Global Photovoltaic Power Potential by Country – World Bank

Total Page:16

File Type:pdf, Size:1020Kb

Global Photovoltaic Power Potential by Country – World Bank Public Disclosure Authorized GLOBAL PHOTOVOLTAIC POWER POTENTIAL BY COUNTRY JUNE 2020 Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized 10165-ESMAP PV Potential_CVR-2.indd 3 6/17/20 10:08 AM Global Photovoltaic Power Potential by Country JUNE 2020 10165-ESMAP PV Potential-new.indd 1 6/12/20 12:42 PM ABOUT ESMAP The Energy Sector Management Assistance Program (ESMAP) is a partnership between the World Bank and 18 partners to help low and middle-income countries reduce poverty and boost growth through sustainable energy solutions. ESMAP’s analytical and advisory services are fully integrated within the World Bank’s country financing and policy dialogue in the energy sector. Through the World Bank Group (WBG), ESMAP works to accelerate the energy transition required to achieve Sustainable Development Goal 7 (SDG7) to ensure access to affordable, reliable, sustainable and modern energy for all. It helps to shape WBG strategies and programs to achieve the WBG Climate Change Action Plan targets. https://esmap.org ACKNOWLEDGMENTS This report was prepared and drafted by Marcel Suri, Juraj Betak, Konstantin Rosina, Daniel Chrkavy, Nada Suriova, Tomas Cebecauer, Marek Caltik, and Branislav Erdelyi at Solargis, under contract to the World Bank. The work was commissioned and funded by the World Bank’s Energy Sector Management Assistance Program (ESMAP) under its Global Solar Atlas activity as part of a wider initiative on Renewable Energy Resource Assessment and Mapping. The draft report was reviewed by Clara Ivanescu and Rachel Fox, copy edited by Richard Heap from Tamarindo Insight, and benefited from peer review inputs from Benjamin Stewart and Nicolas Fichaux. Project oversight and final editing was carried out by Oliver Knight. Design services were provided by Shepherd, Inc., under the supervision of Heather Austin (Production Editor, ESMAP/The World Bank), and printing services were provided by Global Corporate Solutions, Design and Publications (GCSDE). ABOUT SOLARGIS Solargis is a technology company offering energy-related meteorological data, software, and consultancy services to a wide range of stakeholders in solar energy. They have supported the solar industry in site qualification, planning, financing, and the operation of solar energy systems for the past 11 years. They developed and operate a high-resolution global database and applications integrated within the Solargis® information system. Accurate, standardized, and validated data help to reduce the weather-related risks and costs in system planning, performance assessment, forecasting, and management of distributed solar power. https://solargis.com Copyright © 2020 THE WORLD BANK. All rights reserved. 1818 H St NW, Washington, DC 20433, USA Telephone: +1-202-473-1000 Internet: https://worldbank.org RIGHTS AND PERMISSIONS The material in this work is subject to copyright. Because the World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes if full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: +1-202- 522-2625; e-mail: [email protected]. Furthermore, the ESMAP Program Manager would appreciate receiving a copy of the publication that uses this publication for its source sent in care of the address above, or to [email protected]. All images remain the sole property of their source and may not be used for any purpose without written permission from the source. ATTRIBUTION Please cite the work as follows: ESMAP. 2020. Global Photovoltaic Power Potential by Country. Washington, DC: World Bank. DISCLAIMER The World Bank does not guarantee the accuracy of the data included in this work and accepts no responsibility for any consequence of their use. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Front and back covers: Practical Photovoltaic Power Potential at Level 1 (Long-Term Average) © Solargis/ World Bank, 2020. 10165-ESMAP PV Potential-new.indd 2 6/12/20 12:42 PM CONTENTS Acronyms . vi Executive Summary . vii Methodology .............................................................................vii Key Findings and Lessons Learned .........................................................viii 1 . Introduction . .1 1.1 Objective ............................................................................... 1 2 . Methodology . 4 2.1 Photovoltaic Potential: Review of Concepts...............................................4 2.2 Input Data ............................................................................6 2.3 Theoretical PV Power Potential.........................................................12 2.4 Practical PV Power Potential...........................................................12 2.5 Economic PV Power Potential ..........................................................17 3 . Results and Discussion . 24 3.1 Theoretical Potential ..................................................................24 3.2 Practical Potential ....................................................................25 3.3 Economic Potential ...................................................................32 3.4 Country Factsheets...................................................................41 4 . References . 45 4.1 Literature ............................................................................45 4.2 Applied Data Sets ....................................................................47 iii 10165-ESMAP PV Potential-new.indd 3 6/12/20 12:42 PM Tables Table 2 1:. Primary Global Data Layers Applied in This Study.......................................7 Table 2 .2: Auxiliary Global Data Layers Applied in This Study......................................8 Table 2 .3: CAPEX for a Utility-Scale PV Power Plant Value for 19 Selected Countries in 2018 ........19 Table 2 .4: Socioeconomic Indicators, Selected for Comparison to PV Power Production .............22 Figures Figure 2 1:. Typology of Potentials for Renewable Energies .........................................6 Figure 2 .2: Solargis Calculation Scheme for Photovoltaic Power Potential ......................... 11 Figure 2 .3: Data Layers Defining Primary Exclusion Zones (Level 1), Using Ethiopia as the Example . 14 Figure 2 .4: Data Layers Defining Secondary Exclusion Zones (Level 2), Using Ethiopia as the Example ...............................................................................14 Figure 2 .5: Mask Showing Combined Primary Exclusion Zones for Practical Potential at Level 1 .....15 Figure 2 6:. Mask Showing Combined Primary and Secondary Exclusion Zones for Practical Potential at Level 2 ...........................................................................15 Figure 2 7:. Three Levels of Practical Potential (Data Masking for Zonal Statistics Calculation) in Ethiopia ...................................................................................16 Figure 2 .8: LCOE for Different PVOUT Calculated for CAPEX Global Weighted Average of $1,210/kWp................................................................................21 Figure 3 1:. Global Horizontal Irradiation: Long-Term Yearly Average of Daily/Yearly Summaries......25 Figure 3 .2: Direct Normal Irradiation: Long-Term Yearly Average of Daily/Yearly Summaries . 25 Figure 3 .3: Air Temperature: Long-Term Yearly Average ..........................................26 Figure 3 .4: Practical Solar PV Power Potential: Long-Term Yearly Average of Daily/Yearly Summaries (Level 0) ..........................................................................26 Figure 3 .5: Practical Solar PV Power Potential: Seasonality Index (Level 0).........................27 Figure 3 6:. Practical Photovoltaic Power Potential at Level 1 (Long-Term Average)..................27 Figure 3 7:. Practical Photovoltaic Power Potential at Level 2 (Long-Term Average)..................28 Figure 3 .8 (part 1 of 3): Ranking of Selected Countries, Based on Zonal Statistics of Practical PV Power Potential ..............................................................................29 Figure 3 .8 (part 2 of 3): Ranking of Selected Countries, Based on Zonal Statistics of Practical PV Power Potential ..............................................................................30 Figure 3 .8 (part 3 of 3): Ranking of Selected Countries, Based on Zonal Statistics of Practical PV Power Potential ..............................................................................31 Figure 3 .9: A Simplified LCOE Estimated for Large-Scale Ground-Mounted PV Power Plants with Expected Lifetime of 25 Years.............................................................33 Figure 3 10:. Country Groups, According to the World Bank, Used in Figures 3.11 to 3.19 .............34 Figure 3 11:. Average Practical PV Power Potential at Level 1 (PVOUT) Compared to Theoretical Potential.....................................................................................34 Figure 3 12:. Absolute Values of Practical PV Power Potential Compared to PV Seasonality Index ....35 Figure 3 13:. Practical PV Power Potential versus Installed Cumulative PV Capacity in 2018 . .36 iv Global Photovoltaic Power Potential by Country 10165-ESMAP PV Potential-new.indd
Recommended publications
  • History and Trends in Solar Irradiance and PV Power Forecasting: a Preliminary Assessment and Review Using Text Mining
    History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining Dazhi Yanga,∗, Jan Kleisslb, Christian A. Gueymardc, Hugo T. C. Pedrob, Carlos F. M. Coimbrab aSingapore Institute of Manufacturing Technology, Agency for Science, Technology and Research (A∗STAR), Singapore bCenter for Renewable Resources and Integration, Center for Energy Research Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA cSolar Consulting Services, Colebrook, NH, USA Abstract Text mining is an emerging topic that advances the review of academic literature. This paper presents a preliminary study on how to review solar irradiance and photovoltaic (PV) power forecasting (both topics combined as “solar forecasting” for short) using text mining, which serves as the first part of a forthcoming series of text mining applications in solar forecasting. This study contains three main contributions: (1) establishing the technological infrastructure (authors, journals & conferences, publications, and orga- nizations) of solar forecasting via the top 1000 papers returned by a Google Scholar search; (2) consolidating the frequently-used abbreviations in solar forecasting by mining the full texts of 249 ScienceDirect publications; and (3) identifying key innovations in recent advances in solar forecasting (e.g., shadow camera, forecast reconciliation). As most of the steps involved in the above analysis are automated via an application programming interface, the presented method can be transferred to other solar engineer- ing topics, or any other scientific domain, by means of changing the search word. The authors acknowledge that text mining, at its present stage, serves as a complement to, but not a replacement of, conventional review papers.
    [Show full text]
  • Annual Report 2018 2
    P HOTOVOLTAIC P OWER S YSTEMS P ROGRAMME ANNUAL REPORT 2018 2 COVER PHOTO: GREEN ENERGY PARK - A First Model in Africa The Green Energy Park photovoltaic plant, inaugurated by His Majesty King Mohammed VI in January 2017, is a unique model in Africa. The plant, with a total capacity of 250 kW, installed and connected to the grid is composed by different sub-systems with capacities varying between 5 kW and 30 kW. Its outdoor test platforms are designed in collaboration with the Fraunhofer CSP institute, and combine a multitude of test-set-ups, in order to investigate and characterize PV modules in harsh weather conditions and to obtain valuable data about their performances onsite. Located in the Green City of Ben Guerir, it covers the electrical needs of the Green Energy Park platform laboratories. It covers an area of approximately 1,5 ha. The plant, considered as a living laboratory by itself, contributes to R&D projects for the determination and identification of the most suited technologies for local conditions. It also gives the opportunity for national and worldwide PV module producers to test and characterize their photovoltaic technologies in real conditions. The plant is owned and operated by the Green Energy Park platform. KEY POINTS • Installed in self-consumption configuration to cover the R&D platform needs in terms of electricity; • Composed of many types of technologies (crystalline, thin film, CPV, fixed static structures, trackers); • Total area 1,5 ha; • 25 solar string inverters with different capacities are used and distributed for each sub-system; • Test of photovoltaic technologies at module level to identify the degradation mechanisms occurring on the different components of the PV modules in real conditions; • Test of photovoltaic technologies at string level to characterize their behavior in terms of power ratio and degradation mechanisms on the different component of PV plants in real local conditions.
    [Show full text]
  • Solar Irradiance Changes and the Sunspot Cycle 27
    Solar Irradiance Changes and the Sunspot Cycle 27 Irradiance (also called insolation) is a measure of the amount of sunlight power that falls upon one square meter of exposed surface, usually measured at the 'top' of Earth's atmosphere. This energy increases and decreases with the season and with your latitude on Earth, being lower in the winter and higher in the summer, and also lower at the poles and higher at the equator. But the sun's energy output also changes during the sunspot cycle! The figure above shows the solar irradiance and sunspot number since January 1979 according to NOAA's National Geophysical Data Center (NGDC). The thin lines indicate the daily irradiance (red) and sunspot number (blue), while the thick lines indicate the running annual average for these two parameters. The total variation in solar irradiance is about 1.3 watts per square meter during one sunspot cycle. This is a small change compared to the 100s of watts we experience during seasonal and latitude differences, but it may have an impact on our climate. The solar irradiance data obtained by the ACRIM satellite, measures the total number of watts of sunlight that strike Earth's upper atmosphere before being absorbed by the atmosphere and ground. Problem 1 - About what is the average value of the solar irradiance between 1978 and 2003? Problem 2 - What appears to be the relationship between sunspot number and solar irradiance? Problem 3 - A homeowner built a solar electricity (photovoltaic) system on his roof in 1985 that produced 3,000 kilowatts-hours of electricity that year.
    [Show full text]
  • Hybrid Wind-Solar Reliable Solution for Turkey to Meet Electric Demand
    BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING DOI: 10.17694/bajece.73922 62 Hybrid wind-solar reliable solution for Turkey to meet electric demand K. Dawood Abstract— Energy is the most important part of life, it is essential for social and economic development. Turkey is importing more than half of the energy from other countries to produce electricity by thermal plants. Air pollution is also becoming quite a big problem for Turkey due to the thermal production of the energy. One of the most effective solution for air pollution is renewable energy because nowadays renewable energy is environment Fig.1. Generation of electric power since 2011 [2] friendly. Turkey has many geographical location advantages one of them is renewable energy resources. Turkey has limited fossil fuel Figure 1 shows the generation of electricity in Turkey from resources and due to this reason Turkey must shift more electricity 2011 to 2015. Last year, more than 68 percent of total production to the renewable energy resources. Renewable energy has less environment impacts as compare to the fossil fuels but still electricity was generated by thermal power plants. renewable energy sources are not reliable and competitive as Approximately 5 percent of the electricity was generated from compare to the fossil fuels. The present study deals with the renewable assets of Turkey, 26 percent of electricity generated advantages of Hybrid renewable energy systems (Solar and Wind through hydropower plants. energy) in Turkey. Turkey is one of the richest country in the world in terms of Map of Turkey with high resources of solar-wind hybrid energy renewable resources.
    [Show full text]
  • Interplay Between the Potential of Photovoltaic Systems And
    1 Interplay between the potential of photovoltaic systems and 2 agricultural land use 3 Luís Dias*, João Pedro Gouveia, Paulo Lourenço, Júlia Seixas 4 5 CENSE – Center for Environmental and Sustainability Research, NOVA School of Science 6 and Technology, NOVA University Lisbon 7 8 *Corresponding author. Address: CENSE – Center for Environmental and Sustainability 9 Research, NOVA School of Science and Technology, NOVA University Lisbon 2829-516 10 Caparica, Portugal 11 Tel.:+351 21 294 83 74 12 E-mail address: [email protected] (Dias, L.) 13 14 Highlights 15 • Technical potential for utility-scale solar PV projects in rural areas is assessed. 16 • Agriculture and nature conservation land use shorten solar PV farms potential. 17 • Limited PV potential ca still cover substantial shares of local annual electricity consumption. 18 • 1 MW CPV projects show the highest land-use efficiency and productivity. 19 • PV contributes significantly to region energy independence. 20 21 Abstract 22 The recent decrease in solar photovoltaic (PV) investment cost has transformed the 23 attractiveness of the technology. Southern Europe has one of the highest levels of solar radiation 24 in the world, and policy makers are very keen to take full advantage of this resource for 25 electricity and heat production. However, physiographic characteristics and specific land uses 26 (e.g. agro-forestry and nature conservation) present important spatial constraints. This paper 27 proposes a methodology for the evaluation of utility-scale solar PV projects’ (>1 MW) technical 28 potential. The municipality of Évora (Portugal) was used as a case study, considering 29 topographical features and spatial planning regulations.
    [Show full text]
  • Solar Irradiance Measurements Using Smart Devices: a Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems
    sustainability Article Solar Irradiance Measurements Using Smart Devices: A Cost-Effective Technique for Estimation of Solar Irradiance for Sustainable Energy Systems Hussein Al-Taani * ID and Sameer Arabasi ID School of Basic Sciences and Humanities, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan; [email protected] * Correspondence: [email protected]; Tel.: +962-64-294-444 Received: 16 January 2018; Accepted: 7 February 2018; Published: 13 February 2018 Abstract: Solar irradiance measurement is a key component in estimating solar irradiation, which is necessary and essential to design sustainable energy systems such as photovoltaic (PV) systems. The measurement is typically done with sophisticated devices designed for this purpose. In this paper we propose a smartphone-aided setup to estimate the solar irradiance in a certain location. The setup is accessible, easy to use and cost-effective. The method we propose does not have the accuracy of an irradiance meter of high precision but has the advantage of being readily accessible on any smartphone. It could serve as a quick tool to estimate irradiance measurements in the preliminary stages of PV systems design. Furthermore, it could act as a cost-effective educational tool in sustainable energy courses where understanding solar radiation variations is an important aspect. Keywords: smartphone; solar irradiance; smart devices; photovoltaic; solar irradiation 1. Introduction Solar irradiation is the total amount of solar energy falling on a surface and it can be related to the solar irradiance by considering the area under solar irradiance versus time curve [1]. Measurements or estimation of the solar irradiation (solar energy in W·h/m2), in a specific location, is key to study the optimal design and to predict the performance and efficiency of photovoltaic (PV) systems; the measurements can be done based on the solar irradiance (solar power in W/m2) in that location [2–4].
    [Show full text]
  • World Bank Document
    July 2019 Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized © 2019 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW Washington DC 20433 Telephone: 202-473-1000 Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of The World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Rights and Permissions The material in this work is subject to copyright. Because The World Bank encourages dissemination of its knowledge, this work may be reproduced, in whole or in part, for noncommercial purposes as long as full attribution to this work is given. Any queries on rights and licenses, including subsidiary rights, should be addressed to World Bank Publications, The World Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: 202-522-2625; e-mail: [email protected]. Furthermore, the ESMAP Program Manager would appreciate receiving a copy of the publication that uses this publication for its source sent in care of the address above or to [email protected]. Cover Image A system in University of British Columbia (UBC) with pyranometer and pyrgeometer for meteorological observations related to solar insolation.
    [Show full text]
  • Probabilistic Solar Power Forecasting: Long Short-Term Memory Network Vs Simpler Approaches
    Probabilistic Solar Power Forecasting: Long Short-Term Memory Network vs Simpler Approaches Vinayak Sharmaa,∗, Jorge Angel´ Gonz´alezOrdianob,c, Ralf Mikutb, Umit Calid aUniversity of North Carolina at Charlotte bInstitute for Automation and Applied Informatics, Karlsruhe Institute of Technology cColorado State University dNorwegian University of Science and Technology Abstract The high penetration of volatile renewable energy sources such as solar, make methods for coping with the uncertainty associated with them of paramount importance. Probabilistic forecasts are an example of these methods, as they assist energy planners in their decision-making process by providing them with information about the uncertainty of future power generation. Currently, there is a trend towards the use of deep learning probabilistic forecasting methods. However, the point at which the more complex deep learning methods should be preferred over more simple approaches is not yet clear. Therefore, the current article presents a simple comparison between a long short-term memory neural network and other more simple approaches. The comparison consists of training and comparing models able to provide one-day-ahead probabilistic forecasts for a solar power system. Moreover, the current paper makes use of an open source dataset provided during the Global Energy Forecasting Competition of 2014 (GEFCom14). Keywords: GEFCom14, Neural Networks, Quantile Regressions, LSTM, Probabilistic Forecasting 1. Introduction arXiv:2101.08236v1 [cs.LG] 20 Jan 2021 Over the past couple of years solar power has become one of the most pop- ular renewable energy sources (RES). Unfortunately, the generation of solar power depends completely on the Sun [5]. This dependency on weather adds uncertainty and variability to the generation of solar power.
    [Show full text]
  • Water Scenarios Modelling for Renewable Energy Development in Southern Morocco
    ISSN 1848-9257 Journal of Sustainable Development Journal of Sustainable Development of Energy, Water of Energy, Water and Environment Systems and Environment Systems http://www.sdewes.org/jsdewes http://www.s!ewes or"/js!ewes Year 2021, Volume 9, Issue 1, 1080335 Water Scenarios Modelling for Renewable Energy Development in Southern Morocco Sibel R. Ersoy*1, Julia Terrapon-Pfaff 2, Lars Ribbe3, Ahmed Alami Merrouni4 1Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 2Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 3Institute for Technology and Resources Management, Technical University of Cologne, Betzdorferstraße 2, 50679 Köln, Germany e-mail: [email protected] 4Materials Science, New Energies & Applications Research Group, Department of Physics, University Mohammed First, Mohammed V Avenue, P.O. Box 524, 6000 Oujda, Morocco Institut de Recherche en Energie Solaire et Energies Nouvelles – IRESEN, Green Energy Park, Km 2 Route Régionale R206, Benguerir, Morocco e-mail: [email protected] Cite as: Ersoy, S. R., Terrapon-Pfaff, J., Ribbe, L., Alami Merrouni, A., Water Scenarios Modelling for Renewable Energy Development in Southern Morocco, J. sustain. dev. energy water environ. syst., 9(1), 1080335, 2021, DOI: https://doi.org/10.13044/j.sdewes.d8.0335 ABSTRACT Water and energy are two pivotal areas for future sustainable development, with complex linkages existing between the two sectors. These linkages require special attention in the context of the energy transition.
    [Show full text]
  • PDF-Download
    Michaël Tanchum FOKUS | 8/2020 Morocco‘s Africa-to-Europe Commercial Corridor: Gatekeeper of an emerging trans-regional strategic architecture Morocco’s West-Africa-to-Western-Europe framework of this emerging trans-regional emerging West-Africa-to-Western-Europe commercial transportation corridor is commercial architecture for years to come. commercial corridor. The November 15, redefining the geopolitical parameters of 2018 inauguration of the first segment of the global scramble for Africa and, with Morocco’s Construction of an Africa-to- the landmark high-speed line was presi- it, the strategic architecture of the Medi- Europe Corridor ded over by King Mohammed VI himself, in terranean basin. By massively expanding conjunction with French President Emma- the port capacity on its Mediterranean Situated in the northwest corner of Africa, nuel Macron.2 Seven years in construction, coast, Morocco has surpassed Spain and is fronting the Atlantic Ocean on its western the $2.3 billion line was built as a joint poised to become the dominant maritime coast and the Mediterranean Sea on its venture between France’s national railway hub in the western Mediterranean. Having northern coast, the Kingdom of Morocco company Société Nationale des Chemins constructed Africa’s first high-speed rail line, historically has been a geographical pivot de Fer Français (SNCF) and its Moroccan Morocco’s extension of the line to the Mau- for interchange between Europe, Africa, state counterpart Office National des Che- ritanian border, will transform Morocco into and the Middle East. In recent years, the mins de Fer (ONCF). Outfitted with Avelia the preeminent connectivity node in the semi-constitutional monarchy has adroitly Euroduplex high-speed trains produced nexus of commercial routes that connect combined the soft power resources of by French manufacturer Alstom, the initial West Africa to Europe and the Middle East.
    [Show full text]
  • Rapid Desk Based Study
    RAPID DESK BASED STUDY: Evidence and Gaps in Evidence on the Principle Political Economy Constraints and Opportunities to Successful Investment in Clean Energy in Asia Duke Ghosh and Anupa Ghosh January 2016 This report has been produced by Global Change Research, Kolkata and Department for Economics, The Bhawanipur Education Society College, Kolkata for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited. The views expressed in the report are entirely those of the author and do not necessarily represent DFID’s own views or policies, or those of Evidence on Demand. Comments and discussion on items related to content and opinion should be addressed to the author, via [email protected] Your feedback helps us ensure the quality and usefulness of all knowledge products. Please email [email protected] and let us know whether or not you have found this material useful; in what ways it has helped build your knowledge base and informed your work; or how it could be improved. DOI: http://dx.doi.org/10.12774/eod_hd.january2016.ghoshdetal First published January 2016 © CROWN COPYRIGHT Contents Report Summary ........................................................................................................ iii SECTION 1...............................................................................................
    [Show full text]
  • Iea Pvps Annual Report 2019 Photovoltaic Power Systems Programme
    Cover photo THE INTERNATIONAL OLYMPIC COMMITTEE’S (IOC) NEW HEADQUARTERS’ PV ROOFTOP, BUILT BY SOLSTIS, LAUSANNE SWITZERLAND One of the most sustainable buildings in the world, featuring a PV rooftop system built by Solstis, Lausanne, Switzerland. At the time of its certification in June 2019, the new IOC Headquarters in Lausanne, Switzerland, received the highest rating of any of the LEED v4-certified new construction project. This was only possible thanks to the PV system consisting of 614 mono-Si modules, amounting to 179 kWp and covering 999 m2 of the roof’s surface. The approximately 200 MWh solar power generated per year are used in-house for heat pumps, HVAC systems, lighting and general building operations. Photo: Solstis © IOC/Adam Mork COLOPHON Cover Photograph Solstis © IOC/Adam Mork Task Status Reports PVPS Operating Agents National Status Reports PVPS Executive Committee Members and Task 1 Experts Editor Mary Jo Brunisholz Layout Autrement dit Background Pages Normaset Puro blanc naturel Type set in Colaborate ISBN 978-3-906042-95-4 3 / IEA PVPS ANNUAL REPORT 2019 PHOTOVOLTAIC POWER SYSTEMS PROGRAMME PHOTOVOLTAIC POWER SYSTEMS PROGRAMME ANNUAL REPORT 2019 4 / IEA PVPS ANNUAL REPORT 2019 CHAIRMAN'S MESSAGE CHAIRMAN'S MESSAGE A warm welcome to the 2019 annual report of the International Energy Agency Photovoltaic Power Systems Technology Collaboration Programme, the IEA PVPS TCP! We are pleased to provide you with highlights and the latest results from our global collaborative work, as well as relevant developments in PV research and technology, applications and markets in our growing number of member countries and organizations worldwide.
    [Show full text]