb is safe and effective in at least tive B-cell neoplasias and particularly of follicular 50% of patients, particularly in those with a less lymphomas. Based on these premises we evaluat- evident bone marrow infiltration (≤ 50%) and in ed the efficacy and the toxicity of chimeric those previously -
Indolent Non-Hodgkin's Lymphomas
Follicular and Low-Grade Non-Hodgkin Lymphomas (Indolent Lymphomas) Stefan K Barta, M.D., M.S. Associate Professor of Medicine Leader, T Cell Lymphoma Program Perelman Center for Advanced Medicine Facts and Figures: Non-Hodgkin Lymphomas • Most common blood cancer • 7th most common cancer in the US3 • 71,850 new cases in the US in 20151 • 19,790 died of NHL in 20151 • About 549,625 people are living with a history of NHL (2012)1 • 85% of all NHLs are B-cell lymphomas2 • Follicular lymphoma = 2nd most common type, ~25% of all NHLs4 1 http://seer.cancer.gov/statfacts/html/nhl.html. 2 ACS. Detailed Guide (revised January 21, 2000): Non-Hodgkin’s Lymphoma. 3 http://www.cancer.gov/cancertopics/types/commoncancers 4 Blood 89: 3909, 1997 The Immune System T- CELLS B- CELLS Cellular immunity: Humoral immunity: helper + cytotoxic T-cells antibodies Lymphatic System Lymph Node Anatomy Lymph Node: Microscopic View germinal center Lymphocyte: Microscopic View Causes Possible cause(s): • chemical exposures (pesticides, fertilizers or solvents) • individuals with compromised immune systems • heredity • infections (e.g. H. pylori, Hep C, chlamydia trachomatis) • most patients have no clear risk factors • IN MOST CASES, THE EXACT CAUSE IS UNKNOWN Cellular Origins of Lymphomas & Leukemias PLEURIPOTENT STEM CELL ACUTE LEUKEMIAS LYMPHOID STEM CELL ACUTE LYMPHOBLASTIC LEUKEMIAS PRECURSOR T - CELL PRECURSOR B - CELL LYMPHOBLASTIC LYMPHOMAS / LEUKEMIAS MATURE T - CELL MATURE B - CELL NON-HODGKIN LYMPHOMAS / CHRONIC LYMPHOCYTIC LEUKEMIA LYMPH NODES, EXTRANODAL -
Thrombotic Thrombocytopenicpurpurawith
Med J 955 - 957 The of Postgrad (1990) 66, © Fellowship Postgraduate Medicine, 1990 Postgrad Med J: first published as 10.1136/pgmj.66.781.955 on 1 November 1990. Downloaded from Thrombotic thrombocytopenic purpura with terminal pancytopenia Soo-Chin Ng' and B.A. Adam2 1Haematology Division, Department ofPathology, 2Department ofMedicine, Medical Faculty, University ofMalaya, 59100 Kuala Lumpur, Malaysia Summary: A 27 year old housewife developed thrombotic thrombocytopenic purpura during the twelfth week of pregnancy. She had partial response to initial plasma infusion and subsequent plasmapheresis. However, her clinical course was complicated by the development ofsevere pancytopenia the consequence of a hypocellular marrow. She succumbed to septicaemic shock one month after diagnosis. The development ofhypocellular marrow in thrombotic thrombocytopenicpurpura has not been reported before. Introduction Thrombotic thrombocytopenic purpura (TTP) is a 30.8 x 109/l with a slight left shift and the platelet rare disorder characterized in its form count was 10 x The direct complete by 109/1. Coomb's test was Protected by copyright. the pentad of thrombocytopenia, microangio- negative. Peripheral blood film confirmed marked pathic haemolytic anaemia (MAHA), fluctuating thrombocytopenia and a striking number of frag- neurological abnormalities, renal impairment and mented red cells and occasional nucleated red cells fever.' We report a patient with TTP in pregnancy were present. Her prothrombin time, partial who developed terminal pancytopenia secondary thromboplastin time, thrombin time and fibrin- to hypocellular marrow. ogen level were within normal limits. Bone marrow examination showed a normocellular marrow with erythroid hyperplasia and presence of normal Case report granulopoiesis and megakaryopoiesis. Urinalysis revealed microscopic haematuria. -
Hairy Cell Leukemia: the Good News of a Bad Disease
CASO CLÍNICO Hairy Cell Leukemia: the good news of a bad disease Mónica Seidi, Guadalupe Benites, Almerindo Rego Hospital de Santo Espírito da Ilha Terceira Abstract Hairy Cell Leukemia (HCL) is an uncommon chronic B cell Lymphoproliferative disorder characterized by the accumulation of a small mature B cell lym- phoid cells with abundant cytoplasm and “hairy” projections within the peripheral blood smear, bone marrow and splenic red pulp. Most patients with HCL present with symptons related to splenomegaly or cytopenias, including some constitucional symptons, however one quarter of them is asymptomatic and is referred due to incidental findings. The authors decided to report a clinical case of hairy cells leukemia in an asymptomatic patient due to the rarity of this neoplasia (2% of all leukemias Galicia Clínica | Sociedade Galega de Medicina Interna and less than 1% of limphoids neoplasms) and because it corresponds to the most successfully treatable leukemia. Palabras clave: Citopenias. Esplenomegalia. Enfermedad linfoproliferativa. Leucemia de células peludas. Keywords: Cytopenias. Splenomegaly. Lymphoproliferative disease. Hairy cells leukemia Introduction clonal gamma peak. The CT abdominal scan revealed homogenea Hairy cell leukemia (HCL) is an uncommon B-cell lymphopro- splenomegaly with no limphadenopathy present. liferative disorder that affects adults, and was first reported We decided to admit the patient in the ward to perform invasive exams such as a bone marrow aspiration which showed 66% of as a distinct disease in 1958 -
A Child with Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,A,B Deborah Hall, MD,B Inna Stroh, MD,C Caren Armstrong, MD,D Kapil Mishra, MD,C Lydia H
A Child With Pancytopenia and Optic Disc Swelling Justin Berk, MD, MPH, MBA,a,b Deborah Hall, MD,b Inna Stroh, MD,c Caren Armstrong, MD,d Kapil Mishra, MD,c Lydia H. Pecker, MD,e Bonnie W. Lau, MD, PhDe A previously healthy 16-year-old adolescent boy presented with pallor, blurry abstract vision, fatigue, and dyspnea on exertion. Physical examination demonstrated hypertension and bilateral optic nerve swelling. Laboratory testing revealed pancytopenia. Pediatric hematology, ophthalmology and neurology were consulted and a life-threatening diagnosis was made. aDivision of Intermal Medicine and Pediatrics, bDepartment c d CASE HISTORY 1% monocytes, 1% metamyelocytes, of Pediatrics; and Divisions of Ophthalmology, Pediatric Neurology, and ePediatric Hematology, School of Medicine, 1% atypical lymphocytes, 1% plasma Dr Berk, Moderator, General Johns Hopkins University, Baltimore, Maryland Pediatrics cells), absolute neutrophil count (ANC) of 90/mm3, hemoglobin level of Dr Berk was the initial author and led the majority of A previously healthy 16-year-old the writing; Dr Hall contributed to the Hematology 3.7 g/dL (mean corpuscular volume: section; Drs Stroh and Mishra contributed to the adolescent boy presented to his local 119 fL; red blood cell distribution Ophthalmology section; Dr Armstrong contributed to emergency department because his width: 15%; reticulocyte: 1.5%), and the Neurology section; Drs Pecker and Lau served as mother thought he looked pale. For 2 platelet count of 29 000/mm3. The senior authors, provided guidance, and contributed weeks, the patient had experienced to the genetic discussion, as well as to the overall laboratory results raised concern for fi occasional blurred vision (specifically, paper; and all authors approved the nal bone marrow dysfunction, particularly manuscript as submitted. -
Cancer Association of South Africa (CANSA) Fact Sheet on Adult Hairy Cell Leukaemia
Cancer Association of South Africa (CANSA) Fact Sheet on Adult Hairy Cell Leukaemia Introduction Leukaemia is a cancer of the blood forming system. Most types of leukaemia cause the bone marrow to make abnormal white blood cells. These abnormal cells can get into the bloodstream and circulate around the body. [Picture Credit: Hairy Cell Leukaemia] Adult Hairy Cell Leukaemia (HCL) Hairy cell leukaemia is a rare, slow-growing cancer of the blood in which the bone marrow makes too many B cells (lymphocytes), a type of white blood cell that fights infection. These excess B cells are abnormal and look "hairy" under a microscope. As the number of leukaemia cells increases, fewer healthy white blood cells, red blood cells and platelets are produced. This disease affects more men than women, and it occurs most commonly in middle-aged or older adults. It is considered a chronic disease because it may never completely disappear, although treatment can lead to remission for years. Joshi, A., Dhanushkodi, M., Ganesan, P., Radhakrishnan, V., Kannan, K., Mehra, N., Kalaiyarasi, J.P., Krupashankar, S., Sundersingh, S., Ganesan, T.S. & Sagar, T.G. 2020. “HCL is an uncommon B cell lympho-proliferative disorder with high remission rates. There is paucity of data on the long-term outcome of HCL from India. We retrospectively collected data from individual case records of patients with HCL who were treated in Cancer Institute, Chennai from January 2001 until January 2018. Sixteen patients were diagnosed with HCL and were treated with cladribine (81%), interferon (13%) and one patient received only best supportive care (6%). -
Update on Hairy Cell Leukemia Robert J
Update on Hairy Cell Leukemia Robert J. Kreitman, MD, and Evgeny Arons, PhD The authors are affiliated with the Abstract: Hairy cell leukemia (HCL) is a chronic B-cell malignancy with National Cancer Institute’s Center for multiple treatment options, including several that are investigational. Cancer Research at the National Institutes Patients present with pancytopenia and splenomegaly, owing to the of Health in Bethesda, Maryland. Dr infiltration of leukemic cells expressing CD22, CD25, CD20, CD103, Kreitman is a senior investigator in the Laboratory of Molecular Biology and tartrate-resistant acid phosphatase (TRAP), annexin A1 (ANXA1), and the head of the clinical immunotherapy the BRAF V600E mutation. A variant lacking CD25, ANXA1, TRAP, section, and Dr Arons is a staff scientist in and the BRAF V600E mutation, called HCLv, is more aggressive and the Laboratory of Molecular Biology. is classified as a separate disease. A molecularly defined variant expressing unmutated immunoglobulin heavy variable 4-34 (IGHV4- 34) is also aggressive, lacks the BRAF V600E mutation, and has a Corresponding author: Robert J. Kreitman, MD phenotype of HCL or HCLv. The standard first-line treatment, which Laboratory of Molecular Biology has remained unchanged for the past 25 to 30 years, is single-agent National Cancer Institute therapy with a purine analogue, either cladribine or pentostatin. This National Institutes of Health approach produces a high rate of complete remission. Residual traces 9000 Rockville Pike of HCL cells, referred to as minimal residual disease, are present in Building 37, Room 5124b most patients and cause frequent relapse. Repeated treatment with Bethesda, MD 20892-4255 Tel: (301) 648-7375 a purine analogue can restore remission, but at decreasing rates and Fax: (301) 451-5765 with increasing cumulative toxicity.