Proceedings of the Ninth and Tenth U.S.-Japan Meetings on Aquaculture

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Ninth and Tenth U.S.-Japan Meetings on Aquaculture 16 NOAA Technical Report NMFS 16 Proceedings of the Ninth and Tenth U.S.-Japan Meetings on Aquaculture Carl J. Sindermann (Editor) Under the U.S.-Japan Cooperative Program in Natural Resources (UJNR) Panel Chairmen: NINTH MEETING: AKIRA SUDA - Japan WILLIAM N. SHAW - United States TENTH MEETING: CONRAD MAHNKEN - United States TAKESHI NOSE-Japan November 1984 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS NMFS The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implemen­ tation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS, intensive scientific reports on studies of restricted scope, papers on applied fishery problems, technical reports of general interest intended to aid conservation and management, reports that review in considerable detail and at a high technical level certain broad areas of research, and technical papers originating in economics studies and from management investigations. Copies of NOAA Technical Report NMFS are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. NOAA Technical Report NMFS 16 Proceedings of the Ninth and Tenth U.S.-Japan Meetings on Aquaculture Carl J. Sindermann (Editor) Under the U.S.-Japan Cooperative Program in Natural Resources (UJNR) November 1984 u.s. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary National Oceanic and Atmospheric Administration John V. Byrne, Administrator National Marine Fisheries Service William G. Gordon, Assistant Administrator for Fisheries PREFACE The United States and Japanese counterpart panels on aquaculture were formed in 1969 under the United States-Japan Cooperative Program in Natural Resources (UJNR). The panels currently include specialists drawn from the federal departments most concerned with aquaculture. Charged with exploring and develop­ ing bilateral cooperation, the panels have focused their efforts on exchanging information related to aqua­ culture which could be of benefit to both countries. The UJNR was started by a proposal made during the Third Cabinet-Level Meeting of the Joint United States-Japan Committee on Trade and Economic Affairs in January 1964. In addition to aquaculture, cur­ rent subjects in the program are desalination of seawater, toxic microorganisms, air pollution, energy, forage crops, national park management, mycoplasmosis, wind and seismic effects, protein resources, forestry, and several joint panels and committees in marine resources research, development, and utilization. Accomplishments include: Increased communications and cooperation among technical specialists; ex­ changes of information, data, and research findings; annual meetings of the panels, a policy coordinative body; administration staff meetings; exchanges of equipment, materials, and samples; several major technical conferences; and beneficial effects on international relations. Akira Suda - Japan William N. Shaw - United States ii CONTENTS NINTH MEETING Papers presented by Japanese panel members: KANAZAWA, A. Nutritional requirements and artificial diets of Kuruma shrimp, Penaeus japonicus ... .. ............... 3 KURATA, H., K. SHIGUENO, and K. YATSUYANAGI. Kuruma shrimp culture in Japan. ........................... 9 NOMA, T. Structure of a Kuruma shrimp culture pond. ........................................................ 17 Papers presented by U.S. panel members: LIGHTNER, D. Y., R. M. REDMAN, D. A. DANALD, R. R. WILLIAMS, and L. A. PEREZ. Major diseases encountered in controlled environment culture of penaeid shrimp at Puerto Penasco, Sonora, Mexico. ............................... 25 MALECHA, S. Research and development in freshwater prawn, Macrobrachium rosenbergii, culture in the United States: Current status and biological constraints with emphasis on breeding and domestication 35 SHLESER, R. A., and L. F. FOLLETT. Research and development in maturation and production of penaeid shrimp in the Western Hemisphere... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 57 SPARKS, A. K. An invasive fungus disease of the Tanner crab and its aquacultural connotations 61 TENTH MEETING Papers presented by Japanese panel members: KANAZAWA, A., S. TESHIMA, M. SAKAMOTO, H. MATSUBARA, and T. ABE. An attempt to culture the noble scallop, Mimachlamys nobilis Reeve, using a microparticulate diet ...................................................... 71 NOGAMI, K., O. FUKUHARA, and S. UMEZAWA. Recent developments in shellfish culture in southern Japan. ......... 73 UKI, N. Abalone culture in Japan. ......................................................................... 83 WADA, K. Osmoregulation in marine bivalves. .............................................................. 89 The National Marine Fisheries Service (NMFS) does not approve, rec­ ommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales pro­ motion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. iii Statement of Ninth Joint Meeting of the UJNR Aquaculture Panel, Crustacean Culture, Kyoto, Japan, May 26-27, 1980 The Ninth Joint Meeting of the UJNR Aquaculture Panel was held on May 26-27, 1980, at the Kyoto International Conference Hall, in Kyoto, Japan. On the first day of the meeting, Dr. S. Sato announced a change of officers for the Japanese delegation. Dr. A. Suda is the new Chairman, and Dr. M. Fujiya the new Vice-Chairman. Dr. T. Nose is the new Secretary General. Mr. W. Shaw, the U.S. Chairman, announced that Dr. C. Mahnken will take over the chairmanship of UJNR for the American side at the conclusion of the 9th session; however, due to Mr. Shaw's accident, Dr. Mahnken chaired the session on the second day. The business meeting was held on the second day. The morning session was chaired by Dr. Suda and afternoon session by Dr. Mahnken. Dr. Mahnken introduced Dr. Banerjee as the new Vice­ Chairman of the U.S.lUJNR panel. I. Scientist Exchange Panel concluded that the scientist exchange program sponsored by UJNR has been an effective means of advancing aquaculture science and the exchange of information between the two coun­ tries. An extended study visit by one U.S. scientist (Mr. McCormick) is in progress and the visit of another U.S. scientist (Dr. Murchelano) may occur in September 1980 or March 1981. Dr. Shleser will visit Japanese aquaculture industries in the near future. Four U.S.. scientists visited Japan to participate in the 9th UJNR Conference (Drs. Shleser, Clark, Lightner, and Malecha). It was suggested by the Japanese that a detail travel plan and coordination be affected previous to arrival of exchange scientists. Dr. Arai will be the next Japanese scientist to visit the U.S. during 1980. He will conduct cooperative research on fish nutrition with Dr. Mahnken at the Northwest and Alaska Fisheries Center (NWAFC), National Marine Fisheries Service, at Seattle, Washington. It was agreed to exchange information relative to the location and activities of aquaculture scien­ tists in both countries. It was also agreed that a continuous exchange of information on relevant issues be affected by the two chairmen. 2. Literature Exchange The U.S. and Japan will continue literature exchange as done in the past. The U.S. chairman sug­ gested that aquaculture literature search can be obtained from NWAFC computer facilities. One translation (Eel culture) was given to the Japanese panel this year. The U.S. also elected to send the national aquaculture plan to the Japanese chairman. The Japanese requested literature on the culture of seaweed. 3. Cooperative Studies An up-date of ongoing programs was presented. These included: a) Mass mortality of oysters. b) Disease resistance of U.S. oysters in Japan (project needs re-evaluation). c) Register of marine pathology (under consideration). d) Cooperative studies on abalone (under consideration).
Recommended publications
  • Quality Molluscan Genomes Jin Sun 1, Runsheng Li 2, Chong Chen 3, Julia D
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.424979; this version posted January 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Benchmarking Oxford Nanopore read assemblers for high- quality molluscan genomes Jin Sun 1, Runsheng Li 2, Chong Chen 3, Julia D. Sigwart 4,5, Kevin M. Kocot 6* 1 Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China 2 Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China 3 X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa Prefecture 237-0061, Japan 4 Senckenberg Museum, Frankfurt, Germany 5 Queen’s University Belfast, Marine Laboratory, Portaferry, N Ireland 6 Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, Alabama, 35487, USA Keywords: Molluscan genomes, assembly, Oxford Nanopore Technology, scaly-foot snail, Mytilus, phylogeny Summary Choosing the optimum assembly approach is essential to achieving a high-quality genome assembly suitable for comparative and evolutionary genomic investigations. Significant recent progress in long-read sequencing technologies such as PacBio and Oxford Nanopore Technologies (ONT) also brought about a large variety of assemblers. Although these have been extensively tested on model species such as Homo sapiens and Drosophila melanogaster, such benchmarking has not been done in Mollusca which lacks widely adopted model species.
    [Show full text]
  • The Gene-Rich Genome of the Scallop Pecten Maximus Nathan J
    GigaScience, 9, 2020, 1–13 doi: 10.1093/gigascience/giaa037 Data Note Downloaded from https://academic.oup.com/gigascience/article/9/5/giaa037/5827190 by FMC Corporation Librarian user on 02 June 2021 DATA NOTE The gene-rich genome of the scallop Pecten maximus Nathan J. Kenny1,2, Shane A. McCarthy3, Olga Dudchenko4,5, Katherine James1,6, Emma Betteridge7,CraigCorton7, Jale Dolucan7,8, Dan Mead7, Karen Oliver7, Arina D. Omer4, Sarah Pelan7, Yan Ryan9,10, Ying Sims7, Jason Skelton7, Michelle Smith7, James Torrance7, David Weisz4, Anil Wipat9, Erez L Aiden4,5,11,12, Kerstin Howe7 and Suzanne T. Williams 1,* 1Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, UK; 2Present address: Oxford Brookes University, Headington Road, Oxford OX3 0BP, UK; 3University of Cambridge, Department of Genetics, Cambridge CB2 3EH, UK; 4The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; 5The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA; 6Present address: Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; 7Wellcome Sanger Institute, Cambridge CB10 1SA, UK; 8Present address: Freeline Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2FX, UK; 9School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; 10Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK; 11Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China and 12School of Agriculture and Environment, University of Western Australia, Perth, Australia.
    [Show full text]
  • The Gene-Rich Genome of the Scallop Pecten Maximus Nathan J
    GigaScience, 9, 2020, 1–13 doi: 10.1093/gigascience/giaa037 Data Note DATA NOTE The gene-rich genome of the scallop Pecten maximus Nathan J. Kenny1,2, Shane A. McCarthy3, Olga Dudchenko4,5, Katherine James1,6, Emma Betteridge7,CraigCorton7, Jale Dolucan7,8, Dan Mead7, Karen Oliver7, Arina D. Omer4, Sarah Pelan7, Yan Ryan9,10, Ying Sims7, Jason Skelton7, Michelle Smith7, James Torrance7, David Weisz4, Anil Wipat9, Erez L Aiden4,5,11,12, Kerstin Howe7 and Suzanne T. Williams 1,* 1Natural History Museum, Department of Life Sciences, Cromwell Road, London SW7 5BD, UK; 2Present address: Oxford Brookes University, Headington Road, Oxford OX3 0BP, UK; 3University of Cambridge, Department of Genetics, Cambridge CB2 3EH, UK; 4The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; 5The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA; 6Present address: Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; 7Wellcome Sanger Institute, Cambridge CB10 1SA, UK; 8Present address: Freeline Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2FX, UK; 9School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; 10Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK; 11Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China and 12School of Agriculture and Environment, University of Western Australia, Perth, Australia. ∗Correspondence address. Suzanne T. Williams, Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: [email protected] http://orcid.org/0000-0003-2995-5823 Abstract Background: The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe.
    [Show full text]
  • Northumbria Research Link
    Northumbria Research Link Citation: Kenny, Nathan J., McCarthy, Shane A., Dudchenko, Olga, James, Katherine, Betteridge, Emma, Corton, Craig, Dolucan, Jale, Mead, Dan, Oliver, Karen, Omer, Arina D., Pelan, Sarah, Ryan, Yan, Sims, Ying, Skelton, Jason, Smith, Michelle, Torrance, James, Weisz, David, Wipat, Anil, Aiden, Erez L., Howe, Kerstin and Williams, Suzanne T. (2020) The gene-rich genome of the scallop Pecten maximus. GigaScience, 9 (5). giaa037. ISSN 2047-217X Published by: Oxford University Press URL: https://doi.org/10.1093/gigascience/giaa037 <https://doi.org/10.1093/gigascience/giaa037> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/42987/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies.
    [Show full text]
  • Quantification of Settlement and Recruitment Processes in Bivalve M Ollusks
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1994 Quantification of settlement and ecruitmentr processes in bivalve mollusks Patrick Kelly Baker College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, Marine Biology Commons, and the Zoology Commons Recommended Citation Baker, Patrick Kelly, "Quantification of settlement and ecruitmentr processes in bivalve mollusks" (1994). Dissertations, Theses, and Masters Projects. Paper 1539616555. https://dx.doi.org/doi:10.25773/v5-psh5-eg48 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Marine Bivalve Molluscs E'
    F-- l.. SH . -'." " 207 ',,- ICLARM STUDIES AND REVIEWS 12 SR76 #12 c.2 I I rhe Biology and Culture of i I Marine Bivalve Molluscs I of the Genu~ Anadara, '" . 4r~ '" 10 M. J. Broom e' -. II lbJi~M INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT I" ..., ,,"-..r =~=. - , --5O--- ~ ~..-"'" ~~ ~'" . - ~ """' .... The Biology and Culture of Marine Bivalve Molluscs of the Genus Anadam Ian R. Smith Memorial Library & Documentation Center DATE DUE ~sn#riad] Biology and Culture of rine Bivalve Molluscs of the Genus Anadara 37 Conduit Road Hong Kong INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES The Biology and Culture of Marine Bivalve Molluscs of the Genus Anadara M.J. BROOM Published by the International Center for Living Aquatic Resources Management, MC P.O. Box 1501, Makati, Metro Manila, Philippines with financial assistance from the International Development Research Centre of Canada through ICLARM's Selective Information Service project Printed in Manila, Philippines Broom, M.J. 1985. The biology and cult& of marine bivalve molluscs of the genus Anadara. ICLARM Studies and Reviews 12,37 p. International Center for Living Aquatic Resources Management, Manila, Philippines. ISSN 0115-4389 ISBN 971-1022-21-4 Cover: Spawning A nadara granosa females. Photo by Wong Tat-Meng. ICLARM Contribution No. 663 CONTENTS Acknowledgements ......................................... vi Abstract ................................................. vi Introduction .............................................. 1 General
    [Show full text]
  • Origin and Biogeographic History of Scapharca Broughtonii (Schrenck, 1867) (Bivalvia: Arcidae) and Its Related Species
    VENUS 79 (1–4): 15–28, 2021 ©The Malacological Society of Japan DOI: http://doi.org/10.18941/venus.79.1-4_15Evolution of Scapharca broughtonii June 11, 202115 Origin and Biogeographic History of Scapharca broughtonii (Schrenck, 1867) (Bivalvia: Arcidae) and Its Related Species Kazutaka Amano1* and Kanae Komori2 1Department of Geoscience, Joetsu University of Education, 1 Yamayashiki, Joetsu, Niigata 943-8512, Japan 2Ii Elementary School, 1946 Ii, Joetsu, Niigata 943-0896, Japan Abstract: Scapharca broughtonii (Schrenck, 1867) and S. aff. broughtonii have been recovered for the rst time from the upper Pliocene (Piacenzian) deposits on the Japan Sea side of Honshu. This is the oldest record of S. broughtonii and its related species. S. satowi is known from the same locality as S. broughtonii in the upper Pliocene Tentokuji Formation in Akita Prefecture, Japan Sea side of northern Honshu. These fossils suggest that the genetically similar ark shells speciated near the northern limit of the warm-water current in the semi-enclosed Japan Sea by the late Pliocene. In the middle Pleistocene (Chibanian), S. broughtonii rst adapted to cold- temperate water, being known from the Dateyama Formation on the Japan Sea side of central Hokkaido and associated with many cold-water and a few temperate-water species. Keywords: late Pliocene, Tentokuji Formation, warm-water current, cold-water adaptation Introduction The red ark shell, Scapharca broughtonii (Schrenck, 1867), lives in sandy and muddy bottoms from subtidal to 60 m in depth and is widely distributed from the southern Primorie and southern Sakhalin areas of Russia through Hokkaido to Kyushu, Korea, the Bohai Sea, Yellow Sea and East China Sea (Akamatsu, 1992; Higo et al., 1999; Scarlato, 1981; Qi et al., 1989; Li, 2004; Matsukuma & Okutani, 2000, 2017; Xu & Zang, 2008; Lutaenko & Noseworthy, 2012; Zhang et al., 2016).
    [Show full text]
  • Ark Clams and Relatives (Bivalvia: Arcida) Show Convergent Morphological Evolution Associated With
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2019, 126, 866–884. With 7 figures. Ark clams and relatives (Bivalvia: Arcida) show convergent morphological evolution associated with lifestyle transitions in the marine benthos Downloaded from https://academic.oup.com/biolinnean/article-abstract/126/4/866/5369870 by 04860000 user on 08 April 2019 JORGE A. AUDINO1*, , JEANNE M. SERB2 and JOSÉ EDUARDO A. R. MARIAN1 1Department of Zoology, University of São Paulo, Rua do Matão, Travessa 14, n. 101, 05508-090 São Paulo, São Paulo, Brazil 2Department of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborn Drive, Ames, IA 50011, USA Received 21 December 2018; revised 30 January 2019; accepted for publication 30 January 2019 One of the most intriguing puzzles in macroevolutionary studies is to understand how distantly related taxa can evolve towards similar phenotypes in response to similar ecological conditions. Ark clams and their relatives (Arcida) display two main ecologies represented by epifaunal and infaunal lifestyles. Their mantle margin includes features, such as photosensory and muscular organs, that may coincide with each habit, making these bivalves a suitable model to explore evolutionary convergence in the marine benthos. To test for the evolutionary association between lifestyles and morphology, we gathered data on the mantle margin for 64 species across all six extant arcidan families. A molecular phylogeny of Arcida was inferred based on four gene sequences from 54 species and used to study trait evolution. Our results support the hypothesis that photoreceptor organs had a single origin and that infaunal lineages lost these structures in independent events, suggesting a correlated pattern of evolution.
    [Show full text]
  • Etermination and Comparison F Bivalve Growth, with Emphasis
    etermination and Comparison tf Bivalve Growth, with Emphasis on Thailand and Other Tropical Areas J.M. Vakily /'( * .' INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES Determination and Comparison of Bivalve Growth, with Emphasis on Thailand and Other Tropical Areas J.M. VAKILY 1992 Printed in Manila, Philippines Published by the International Center for Living Aquatic Resources Management, MC P.O. Bax 1501, Makati, Metro Manila, Philippines. Vakily, J.M. 1992. Determination and comparison of bivalve growth, with emphasis on Thailand and other tropical areas. ICLARM Tech. Rep. 36, 125 p. ISSN 01 15-5547 ISBN 971 -8709-24-X ICLARM Contribution No. 801. CONTENTS List of Tables .................................................................................................... vi List of Figures .......................................................................................................vii Foreword .........................................................................................................................ix Abstract ....................................... .................................................................x Chapter 1. Introduction ............................................................................................ 1 Chapter 2 . The Role of Bivalves as Fisheries Resource .................................... 2 Worldwide ........................................................................................................2 Thailand ..................... .................................................................................3
    [Show full text]
  • Anadara GRAY, 1847 of KIRIBATI and FIJI: LENGTH-HEIGHT-BIOMASS RELATIONSHIPS
    Anadara GRAY, 1847 OF KIRIBATI AND FIJI: LENGTH-HEIGHT-BIOMASS RELATIONSHIPS Temakei Tebano Marine Studies Programme Technical Report Number 2002/03 University of the South Pacific 2002 ABSTRACT The Anadara species from Kiribati and Fiji (Viti Levu) were collected and compared for morphological characteristics using the Multivariate Analysis method with the support of the taxonomic verification provided by Dr. John Stanisic of the Malacology Department of the Queensland Centre for Biodiversity, Queensland Museum, Australia. The Anadara species from Kiribati and Fiji share some morphological characteristics but also differ in others. The two species verified from Kiribati are Anadara holoserica and Anadara uropygmelana. The former is the living form while the latter is either an extinct form or is in very low densities. Four species of Anadara living form identified from the collections made from three sites around Viti Levu (Nasese, Verata and Nadi) are Anadara antiquata, Anadara maculosa, Anadara anomala and Anadara scapha. A. maculosa, A. antiquata and A. anomala are common in the Nasese-Laucala area. A. scapha and A. maculosa are found in Verata while A. maculosa appears to be the only species found in the Nadi area. There may be a half dozen more Anadara species in Fiji that are yet to be properly identified. The correlation coefficient between height and length in all five species (living forms of Anadara from Kiribati and Fiji) is positively high (r > 0.8) while the coefficient of determination (r2), whose value ranges from 0.64 to 0.96 in the same species, suggested that between 64% and 96% of variation in height is explained by variation in length.
    [Show full text]
  • Anadara Broughtonii
    Nutritional values and Chemical Constituents of Anadara brughtonii (Schrenck, 1867) and Crassostea gigas (Thunberg,1793) used in Traditional Medicine in Myanmar Thein Gi Naing¹, Hnin Hnin Htun¹, Win Soe¹, Than Tun¹, Maung Maung Thet¹, Khin Mya Mya², Thant Zin², Thein Zaw Lin¹ 1 University of Traditional Medicine, Mandalay , 2 Department of Zoology, Mandalay University 3/4/2020 TGN 1 INTRODUCTION Myanmar used animals and their products as medicinal substances since ancient times. Most of Myanmar traditional drugs are derived from sources of plants and animals. Wild and domestic animals and their by-products (e.g., hooves, skins, bones, feathers, milk and tusks) form important ingredients in the preparation of curative, protective and preventive medicine. 3/4/2020 TGN 2 According to the World Health Organization (1993), about 80% of the world people rely primarily on animal and plant-based medicines. About 20 % of Myanmar traditional medicine is based on animal-derived substances. 3/4/2020 TGN 3 LITERATURE REVIEW 3/4/2020 TGN 4 Anadara broughtonii species of Ark clam. In the Myanmar costal water it had been recorded from Ngapali, Maungmagan, KyaukKalat., Cocos Island. The species is distributed in Far East, from Russia down to Korea, Mainland China, Japan and Taiwan(Cho et.al.,2007) 3/4/2020 TGN 5 Traditional medicine in Myanmar . shell of Anadara broughtonii was also used by rulers of early Myanmar dynasties. The ash form of Jau thwa khone has given to remove toxin from the body, . increased energy power, salty and cool in nature. 3/4/2020 TGN 6 It also used in the treatment of indigestion, certain gastric and intestinal disorder, cough, asthma, chest injuries, mouth disease, oliguria, 3/4/2020 TGN 7 dysentery, hotness of urine, piles, bowel disorder, blood vomiting and menstrual disorders in Myanmar traditional medicine (AshinNagathein, 1972).
    [Show full text]
  • COUNTRY REPORTS Korea
    COUNTRY REPORTS Korea Country Report Supporting the Preparation of the First Report on The State of the World's Aquatic Genetic Resources for Food and Agriculture This Country Report has been submitted by the national authorities as a contribution to the Food and Agriculture Organization of the United Nations (FAO) publication, The State of the World’s Aquatic Genetic Resources for Food and Agriculture. The information in this Country Report has not been verified by FAO, and its content is entirely the responsibility of the entity preparing the Country Report, and does not necessarily represent the views of FAO, or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. Questionnaire for the Preparation of Country Reports for the First State of the World's Aquatic Genetic Resources for Food and Agriculture COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE 2 INSTRUCTIONS FOR COMPLETING THE DYNAMIC GUIDELINES How do I complete the dynamic guidelines? 1. You will require Adobe Reader to open the dynamic guidelines. Adobe Reader can be downloaded free of charge from: http://get.adobe.com/uk/reader/otherversions/.
    [Show full text]