Hydrogen Safety Training Materials

Total Page:16

File Type:pdf, Size:1020Kb

Hydrogen Safety Training Materials HYDROGEN TOOLS FOCUSING ON SAFETY KNOWLEDGE MY ACCOUNT LOG OUT Enter your keywords WORKSPACESMain Site SearchRESOURCESFORUMSPARTNERSABOUT Home » Training Materials » Training Materials Hydrogen Safety Training Materials Below are links to online training tools targeted to different audiences: National Hydrogen and Fuel Cell Emergency Response Training Resource Featured Resource! The California Fuel Cell Partnership and the Pacific Northwest National Laboratory collaborated to develop a national hydrogen safety training resource for emergency responders. The resource provides a single repository of credible and reliable information related to hydrogen and fuel cells that is current and accurate and eliminates duplicative efforts among various training programs. This approach will enable government and private training organizations nationwide to develop their own training programs with consistent hydrogen and fuel cells content and standards. See more information about using this resource. Introduction to Hydrogen Safety for First Responders DOE's Introduction to Hydrogen Safety for First Responders is a Web-based course that provides an "awareness level" overview of hydrogen for fire, law enforcement, and emergency medical personnel. This multimedia tutorial acquaints first responders with hydrogen, its basic properties, and how it compares to other familiar fuels; hydrogen use in fuel cells for transportation and stationary power; potential hazards; initial protective actions should a responder witness an incident; and supplemental resources including videos, supporting documents, and links relevant to hydrogen safety. Hydrogen Safety Training for Researchers Laboratory researchers and technical personnel handling hydrogen need basic information on pressure, cryogenics, flammability, asphyxiation, and other risks and precautions for using hydrogen. The objective of the Hydrogen Safety Training for Researchers interactive online course is to provide basic hydrogen safety training. Introduction to Hydrogen for Code Officials The Introduction to Hydrogen for Code Officials online training course provides an overview of hydrogen and fuel cell technologies, how these technologies are used in real-world applications, and the codes and standards required for permitting them. A short quiz is offered at the end of each module. In addition, the course features a Library section with supplementary information including publications, related links, and a glossary of terms used in the course. Vehicle Emergency Response Guides Honda FCX Clarity Honda FCX Clarity Toyota Mirai Mirai Documents Toyota Overall ERG GM Equinox Fuel Cell ERG ER Quick Reference sheet Hyundai Hyundai Emergency Response Guide AC Transit Bus AC Transit Bus ElDorado National – CA ElDorado Fuel Cell Bus H2 Tools is intended for public use. It was built, and is maintained, by the Pacific Northwest National Laboratory with funding from the DOE Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office. Contact us Content Administrator National Hydrogen and Fuel Cells EMERGENCY RESPONSE TRAINING TEMPLATE A properly trained first responder community is critical to the successful introduction of hydrogen fuel cell applications and their transformation in how we use energy. We envision that hydrogen and fuel cell-related first responder training will be delivered locally to serve missions to protect life and preserve property, utilizing this national emergency response training resource as a consistent source of accurate information and current knowledge. These training materials are adaptable to the specific needs of first responders and training organizations and are meant to complement the extensive training programs already in place to serve their missions. The note pages format of the slides provides more details for the instructor to conduct the training. Instructors should share this information when presenting the slides. This nationally-focused training template is intended to serve as a resource and guide for the delivery of a variety of training regimens to various audiences. These materials are adaptable for different presentation styles, ranging from higher level overview formats to more comprehensive classroom training. Three example uses of the slides are provided in the included Excel file National_HFC_ER_Training_Guide_Examples.xlsx based on the discussion below. • L1 (Overview) – This example refers to a course directed to a responder audience that has little knowledge about hydrogen and fuel cell technologies. The presentation is limited to background information to provide the attendee with an overview of the technologies and their applications. The instructor may very well choose to use additional slides appropriate for the audience. • L2 (Short Course) – A short course would be directed to a responder audience that has an intermediate level of knowledge about alternative fuel vehicle technologies not necessarily including hydrogen. One example could be an auto extrication classroom session for which background and other detailed information are minimized and operations-related slides are highlighted. • L3 (Full Course) – A day-long classroom curriculum could very well cover training materials contained in all the slides including practical exercises for which small groups would discuss incident scenarios. Some of these slides could also be used for purposes intended for an L1 and/or L2 training regimen. Feedback from presenters and audiences to the developers of the National Hydrogen and Fuel Cells Emergency Response Training will help ensure that the development of new and updated training content and techniques serves to continually enhance the value of this resource. Feedback should be provided to [email protected] or [email protected]. Revision Date: December 22, 2015 Suggested Use of Training Slides First Responder Training Template Slide NumberSlide Section Number L1-Overview Course L2-Short L3-FullCourse 1 The Program: What and Why 2 National Hydrogen and Fuel Cells ER Education Program 3 1.0 Introduction and Background 4 Fuel cells overview 5 6 Fuel cells- Where are we today? 7 8 2.0 Hydrogen and Fuel Cell Basics 2.1 Hydrogen - Where does it come from and how do we use it now? 9 Why hydrogen? 10 Where do we get hydrogen? 11 Hydrogen uses 12 Hydrogen distribution 13 Transporting hydrogen today 2.2 Properties of hydrogen and its safe use 14 Hydrogen properties and behavior 15 Hydrogen properties: a comparison 16 Relative vapor density 17 Auto ignition temperature 18 Comparison of flammability 19 Flammability range 20 Comparison of fuel odorants and toxicity 21 22 Designing safe systems- gaseous hydrogen 23 24 Designing safe systems- liquid hydrogen 2.3 How a fuel cell works 25 Fuel cell basics 26 How a fuel cell works 2.4 Fuel cell applications 27 Fuel cell applications 2.4.1 Stationary/back-up power 28 24 x 7 reliable large industrial-scale fuel cell power 2.4.2 Industrial trucks 29 Fuel cells for speciality vehicles 30 Industrial trucks 31 Companies with fuel cell industrial trucks 2.4.3 Auxiliary power units (APUs) slides to be added in future version 2.4.4 Medium duty applications slides to be added in future version 2.4.5 Off-road lighting 32 Stationary fuel cell lighting application 2.4.6 Small-scale applications 33 Small-scale applications for fuel cells 34 3.0 Hydrogen-fueled vehicles (light duty and transit) 35 Fuel cell electric vehicles (FCEV) 36 Public vehicles 37 FCEV coming soon 3.1 How the vehicles work 38 Standard components of all vehicles 39 FCEV vs. gasoline hybrid-electric vehicle 40 FCEV vs. compressed natural gas (CNG) vehicle 41 FCEV system layout 42 FCEV system and passenger layout 43 Fuel cell component location 3.2 FCEV components and systems 3.2.1 Voltage systems 44 Low and high voltage systems 45 High voltage systems 46 Bus low and high voltage systems 3.2.2 Hydrogen delivery and storage 47 Hydrogen delivery system 48 Hydrogen delivery system- bus 49 Onboard hydrogen storage 50 Compressed hydrogen storage systems 51 Example of gaseous hydrogen storage system 52 70 MPa tanks 3.3 Vehicle systems safety 53 Compressed hydrogen storage tank testing 54 55 Compressed hydrogen storage tank testing: high strain rate impact test 56 Compressed hydrogen storage tank testing: bonfire test 57 Equinox fuel cell- FMVSS 208 certification (occupant protection) 58 Hyundai ix35 FCEV- FMVSS 305 and ECE R94-25s certification 59 Hyundai ix35 FCEV- FMVSS 305 and ECE R94-50s certification 60 Fuel isolation in typical or normal operation 61 Hydrogen vehicle safety systems 62 Safety systems 63 Hydrogen sensors example 64 4.0 Stationary Facilities 65 Types of stationary facilities 66 Identifying stationary facilities 4.1 Fueling stations (light duty/outdoor, fork lift/indoor 67 Hydrogen fueling stations 68 Components for fueling a hydrogen vehicle 69 Hydrogen fueling 70 Hydrogen fueling diagram 4.1.2 Station safety systems 71 General station safety systems 72 4.1.3 Hydrogen fueling station configurations and components 73 Typical station configuration 74 Hydrogen fueling stations: gaseous hydrogen delivery 75 Hydrogen fueling stations: gaseous hydrogen storage 76 Hydrogen fueling stations: liquid hydrogen delivery 77 Hydrogen fueling stations: liquid hydrogen storage 78 Hydrogen fueling stations: onsite hydrogen generation by reforming 79 Hydrogen fueling stations: onsite reforming components 80
Recommended publications
  • The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility
    The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility Andreas Hoffrichter, PhD Nick Little Shanelle Foster, PhD Raphael Isaac, PhD Orwell Madovi Darren Tascillo Center for Railway Research and Education Michigan State University Henry Center for Executive Development 3535 Forest Road, Lansing, MI 48910 NCDOT Project 2019-43 FHWA/NC/2019-43 October 2020 -i- FEASIBILITY REPORT The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 Prepared by Center for Railway Research and Education Eli Broad College of Business Michigan State University 3535 Forest Road Lansing, MI 48910 USA Prepared for North Carolina Department of Transportation – Rail Division 860 Capital Boulevard Raleigh, NC 27603 -ii- Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/NC/2019-43 4. Title and Subtitle 5. Report Date The Piedmont Service: Hydrogen Fuel Cell Locomotive Feasibility October 2020 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Andreas Hoffrichter, PhD, https://orcid.org/0000-0002-2384-4463 Nick Little Shanelle N. Foster, PhD, https://orcid.org/0000-0001-9630-5500 Raphael Isaac, PhD Orwell Madovi Darren M. Tascillo 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Railway Research and Education 11. Contract or Grant No. Michigan State University Henry Center for Executive Development 3535 Forest Road Lansing, MI 48910 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report Research and Development Unit 104 Fayetteville Street December 2018 – October 2020 Raleigh, North Carolina 27601 14. Sponsoring Agency Code RP2019-43 Supplementary Notes: 16.
    [Show full text]
  • Hydrogen Fuel Cell Vehicles in Tunnels
    SAND2020-4507 R Hydrogen Fuel Cell Vehicles in Tunnels Austin M. Glover, Austin R. Baird, Chris B. LaFleur April 2020 Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. 2 ABSTRACT There are numerous vehicles which utilize alternative fuels, or fuels that differ from typical hydrocarbons such as gasoline and diesel, throughout the world. Alternative vehicles include those running on the combustion of natural gas and propane as well as electrical drive vehicles utilizing batteries or hydrogen as energy storage. Because the number of alternative fuels vehicles is expected to increase significantly, it is important to analyze the hazards and risks involved with these new technologies with respect to the regulations related to specific transport infrastructure, such as bridges and tunnels. This report focuses on hazards presented by hydrogen fuel cell electric vehicles that are different from traditional fuels. There are numerous scientific research and analysis publications on hydrogen hazards in tunnel scenarios; however, compiling the data to make conclusions can be a difficult process for tunnel owners and authorities having jurisdiction over tunnels. This report provides a summary of the available literature characterizing hazards presented by hydrogen fuel cell electric vehicles, including light-duty, medium and heavy-duty, as well as buses. Research characterizing both worst-case and credible scenarios, as well as risk-based analysis, is summarized. Gaps in the research are identified to guide future research efforts to provide a complete analysis of the hazards and recommendations for the safe use of hydrogen fuel cell electric vehicles in tunnels.
    [Show full text]
  • H2@Railsm Workshop
    SANDIA REPORT SAND2019-10191 R Printed August 2019 H2@RailSM Workshop Workshop and report sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office, and the US Department of Transportation Federal Railroad Administration. Prepared by Mattie Hensley, Jonathan Zimmerman Prepared by Sandia National Laboratories Albuquerque, New MexiCo 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from U.S. Department of Energy Office of Scientific and Technical Information P.O.
    [Show full text]
  • GFO-19-602 Hydrogen Safety Panel Workshop Presentation
    Safety Planning for Hydrogen and Fuel Cell Projects Nick Barilo Hydrogen Safety Manager, Pacific Northwest National Laboratory California GFO-19-602 Webinar, January 15, 2020 PNNL-SA-150422 January 15, 2020 / 1 Webinar Outline Part 1 Safety Planning Introduction to PNNL and GFO-19-602 Safety Activities Background on the Hydrogen Safety Panel ▶ Safety Planning ▶ Learnings from California HSP Reviews and Activities ▶ Hydrogen Safety Resources ▶ Center for Hydrogen Safety ▶ Q&A ▶ Part▶ 2 Hydrogen Safety Considerations Properties of Hydrogen Primary Codes and Standards ▶ Fundamental Safety Considerations ▶ Q&A ▶ ▶ January 15, 2020 / 2 Hydrogen Safety Resources Hydrogen Safety Panel (HSP) ► Identify Safety-Related Technical Data Gaps ► Review Safety Plans and Project Designs ► Perform Safety Evaluation Site Visits Hydrogen Tools Web Portal (http://h2tools.org) ► Hydrogen Lessons Learned and Best Safety Practices ► Hydrogen Codes and Standards, Training and HyARC Tools Emergency Response Training Resources ► Online Awareness Training ► Operations-Level Classroom/Hands-On Training for First Responders (FR) ► National Hydrogen and Fuel Cell Emergency Response Training Resource January 15, 2020 / 3 Timeline of Hydrogen Safety Resources Hydrogen Safety Panel Safety Knowledge Tools ◉ First Responder Training ◉ ◉ January 15, 2020 / 4 Safety – The Awardees of CEC GFO-19-602 Are Required to… A telephone or web-based meeting with a representative of the PNNL HSP to establish a common understanding of the Hydrogen Safety Plan and station design review
    [Show full text]
  • Transportation Through Hydrogen Fuelled Vehicles in India
    APPENDIX - VII REPORT ON TRANSPORTATION THROUGH HYDROGEN FUELLED VEHICLES IN INDIA Prepared by Sub-Committee on Transportation through Hydrogen Fuelled Vehicles of the Steering Committee on Hydrogen Energy and Fuel Cells Ministry of New and Renewable Energy, Government of India, New Delhi June, 2016 PREFACE In the present scenario, transportation sector is the lifeline of any economy but it is a major contributor to air pollution and greenhouse gas effect, causing health hazardous to living beings and increases earth’s atmospheric temperature (which result melting of glaciers and rise of water level in seas / ocean) respectively. The reserves of conventional sources of energy like coal and petroleum will rapidly be depleted due to continuous increasing energy demand. The transportation sector can alternatively be managed with hydrogen as fuel, which emits only water vapours and conventional sources of energy may be utilized for non-energy purpose. The hydrogen fueled vehicles based on internal combustion and fuel cell based technology (known as Zero Emission Vehicles) have been developed decades ago and are under demonstration in many countries. However, the industry experienced ups and downs in the interest of these vehicles due to various international reasons. In view of the climate change, it is becoming compulsive to promote carbon based to carbon neutral technologies. India is also concerned about its contribution to climate change and therefore has been giving significant impetus to generation & usage of new and renewable energy e.g. solar and wind. Hydrogen energy has also been a focus of attention for quite some time. Unfortunately, required emphasis could not be given primarily due to resource crunch and therefore the progress is lagging far behind in the global race.
    [Show full text]
  • SAFETY STANDARD for HYDROGEN and HYDROGEN SYSTEMS Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation
    NSS 1740.16 National Aeronautics and Space Administration SAFETY STANDARD FOR HYDROGEN AND HYDROGEN SYSTEMS Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation Office of Safety and Mission Assurance Washington, DC 20546 PREFACE This safety standard establishes a uniform Agency process for hydrogen system design, materials selection, operation, storage, and transportation. This standard contains minimum guidelines applicable to NASA Headquarters and all NASA Field Centers. Centers are encouraged to assess their individual programs and develop additional requirements as needed. “Shalls” and “musts” denote requirements mandated in other documents and in widespread use in the aerospace industry. This standard is issued in loose-leaf form and will be revised by change pages. Comments and questions concerning the contents of this publication should be referred to the National Aeronautics and Space Administration Headquarters, Director, Safety and Risk Management Division, Office of the Associate for Safety and Mission Assurance, Washington, DC 20546. Frederick D. Gregory Effective Date: Feb.12, 1997 Associate Administrator for Safety and Mission Assurance i ACKNOWLEDGMENTS The NASA Hydrogen Safety Handbook originally was prepared by Paul M. Ordin, Consulting Engineer, with the support of the Planning Research Corporation. The support of the NASA Hydrogen-Oxygen Safety Standards Review Committee in providing technical monitoring of the standard is acknowledged. The committee included the following members: William J. Brown (Chairman) NASA Lewis Research Center Cleveland, OH Harold Beeson NASA Johnson Space Center White Sands Test Facility Las Cruces, NM Mike Pedley NASA Johnson Space Center Houston, TX Dennis Griffin NASA Marshall Space Flight Center Alabama Coleman J. Bryan NASA Kennedy Space Center Florida Wayne A.
    [Show full text]
  • Ix35 FCEV Identification
    ContentsContents Introduction ·········································································································································· 3 High Voltage Safety System in FCEV - Fuel cell stack ···························································································································· 4 - High voltage battery system ····································································································· 4 - Safety of High voltage system ·································································································· 5 Safety Issue of Compressed Hydrogen - General features, Hydrogen gas features ················································································ 6 - Hydrogen gas leak detection system, Hydrogen gas ventilation ············································· 6 Hydrogen Safety System - Hydrogen gas detection sensor, Hydrogen safety devices, Impact sensors ··························· 7 Safety pecaution for FCEV - Safety precaution for Hydrogen system, Safety precaution for High voltage system ·············· 8 ix35 FCEV Identification - Exterior visual identification ······································································································· 9 - Interior visual identification ········································································································· 11 Main Components ·······························································································································
    [Show full text]
  • Integrating a Hydrogen Fuel Cell Electric Vehicle with Vehicle-To-Grid Technology, Photovoltaic Power and a Residential Building
    Delft University of Technology Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building Robledo, Carla B.; Oldenbroek, Vincent; Abbruzzese, Francesca; van Wijk, Ad J.M. DOI 10.1016/j.apenergy.2018.02.038 Publication date 2018 Document Version Final published version Published in Applied Energy Citation (APA) Robledo, C. B., Oldenbroek, V., Abbruzzese, F., & van Wijk, A. J. M. (2018). Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid technology, photovoltaic power and a residential building. Applied Energy, 215, 615-629. https://doi.org/10.1016/j.apenergy.2018.02.038 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Applied Energy 215 (2018) 615–629 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Integrating a hydrogen fuel cell electric vehicle with vehicle-to-grid T technology, photovoltaic power and a residential building ⁎ Carla B.
    [Show full text]
  • Quenching Limits and Materials Degradation of Hydrogen Diffusion Flames
    ABSTRACT Title of Document: QUENCHING LIMITS AND MATERIALS DEGRADATION OF HYDROGEN DIFFUSION FLAMES Nicholas R. Morton, Master of Science in Fire Protection Engineering, 2007 Directed By: Assistant Professor, Peter B. Sunderland, Department of Fire Protection Engineering This study examines the types of hydrogen leaks that can support combustion and the effects on various materials of long term hydrogen flame exposure. Experimental and analytical work is presented. Measurements included limits of quenching, blowoff, and piloted ignition for burners with diameters of 0.36 to 1.78 mm. A dimensionless crack parameter was identified to correlate the quenching limit measurements. Flow rates of 0.019 to 40 mg/s for hydrogen, 0.12 to 64 mg/s for methane, and 0.03 to 220 mg/s for propane were studied. Hydrogen quenching limits are found to have lower mass flowrates than those of methane and propane. Hydrogen blowoff mass flowrates are found to be higher than methane and propane. Materials degradation experiments were conducted on 1080 – 1090 carbon steel, 304 and 316 alloys of stainless steel, galvanized 1006 – 1008 carbon steel, aluminum alloy 1100, and silicon carbide fibers. Exposure to hydrogen flames is found to severely degrade aluminum alloy 1100. Noticeable corrosion is present on 304 and 316 stainless steel, galvanized 1006 – 1008 carbon steel. Silicon carbide fibers perform relatively similarly for hydrogen and methane flame exposure. QUENCHING LIMITS AND MATERIALS DEGRADATION OF HYDROGEN DIFFUSION FLAMES. By Nicholas R. Morton Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2008 Advisory Committee: Assistant Professor Peter B.
    [Show full text]
  • Christopher W. Moran, Master of Science in Fire Protection Engineering, 2008
    ABSTRACT Title of Document: FLAME QUENCHING LIMITS OF HYDROGEN LEAKS Christopher W. Moran, Master of Science in Fire Protection Engineering, 2008 Directed By: Assistant Professor, Peter B. Sunderland, Department of Fire Protection Engineering This study examines flame quenching limits of hydrogen leaks in compression fittings and tube burners. Experimental work is presented. Measurements included ignition limits for leaking compression fittings on tubes of 3.16-12.66 mm in diameter and the ignition and quenching limits of tube burners with diameters of 0.15 – 0.56 mm. Minimum ignition flow rates of 0.028 mg/s for hydrogen, 0.378 mg/s for methane, and 0.336 mg/s for propane were found in the compression fitting experiments. The upstream pressure does not play a role in the ignition flowrate limit. The minimum quenching limits of hydrogen found in tube burners were 2.1 and 3.85 µg/s in oxygen and air, respectively. These correspond to heat release rates of 0.252 and 0.463 W, respectively, the former being the weakest observed flame ever. FLAME QUENCHING LIMITS OF HYDROGEN LEAKS By Christopher W. Moran Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2008 Advisory Committee: Assistant Professor Peter B. Sunderland, Chair Professor Marino di Marzo Associate Professor Arnaud Trouvé © Copyright by Christopher W. Moran 2008 Acknowledgements This work was supported by NIST (Grant 60NANB5D1209) under the technical management of J. Yang. I also very much appreciate the support that was offered me through the Clark School of Engineering Distinguished Graduate Fellowship that allowed me to work and study here.
    [Show full text]
  • Safety Considerations for Hydrogen and Fuel Cell Applications
    Safety Considerations for Hydrogen and Fuel Cell Applications Nick Barilo PNNL Hydrogen Safety Program Manager ICC Annual Business Meeting, Long Beach, CA, September 29, 2015 PNNL-SA-110843 October 7, 2015 / 1 PNNL Hydrogen Safety Program Hydrogen Safety Panel • Identify Safety-Related Technical Data Gaps • Review Safety Plans and Project Designs • Perform Safety Evaluation Site Visits • Provide Technical Oversight for Other Program Areas Safety Knowledge Tools and Dissemination • Hydrogen Lessons Learned • Hydrogen Best Practices • Hydrogen Tools (iPad/iPhone mobile application) • Hydrogen Tools Portal (http://h2tools.org) Hydrogen Safety First Responder Training • Online Awareness Training • Operations-level Classroom/Hands-on Training • National Hydrogen and Fuel Cell Emergency Response Training Resource October 7, 2015 / 2 Outline for Today’s Presentation • Fuel Cell Basics and Applications • Properties of Hydrogen • Primary Codes and Standards • Fundamental Safety Considerations • Hydrogen Safety Resources • Concluding Thoughts October 7, 2015 / 3 Fuel Cell Basics and Applications October 7, 2015/ 4 Why Hydrogen? • Excellent energy carrier • Nonpolluting • Economically competitive • As safe as gasoline • Used safely for over 50 years • Produced from a variety of sources Photo courtesy of the California Fuel Cell Partnership October 7, 2015 / 5 Where Do We Get Hydrogen? Renewable Sources Traditional Sources Solar, wind, geothermal, Natural gas, gasoline, hydro, biomass, algae nuclear, coal October 7, 2015 / 6 Hydrogen Uses The use
    [Show full text]
  • Complex Coolant Fluid for PEM Fuel Cell Systems
    Complex Coolant Fluid for PEM Fuel Cell Systems Satish C. Mohapatra Advanced Fluid Technologies, Inc. dba Dynalene Heat Transfer Fluids 05-24-2005 Project ID # FCP 21 This presentation does not contain any proprietary or confidential information Overview Timeline Barriers For SBIR Phase I Project • Barriers addressed – Technical Barriers (stability of • Project start date: 07-14-2004 the coolant at high • Project end date: 04-13-2005 temperatures and over a • Percent complete: 100% period of time) – Cost Barriers (preliminary cost estimates) Budget • Total project funding – DOE share: $97,390 Partners – Contractor share: in-kind • Funding received in FY04: • Interactions/ $51,114.75 collaborations: • Funding received in FY05: Lehigh University $46,275.25 2 Objectives • Prove that we can fully develop and validate a fuel cell coolant based on glycol/water mixtures and an additive package (with nanoparticles) that will exhibit less than 2.0 µS/cm of electrical conductivity for more than 3000 hours in an actual PEM Fuel Cell System. • Demonstrate the potential for commercializing such a coolant at a price that is acceptable for a majority of fuel cell applications (i.e., < $8.0/gallon). 3 Key Technical and Economic Questions to be Answered • How is the electrical conductivity of the coolant related to the properties of the additives? • Will the additives influence the heat transfer and pressure drop characteristics of the coolant? • Is the coolant and its additives compatible with the fuel cell cooling system components? • What is the raw material and production cost for the proposed ‘Complex Coolant Fluid’? 4 Approach • The proposed Complex Coolant Fluid consists of a base compound (glycol/water mixtures) and an additive package.
    [Show full text]