Computed Tomographic Characteristics of Presumed Normal Canine Abdominal Lymph Nodes

Total Page:16

File Type:pdf, Size:1020Kb

Computed Tomographic Characteristics of Presumed Normal Canine Abdominal Lymph Nodes COMPUTED TOMOGRAPHIC CHARACTERISTICS OF PRESUMED NORMAL CANINE ABDOMINAL LYMPH NODES MARTIJN BEUKERS,FEDERICO VILAPLANA GROSSO,GEORGE VOORHOUT Though identification of lymph nodes is essential in staging cancer patients, little has been reported about the CT features of canine abdominal lymph nodes. The purpose of this retrospective study was to describe the visibility, location, and characteristics of abdominal lymph nodes in abdominal CT studies of dogs considered unlikely to have lymphadenopathy. The relationship between the number of identified lymph nodes and intraabdominal fat ranking, body weight, and slice thickness was also investigated. A total of 19 dogs were included. At least two jejunal lymph nodes and both left and right medial iliac lymph nodes were identified in all dogs. Colic lymph nodes were not identified in any of the dogs. Visualization of all other lymph nodes varied. There were significantly more lymph nodes visible in dogs with more intraabdominal fat (P < 0.0001). No correlation between the number of identified lymph nodes and body weight (P = 0.64) or slice thickness (P = 0.76) was found. Though most of all identified lymph nodes had an elongated shape, a rounded shape was most common in splenic, pancreaticoduodenal, renal, ileocolic and caudal mesenteric lymph nodes. Most lymph nodes had a homogeneous structure before and following the intravenous administration of contrast medium. Some lymph nodes had a slightly irregular structure or were relatively more hyper attenuating in the periphery than centrally before and/or after contrast administration. Mean attenuation before contrast was 37 Hounsfield Units (HU) (range 20–52 HU), and 109 HU after contrast (range 36–223 HU). Findings indicated that the CT visibility, characteristics of different abdominal lymph nodes may be variable in dogs. C 2013 Veterinary Radiology & Ultrasound. Key words: abdomen, CT, dogs, lymph node. Introduction bar, iliosacral, and iliofemoral lymph centers. The visceral group contains the celiac, cranial mesenteric, and caudal N ESSENTIAL PART OF staging canine cancer patients mesenteric lymph centers. It has been reported that some A is the evaluation of regional and distant lymph abdominal lymph nodes can be detected more frequently on 1 nodes. Ultrasonographic appearance of several abdom- CT than others,15 but no objective data were found in the 2–5 inal lymph nodes has been described, but food and literature. The purpose of the present retrospective study gas in the gastrointestinal tract may have a negative ef- was to describe the visibility, location, and characteristics fect on the ultrasonographic detection of small abdomi- of abdominal lymph nodes in CT studies of adult dogs that 2,6 nal structures. In dogs, CT has proved to be a valuable were considered unlikely to have lymphadenopathy. We hy- imaging modality for the evaluation of tracheobronchial pothesized that not all lymph nodes would consistently be 7–9 lymph node metastasis. Computed tomographic visibil- identified in previously described anatomic locations, and ity and appearance of cervical lymph nodes have also been that more lymph nodes would be visible in dogs with more 10 described. Little is known about the CT features of ca- intraabdominal fat and/or a higher body weight, and when 11–13 nine abdominal lymph node abnormalities. In a previ- thinner CT slices were used. ous report of dogs with insulinomas, CT was able to detect more metastatic lymph nodes than ultrasonography and Single-Photon Emission Computed Tomography, but also Materials and Methods identified many false-positive lesions.13 Imaging data from dogs that underwent an abdominal Lymph nodes of the abdomen are divided in a parietal CT before and following the intravenous administration of and visceral group.14 The parietal group includes the lum- contrast medium at the Division of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, be- From the Division of Diagnostic Imaging (Beukers, Grosso, Voorhout), Faculty of Veterinary Medicine, Utrecht University,Yalelaan 10, NL-3508 tween December 2009 and December 2012 were retrieved TD, Utrecht, The Netherlands. from the files. Dogs were selected for analysis if they were Address correspondence and reprint requests to M. Beukers, at the above address. E-mail: [email protected] Received March 1, 2013; accepted for publication May 18, 2013. doi: 10.1111/vru.12075 Vet Radiol Ultrasound, Vol. 54, No. 6, 2013, pp 610–617. 610 VOL. 54, NO.6 CTCHARACTERISTICS OF CANINE ABDOMINAL LYMPH NODES 611 at least 1 year old and there was (1) no primary malig- they could not be put clearly into one of the other two nancy or inflammatory process affecting organs within the categories. Lymph node structure before and following the abdominal cavity and/or pelvic canal, abdominal wall or intravenous administration of contrast medium was clas- perineum, (2) no primary malignancy known to commonly sified as (1) homogeneous, (2) mildly heterogeneous, (3) metastasize to abdominal organs (including mast cell tu- heterogeneous, and (4) relatively more hyper attenuating in mors, melanomas), (3) no multicentric malignancy (includ- the periphery than centrally or, on postcontrast scans, as ing lymphoma, leukemia, and histiocytic sarcoma), (4) no peripheral enhancement. When a lymph node was visible abdominal or pleural effusion, and (5) no motion artifacts on three or more consecutive transverse slices and large due to respiratory movement. enough to fit a region of interest of at least 4 mm2,theX- The scans were reviewed retrospectively using soft tissue ray attenuation was measured in Hounsfield Units (HU) in settings (WL 50, WW 350). Lymph nodes that were in- the central slice. Attenuation was measured before and fol- vestigated included the hepatic, splenic, gastric, pancreati- lowing the intravenous administration of contrast medium, coduodenal, jejunal, ileocolic, colic, and caudal mesenteric using a round or oval region of interest that was made as lymph nodes of the visceral group and the lumbar aortic, re- large as possible. nal, medial iliac, internal iliac (formerly called hypogastric), and sacral lymph nodes of the parietal group.14,16 For each Results lymph center, the number and location of the lymph nodes were recorded by a single observer (M.B.). Lymph node lo- Nineteen dogs met the inclusion criteria. There were cation was described using previously published anatomical three dogs with ectopic ureters, three dogs with portosys- landmarks.14,16 Dogs were subjectively ranked as having the temic shunting, two dogs with pituitary-dependent hyper- least to most amount of intraabdominal fat by a consensus adrenocorticism, two dogs with an inflammatory process of two observers (M.B., G.V.).The relationship between the on the front limb that were initially suspected of a neoplas- number of identified lymph nodes and intraabdominal fat tic process and were screened for metastatic disease, two ranking, body weight, and slice thickness was investigated. dogs with a neoplastic mass of the hind limb (a low grade A Spearman correlation test was performed by one of the fibrosarcoma and a haemangiopericytoma) that showed authors (M.B.) to evaluate statistical dependency.The num- no signs of recurrence or metastatic disease in a 2- and ber of identified lymph nodes per dog and intraabdominal 3-year follow-up period after surgical treatment, one dog fat ranking, body weight, and slice thickness were used as with segmental caudal vena cava aplasia, one dog with a independent variables. Statistical analyses were performed ureter calculus and a dilated renal pelvis, one dog with a with commercially available software (R: A Language and lumbosacral disc herniation that was scanned because of Environment for Statistical Computing. Ver: 2.15.2, R nonspecific pain-related symptoms, one dog with transient Foundation for Statistical Computing, Vienna).17 Results renal hematuria and remission of complaints before a final with P ≤ 0.05 were considered statistically significant. diagnosis was made, one dog with exercise intolerance that For each lymph node identified in CT images, a single was scanned as part of an extensive work-up but complaints observer (M.B.) recorded the size (length, width, and thick- were finally attributed to obesity, one dog with episodic ab- ness), shape, structure, and X-ray attenuation characteris- normal behavior that was finally attributed to neuropathic tics. Transverse dimensions were measured using an elec- pain and one dog with episodic vomiting and hypervolemia tronic calliper on the image containing the largest section of of unknown cause. The sample of dogs contained mixed and the lymph node. Craniocaudal dimensions were estimated pure breed dogs weighing between 3.8 and 50.7 kg (mean by multiplying slice thickness by the number of consecu- 23.8 kg, median 25.0 kg). The ages ranged from 1 to 13 tive transverse slices that contained part of the lymph node. years (mean 5.2 years, median 4.3 years). There were eight Length was defined as the maximal dimension of the lymph females (one intact, seven neutered) and 11 males (seven node, irrespective of its position in the abdomen. Width was intact, four neutered). defined as the second maximal dimension and thickness Computed tomographic images for all dogs were ac- as the remaining dimension perpendicular to the width. quired with the same single-slice helical CT scanner (Philips Lymph node shape was classified into one of three cate- Secura, Philips NV, Eindhoven, the Netherlands). Scans gories: (1) elongated, (2) rounded, and (3) miscellaneous. were made in helical acquisition mode with a slice thick- When an oval lymph node had a width that was half the ness of 3–7 mm and a pitch of 1–1.5, depending on patient length or less (short axis/long axis ratio ≤0.5, as reported size. Technical settings were 100–120 kV, 200–320 mA, 0,7– for ultrasonographic examination of lymph nodes),18 it was 1 s tube rotation time, 170–410 mm field of view, 512 × 512 classified as elongated.
Recommended publications
  • Human Anatomy As Related to Tumor Formation Book Four
    SEER Program Self Instructional Manual for Cancer Registrars Human Anatomy as Related to Tumor Formation Book Four Second Edition U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutesof Health SEER PROGRAM SELF-INSTRUCTIONAL MANUAL FOR CANCER REGISTRARS Book 4 - Human Anatomy as Related to Tumor Formation Second Edition Prepared by: SEER Program Cancer Statistics Branch National Cancer Institute Editor in Chief: Evelyn M. Shambaugh, M.A., CTR Cancer Statistics Branch National Cancer Institute Assisted by Self-Instructional Manual Committee: Dr. Robert F. Ryan, Emeritus Professor of Surgery Tulane University School of Medicine New Orleans, Louisiana Mildred A. Weiss Los Angeles, California Mary A. Kruse Bethesda, Maryland Jean Cicero, ART, CTR Health Data Systems Professional Services Riverdale, Maryland Pat Kenny Medical Illustrator for Division of Research Services National Institutes of Health CONTENTS BOOK 4: HUMAN ANATOMY AS RELATED TO TUMOR FORMATION Page Section A--Objectives and Content of Book 4 ............................... 1 Section B--Terms Used to Indicate Body Location and Position .................. 5 Section C--The Integumentary System ..................................... 19 Section D--The Lymphatic System ....................................... 51 Section E--The Cardiovascular System ..................................... 97 Section F--The Respiratory System ....................................... 129 Section G--The Digestive System ......................................... 163 Section
    [Show full text]
  • ANATOMIC and PATHOLOGIC ASSESSMENT of FELINE LYMPH NODES USING COMPUTED TOMOGRAPHY and ULTRASONOGRAPHY Mauricio Tobón Restrepo
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorand: Mauricio Tobón Restrepo Directores: Yvonne Espada Gerlach & Rosa Novellas Torroja Tesi Doctoral Barcelona, 29 de juliol de 2016 This thesis has received financial support from the Colombian government through the “Francisco José de Caldas” scholarship program of COLCIENCIAS and from the Corporación Universitaria Lasallista. DEDICATED TO A los que son la razón y la misión de esta tesis… LOS GATOS. A mis padres y hermanos. A Ismael. Vor mijn poffertje. ACKNOWLEDGMENTS Tal vez es la parte que se pensaría más fácil de escribir, pero sin duda se juntan muchos sentimientos al momento de mirar atrás y ver todo lo que has aprendido y todas las personas que han estado a tu lado dándote una palabra de aliento… y es ahí cuando se asoma la lágrima… Sin duda alguna, comienzo agradeciendo a los propietarios de todos los gatos incluidos en este estudio, sin ellos esto no habría sido posible. A continuación agradezco a mis directoras de tesis, la Dra. Rosa Novellas y la Dra. Yvonne Espada. Muchas gracias por creer en mí, por apoyarme y por tenerme tanta paciencia.
    [Show full text]
  • M. H. RATZLAFF: the Superficial Lymphatic System of the Cat 151
    M. H. RATZLAFF: The Superficial Lymphatic System of the Cat 151 Summary Four examples of severe chylous lymph effusions into serous cavities are reported. In each case there was an associated lymphocytopenia. This resembled and confirmed the findings noted in experimental lymph drainage from cannulated thoracic ducts in which the subject invariably devdops lymphocytopenia as the lymph is permitted to drain. Each of these patients had com­ munications between the lymph structures and the serous cavities. In two instances actual leakage of the lymphography contrrult material was demonstrated. The performance of repeated thoracenteses and paracenteses in the presenc~ of communications between the lymph structures and serous cavities added to the effect of converting the. situation to one similar to thoracic duct drainage .The progressive immaturity of the lymphocytes which was noted in two patients lead to the problem of differentiating them from malignant cells. The explanation lay in the known progressive immaturity of lymphocytes which appear when lymph drainage persists. Thankful acknowledgement is made for permission to study patients from the services of Drs. H. J. Carroll, ]. Croco, and H. Sporn. The graphs were prepared in the Department of Medical Illustration and Photography, Dowristate Medical Center, Mr. Saturnino Viloapaz, illustrator. References I Beebe, D. S., C. A. Hubay, L. Persky: Thoracic duct 4 Iverson, ]. G.: Phytohemagglutinin rcspon•e of re­ urctcral shunt: A method for dccrcasingi circulating circulating and nonrecirculating rat lymphocytes. Exp. lymphocytes. Surg. Forum 18 (1967), 541-543 Cell Res. 56 (1969), 219-223 2 Gesner, B. M., J. L. Gowans: The output of lympho­ 5 Tilney, N.
    [Show full text]
  • Lymphatic System
    WEGENER, W. (1972): Synopsis erblicher Depigmentierungsanomalien. Dtsch. Tierärztl. Wschr. 79, 64-68. — WESTENDORF, P. (1974): Der Haarwechsel der Haussaugetiere. Diss., Hannover: — Woop, J. C. (1968): Skin diseases of domestic animals. Vet. Record 82, 214-220. ZACHERL, M. K., & M. WEISER (1963): Ober den Mineralstoffgehalt von Rinderhaaren. Wien. Tier-arztl. Mschr. 50, 62-69. Lymphatic system Examination of the lymphatic system is important for many reasons. On the one hand, lymph nodes and lymph vessels can become affected, and show characteristic lesions, in various infectious diseases, such as actinobacillosis, tuberculosis, purulent infections and mycotic lymphadenitis, and particularly bovine leukosis. On the other hand, the lymphatic system participates in pathological processes within the drainage area of a particular part by means of reactive (or metastatic) swelling, tenderness or hardening; such changes provide information about affected organs which may be concealed and inaccessible for clinical examination. Finally, abnormal enlargement of a lymph node may affect the function of adjoining organs by pressure or by infiltration. In this connexion, when taking the case history the veterinary surgeon may put questions concerning -the prior occurrence of losses through disease of the "glands" (i.e. bovine leukosis), and the results of any official blood tests; also whether recently purchased cattle came from herds, officially free from leukosis or not. The general examination (p. 6S) may have already detected abnormal enlargement of one or more lymph nodes. Clinical examination o£ the lymphatic system takes the form if inspection and palpation of accessible lymph nodes, and if necessary the course of the lymphatics. If there is suspicion of leukosis, a blood sample must be taken for white cell count or for serological testing.
    [Show full text]
  • Ministry of Education and Science of Ukraine Sumy State University 0
    Ministry of Education and Science of Ukraine Sumy State University 0 Ministry of Education and Science of Ukraine Sumy State University SPLANCHNOLOGY, CARDIOVASCULAR AND IMMUNE SYSTEMS STUDY GUIDE Recommended by the Academic Council of Sumy State University Sumy Sumy State University 2016 1 УДК 611.1/.6+612.1+612.017.1](072) ББК 28.863.5я73 С72 Composite authors: V. I. Bumeister, Doctor of Biological Sciences, Professor; L. G. Sulim, Senior Lecturer; O. O. Prykhodko, Candidate of Medical Sciences, Assistant; O. S. Yarmolenko, Candidate of Medical Sciences, Assistant Reviewers: I. L. Kolisnyk – Associate Professor Ph. D., Kharkiv National Medical University; M. V. Pogorelov – Doctor of Medical Sciences, Sumy State University Recommended for publication by Academic Council of Sumy State University as а study guide (minutes № 5 of 10.11.2016) Splanchnology Cardiovascular and Immune Systems : study guide / С72 V. I. Bumeister, L. G. Sulim, O. O. Prykhodko, O. S. Yarmolenko. – Sumy : Sumy State University, 2016. – 253 p. This manual is intended for the students of medical higher educational institutions of IV accreditation level who study Human Anatomy in the English language. Посібник рекомендований для студентів вищих медичних навчальних закладів IV рівня акредитації, які вивчають анатомію людини англійською мовою. УДК 611.1/.6+612.1+612.017.1](072) ББК 28.863.5я73 © Bumeister V. I., Sulim L G., Prykhodko О. O., Yarmolenko O. S., 2016 © Sumy State University, 2016 2 Hippocratic Oath «Ὄμνυμι Ἀπόλλωνα ἰητρὸν, καὶ Ἀσκληπιὸν, καὶ Ὑγείαν, καὶ Πανάκειαν, καὶ θεοὺς πάντας τε καὶ πάσας, ἵστορας ποιεύμενος, ἐπιτελέα ποιήσειν κατὰ δύναμιν καὶ κρίσιν ἐμὴν ὅρκον τόνδε καὶ ξυγγραφὴν τήνδε.
    [Show full text]
  • Thieme: Lymphedema Management
    8 1 Anatomy tween a proximal and a distal pair of valves is called lymph angion (Fig. 1−4). The media in valvular areas of lymph collectors contains less smooth musculature than the angion area. Lymph angions have an autonomic contraction frequency of ෂ10 to 12 contractions per minute at rest (lymphangiomotoricity). In healthy lymph collectors, the proximal valve is open during the systole, whereas the distal valve is closed; in the diastole, the op- posite is the case. This permits directional flow of lymph fluid from distal to proximal angions. In lymphangiectasia (dilation) with valvular insufficiency, the lymph flow may reverse into distal lymph angions (lymphatic reflux). Lymph collectors have the ability to react to an increase in lymph formation with an in- crease in contraction frequency. The increase in lymph fluid entering the lymph angion will cause a stretch on the wall of the angion, which Figure 1−4 Lymph collectors. 1. Lymph collector; 2. Afferent lymph collector to lymph node; 3. Efferent in turn results in an increase in lymphangio- lymph collector from lymph node; 4. Lymph node; 5. motoricity (lymphatic safety factor; see also Cross section through a lymph collector in the area of Chapter 2, Safety Factor of the Lymphatic Sys- the valves; 6. Lymph angion. tem). Other factors that may influence lymphan- giomotoricity are external stretch on the It is postulated that the main purpose of pre- lymph angion wall (e.g., manual lymph collectors is the transport of lymph fluid from drainage), temperature, activity of muscle and the capillaries to lymph collectors. Due to the joint pumps, diaphragmatic breathing, pulsa- capillary-like wall structure in some areas, pre- tion of adjacent arteries, and certain tissue collectors are able to absorb lymphatic loads.
    [Show full text]
  • Incidence, Morbidity and Mortality of Patients with Achalasia in England: Findings from a Nationwide Hospital Database and 4 Million Population Based Data
    Incidence, morbidity and mortality of patients with achalasia in England: findings from a nationwide hospital database and 4 million population based data Appendix A: International Classification of Disease codes for Achalasia (HES) K22 – Achalasia of cardia Appendix B: Read codes (The Health Improvement Network) Appendix B1: Achalasia codes Clinical code Description J100.00 Achalasia of cardia Appendix B2: Clinical codes used to identify Hypertension, Diabetes and lipid lowering drugs Diabetes Clinical code Description C10..00 Diabetes mellitus C100.00 Diabetes mellitus with no mention of complication C100000 Diabetes mellitus, juvenile type, no mention of complication C100011 Insulin dependent diabetes mellitus C100100 Diabetes mellitus, adult onset, no mention of complication C100111 Maturity onset diabetes C100112 Non-insulin dependent diabetes mellitus C100z00 Diabetes mellitus NOS with no mention of complication C101.00 Diabetes mellitus with ketoacidosis C101000 Diabetes mellitus, juvenile type, with ketoacidosis C101100 Diabetes mellitus, adult onset, with ketoacidosis C101y00 Other specified diabetes mellitus with ketoacidosis C101z00 Diabetes mellitus NOS with ketoacidosis C102.00 Diabetes mellitus with hyperosmolar coma C102000 Diabetes mellitus, juvenile type, with hyperosmolar coma C102100 Diabetes mellitus, adult onset, with hyperosmolar coma C102z00 Diabetes mellitus NOS with hyperosmolar coma C103.00 Diabetes mellitus with ketoacidotic coma C103000 Diabetes mellitus, juvenile type, with ketoacidotic coma C103100 Diabetes
    [Show full text]
  • Table of Contents
    VII Table of Contents ABDOMEN Topographic Anatomy View from the Sagittal Plane in the Male. 110 Boundaries . 2 View from the Sagittal Plane in the Female. 113 Landmarks . 5 Retroperitoneal Space Abdominal Cavity . 6 Renal Space . 116 Abdominopelvic Cavity . 8 Topographic Relations. 118 3D Reconstructions . 9 3D Reconstructions . 119 Abdominal Wall Suprarenal Gland Posterior Wall . 10 Topographic Relations. 120 Anterolateral Wall . 14 Structure - Lymphatic Drainage . 121 Abdominal Cavity Innervation and Vascularization . 122 Peritoneum . 18 Kidney Sections . 23 Conformation . 123 3D Reconstructions . 26 Arterial Vascularization . 125 Anterior Parietal Peritoneum Topographic Relations. 126 and Falciform Ligament . 27 3D Reconstructions . 127 Topographic Subdivision . 28 Structure . 128 Content of the Abdominal Cavity . 29 Nephron. 129 Vessels Renal Lobule . 130 Arteries . 30 Renal Corpuscle . 131 Abdominal Aorta . 32 Renal Pyramid . 132 Parietal Vascularization. 34 Renal Pelvis and Ureters Celiac Trunk . 35 Urinary Tract. 133 Mesenteric Arteries . 39 Structure . 134 3D Reconstructions . 44 3D Reconstructions . 135 Distribution of the Abdominal Arteries . 47 Duodenum Veins. 50 Topographic Relations. 136 Parietal Venous Drainage . 52 3D Reconstructions . 140 Portal Venous System . 54 Structure . 141 Porto-caval Anastomoses . 57 Pancreas Distribution of the Abdominal Veins . 58 Topographic Relations. 146 Lymphatic System Structure . 149 Lymphatic Ducts and Lymphatic Groups . 62 Supramesocolic Space Lymph Nodes of the Colon . 64 Omental Bursa and Stomach . 150 Lymph Nodes of the Mesentery . 66 Innervation . 153 Lymph Nodes of the Ileum, Jejunum, Cecum 3D Reconstructions . 154 and Appendix . 67 Stomach Iliac, Inguinal and Aortic Lymph Nodes . 68 Topographic Relations. 156 Gastric, Hepatic, Pancreaticoduodenal General Conformation. 157 and Splenic Lymph Nodes . 69 Internal Conformation. 158 Distribution of the Lymphatic Vessels Diaphragmatic Hernias.
    [Show full text]
  • Access to the Spleen Microenvironment Through Lymph
    Access to the Spleen Microenvironment through Lymph Shows Local Cytokine Production, Increased Cell Flux, and Altered Signaling of Immune Cells during This information is current as Lipopolysaccharide-Induced Acute of October 6, 2021. Inflammation Elvira Semaeva, Olav Tenstad, Jørn Skavland, Marianne Enger, Per Ole Iversen, Bjørn Tore Gjertsen and Helge Wiig J Immunol 2010; 184:4547-4556; Prepublished online 17 Downloaded from March 2010; doi: 10.4049/jimmunol.0902049 http://www.jimmunol.org/content/184/8/4547 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2010/03/15/jimmunol.090204 Material 9.DC1 References This article cites 35 articles, 2 of which you can access for free at: http://www.jimmunol.org/content/184/8/4547.full#ref-list-1 by guest on October 6, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American
    [Show full text]
  • Presentation 10: Primary Site and Histology Rules Part
    Hematopoietic and Lymphoid Neoplasm Project Primary Site and Histology Rules Peggy Adamo, RHIT, CTR NCI SEER October 2009 PH Rules • Rules apply to •Problematic sites •Problematic histologies •Terms 3 Note 1 Use the Primary Site and Histology Rules before using the Hematopoietic DB 4 Note 2 The primary site and histology coding rules are divided into nine modules. Each module covers a group of related hematopoietic or lymphoid neoplasms. However, a specific histology may be covered in more than one module. 5 Note 3 The modules are not hierarchical, but the rules within each module are in hierarchical order. Apply the rules within each module in order. Stop at the first rule that applies 6 Note 4 Apply rules in Module 1 first. Then go to the first module that applies to the case you are abstracting. If the situation in your case is not covered in that module continue on as directed after the last rule in the module. 7 Lymph Node/Lymph Node Chain Reference Table Lymph ICD-O- ICD-O-3 AJCC Node/Lymph Node 3 Lymph Node Region(s) Lymph Node Region(s) Chain Code Abdominal C772 Intra-abdominal Pelvic, right and left* Anorectal C772 Intra-abdominal Pelvic, right and left* Anterior axillary C773 Axilla or arm Axillary, right and left* Anterior cecal C772 Intra-abdominal Para-aortic Anterior deep C770 Head, face and neck Cervical, right and left* cervical Anterior jugular C770 Head, face and neck Cervical, right and left* Aortic NOS; C772 Intra-abdominal Para-aortic ascending aortic lateral aortic; lumbar aortic; para-aortic; peri-aortic 8 Module
    [Show full text]
  • Computed Tomographic Studies of Characteristics of Selected Canine Lymph Nodes Relevant to Staging and Treatment of Solid Tumours
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Saskatchewan's Research Archive Computed Tomographic Studies of Characteristics of Selected Canine Lymph Nodes Relevant to Staging and Treatment of Solid Tumours A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Master of Science In the Department of Small Animal Clinical Sciences University of Saskatchewan Saskatoon By Dr. Katherine Sweet, DVM © Copyright Katherine Sweet, June, 2017. All rights reserved. PERMISSION TO USE In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis/dissertation work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis/dissertation or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis/dissertation. Requests for permission
    [Show full text]
  • Is Human Cerebrospinal Fluid Reabsorbed by Lymph? Lymph Drainage Therapy (LDT) and Manual Drainage of the Central Nervous System by Bruno Chikly, MD (France)
    Is human cerebrospinal fluid reabsorbed by lymph? Lymph drainage therapy (LDT) and manual drainage of the central nervous system by Bruno Chikly, MD (France) "The lymphatics are closel y and universally Scientists agree that production of CSF is done mainly by connected with the spinal cord and all other the highly vascularized choroid plexus. However, other ex- perimentation found that the choroid plexus are responsible nerves, long or short, universal or separate, for only 60 to 85 percent of the total production of CSF."3-1•71 and all drink from the waters of the brain. Some studies have shown that about 15 to 30 percent of CSF A.T. Still. Philosophy of Osteopathy. pg. 105. is produced in an extrachoroidal origin." The capillary en- dothelium of the cerebral tissue is believed to be the major source of extrachoroidal CSF production." u" "" "Possibly less is known of the lymphatics than any other division Cerebrospinal fluid (CSF) absorption: of the life-sustaining machinery of man. 1 ) Choroid Plexus: A.T. Still. The Philosophy and Mechanical The choroid plexus may absorb about I/10th of their Principles of Osteopathy. pg. 66. own secretion." For that reason. the function of these structures has been compared to that of the proximal renal tubule. hese two quotes from the father of osteopathy still today remains so contemporary. The latest scien 2) Arachnoid rah and granulations (pacchionian T tific reports agree that about half of cerebrospinal bodies: the venous side fluid (CSF) may be reabsorbed by the lymphatic circula- In 1914, Weed made an important discovery when he tion.
    [Show full text]