Status of Coral Reefs of the World: 2000

Total Page:16

File Type:pdf, Size:1020Kb

Status of Coral Reefs of the World: 2000 Status of Coral Reefs of the World: 2000 Edited by Clive Wilkinson Dedication This book is dedicated to the many people who are collectively working to conserve the vast heritage of coral reef ecosystems throughout the world – we thank them for their efforts. It is also dedicated to the partners of the International Coral Reef Initiative and to agencies of the Government of the United States operating through the US Coral Reef Task Force. Of particular mention is the support to the GCRMN from the US Department of State and the US National Oceanic and Atmospheric Administration. This report has been produced for the sole use of the party who requested it. The application or use of this report and of any data or information (including results of experiments, conclusions, and recommendations) contained within it shall be at the sole risk and responsibility of that party. AIMS does not provide any warranty or assurance as to the accuracy or suitability of the whole or any part of the report, for any particular purpose or application. Subject only to any contrary non-excludable statutory obligations neither AIMS nor its personnel will be responsible to the party requesting the report, or any other person claiming through that party, for any consequences of its use or application (whether in whole or part). Cover images courtesy of Sandy Tudhope and Lida Pet-Soede. © Australian Institute of Marine Science, 2000 Cape Ferguson, Queensland, and Dampier, Western Australia Postal addresses: PMB No 3 PO Box 264 Townsville MC QLD 4810 Dampier WA 6713 Australia Australia Telephone: (07) 4753 4444 (08) 9183 1122 Facsimile: (07) 4772 5852 (08) 9183 1085 World Wide Web: www.aims.gov.au National Library of Australia Cataloguing-in-Publication data: Status of coral reefs of the world: 2000. ISBN 0 642 32209 0. 1. Coral reefs and islands. I. Wilkinson, Clive R. II. Australian Institute of Marine Science. 578.7789 ii FOREWORD Over the past few years, I have become increasingly concerned about the continued degradation of coral reefs, some of the most valuable and spectacular places on earth. Coral reefs are important to us in so many ways. They provide food and livelihoods for millions of people; they help protect coastal communities from tropical storms; and they support rich communities of marine life that rival even rainforests in their biological diversity. These ‘rainforests of the sea’ have already begun to provide new medicines and other compounds to combat diseases and solve other human needs. And we’ve just begun to explore the rich life of our coral reefs. Today, millions of people visit coral reef ecosystems every year to experience the beauty and bounty of healthy coral reefs. In the United States alone, coral reefs support millions of jobs and billions of dollars from tourism related activities. These are just a few of the reasons why coral reefs are so valuable, and why it is so important for us to protect the world’s vulnerable coral reefs. In 1997 and 1998, coral reefs began bleaching and dying across huge regions of the world in association with changes in ocean and climate conditions. In many areas, coral reef ecosystems were devastated, along with the human communities that depended on them. The impacts were on a global scale never before recorded. Scientists now believe that coral reefs may be the first natural ecosystem to clearly show the potential impacts of global climate change. The struggle to conserve the coral reefs is now at a critical stage. While changes in climate conditions may continue to impact coral reefs for some time, coral reefs are losing an even greater battle with water and air pollution, sediment runoff caused by deforestation and coastal development, and over-exploitation, including the insidious practices of dynamite and cyanide fishing. In many areas, the living coral reefs may soon be gone. If coral reefs are lost, many coastal populations will lose their primary source of food, jobs, cultural heritage and long-term prosperity. To conserve these natural treasures, we must reduce human impacts on coral reefs by immediately controlling pollution, reducing over-fishing and increasing protection and sustainable use of our valuable coral reef resources. By working together – from local communities to regions and internationally – I believe we can, and must, reverse the tide of destruction and conserve the world’s precious coral reefs. iii Status of Coral Reefs of the World: 2000 This report is a tremendous example of what partnerships can do to protect and sustain coral reefs worldwide. This historic document brings together scientific information from around the world to provide the most comprehensive status report to date on the health of the world’s coral reefs. The report is made possible by the efforts of nations, communities and individuals from all over the world to monitor the health of coral reef ecosystems. Without these monitoring programs, this report would not be possible, and we would be severely limited in our ability to address the coral reef crisis. And these efforts are just the beginning. We need more monitoring, research, management and education to adequately track, and improve, the health of coral reefs around the world. This report documents the continuing and disturbing decline in the health of the coral reefs worldwide, which was initially expounded in the first report from the Global Coral Reef Monitoring Network in 1998. Unfortunately, the report provides powerful new evidence that coral reefs continue to be destroyed and degraded in many areas, threatening the very existence of these valuable resources. Now the question is: what are we willing to do about it? I am very pleased that the United States has been able to join with so many international partners in efforts to protect coral reef ecosystems. I sincerely commend the International Coral Reef Initiative (ICRI), the Global Coral Reef Monitoring Network (GCRMN), the sponsors of this report, and all those who have supported efforts to monitor, manage and conserve the world’s reefs. The children of tomorrow have the right to experience the beauty and wonder of coral reef ecosystems. I call on all of us – nations, societies and individuals – to act now to reduce the threats to these remarkable ecosystems. We must ensure that this report marks the beginning of a powerful new age of coral reef protection, not the sad ending to their very existence. Al Gore Vice President United States of America iv CONTENTS COUNTRIES, STATES AND TERRITORIES VII ACKNOWLEDGEMENTS xi INTRODUCTION 1 EXECUTIVE SUMMARY 7 Clive Wilkinson 1. THE 1997-98 MASS CORAL BLEACHING AND MORTALITY EVENT: 2 YEARS ON Clive Wilkinson 21 2. REGIONAL STATUS OF CORAL REEFS IN THE RED SEA AND THE GULF OF ADEN Nicolas Pilcher and Abdullah Alsuhaibany 35 3. STATUS OF CORAL REEFS IN THE ARABIAN/PERSIAN GULF AND ARABIAN SEA REGION (MIDDLE EAST) Nicolas J. Pilcher, Simon Wilson, Shaker H. Alhazeem and Mohammad Reza Shokri 55 4. STATUS OF CORAL REEFS IN EAST AFRICA: KENYA, MOZAMBIQUE, SOUTH AFRICA AND TANZANIA David Obura, Mohammed Suleiman, Helena Motta, and Michael Schleyer 65 5. STATUS OF CORAL REEFS OF THE SOUTHERN INDIAN OCEAN: THE INDIAN OCEAN COMMISSION NODE FOR COMOROS, MADAGASCAR, MAURITIUS, REUNION AND SEYCHELLES Lionel Bigot, Loic Charpy, Jean Maharavo, Fouad Abdou Rabi, Naidoo Ppaupiah, Riaz Aumeeruddy, Christian Viledieu and Anne Lieutaud 77 6. STATUS OF CORAL REEFS IN SOUTH ASIA: BANGLADESH, INDIA, MALDIVES AND SRI LANKA Arjan Rajasuriya, Hussein Zahir, E.V. Muley, B.R. Subramanian, K. Venkataraman, M.V.M. Wafar, S.M. Munjurul, Hannan Khan and Emma Whittingham 95 7. SOUTHEAST ASIAN REEFS - STATUS UPDATE: CAMBODIA, INDONESIA, MALAYSIA, PHILIPPINES, SINGAPORE, THAILAND AND VIETNAM Loke Ming Chou 117 8. STATUS OF CORAL REEFS OF EAST AND NORTH ASIA: CHINA, JAPAN AND TAIWAN Shuichi Fujiwara, Takuro Shibuno, K. Mito, Tatsuo Nakai, Yasunori Sasaki, Dai Chang-feng and Chen Gang 131 9. STATUS OF CORAL REEFS OF AUSTRALASIA: AUSTRALIA AND PAPUA NEW GUINEA Thomas Maniwavie, Hugh Sweatman, Paul Marshall, Phil Munday and Vagi Rei 141 v 10. STATUS OF CORAL REEFS IN THE SOUTHWEST PACIFIC: FIJI, NAURU, NEW CALEDONIA, SAMOA, SOLOMON ISLANDS, TUVALU AND VANUATU Robin South and Posa Skelton 159 11. STATUS OF SOUTHEAST AND CENTRAL PACIFIC CORAL REEFS IN ‘POLYNESIA MANA NODE’: COOK ISLANDS, FRENCH POLYNESIA, KIRIBATI, NIUE, TOKELAU, TONGA, WALLIS AND FUTUNA Bernard Salvat 181 12. STATUS OF CORAL REEFS OF AMERICAN SAMOA AND MICRONESIA: US-AFFILIATED AND FREELY ASSOCIATED ISLANDS OF THE PACIFIC C.E. Birkeland, P. Craig, G. Davis, A. Edward, Y. Golbuu, J. Higgins, J. Gutierrez, N. Idechong, J. Maragos, K. Miller, G. Paulay, R. Richmond, A. Tafileichig and D. Turgeon 199 13. STATUS OF CORAL REEFS IN THE HAWAIIAN ARCHIPELAGO David Gulko, James Maragos, Alan Friedlander, Cynthia Hunter and Russell Brainard 219 14. STATUS OF CORAL REEFS IN THE US CARIBBEAN AND GULF OF MEXICO: FLORIDA, TEXAS, PUERTO RICO, US VIRGIN ISLANDS AND NAVASSA Billy Causey, Joanne Delaney, Ernesto Diaz, Dick Dodge, Jorge R. Garcia, Jamie Higgins, Walter Jaap, Cruz A. Matos, George P. Schmahl, Caroline Rogers, Margaret W. Miller and Donna D. Turgeon 239 15. STATUS OF CORAL REEFS IN THE NORTHERN CARIBBEAN AND WESTERN ATLANTIC Jeremy Woodley, Pedro Alcolado, Timothy Austin, John Barnes, Rodolfo Claro-Madruga, Gina Ebanks-Petrie, Reynaldo Estrada, Francisco Geraldes, Anne Glasspool, Floyd Homer, Brian Luckhurst, Eleanor Phillips, David Shim, Robbie Smith, Kathleen Sullivan Sealey, Mónica Vega, Jack Ward and Jean Wiener. 261 16. STATUS OF CORAL REEFS OF NORTHERN CENTRAL AMERICA: MEXICO, BELIZE, GUATERMALA, HONDURAS, NICARAGUA AND EL SALVADOR Philip Kramer, Patricia Richards Kramer, Ernesto Arias-Gonzalez and Melanie McField 287 17. STATUS OF CORAL REEFS IN THE EASTERN CARIBBEAN: THE OECS, TRINIDAD AND TOBAGO, BARBADOS, THE NETHERLANDS ANTILLES AND THE FRENCH CARIBBEAN Allan H.
Recommended publications
  • This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
    CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008)
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Climate Change Impacts on Corals in the UK Overseas Territories of British Indian Ocean Territory (BIOT) and the Pitcairn Islands
    Climate change impacts on corals in the UK Overseas Territories of British Indian Ocean Territory (BIOT) and the Pitcairn Islands Blue Belt Programme April 2021 Authors: Lincoln, S., Cowburn, B., Howes, E., Birchenough, S.N.R., Pinnegar, J., Dye, S., Buckley, P., Engelhard, G.H. and Townhill, B.L. Issue date: 29 March 2021 © Crown copyright 2020 This information is licensed under the Open Government Licence v3.0. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ This publication is available at www.gov.uk/government/publications www.cefas.co.uk Document Control Submitted to: Kylie Bamford (UK Foreign, Commonwealth and Development Office) Date submitted: 29 March 2021 Project Manager: Victoria Young Report compiled by: Susana Lincoln Quality control by: Georg H. Engelhard Approved by and date: Christopher Darby and Silvana Birchenough, 25 March 2021 Version: Final checked Version Control History Author Date Summary of changes Version Lincoln et al. November 2020 Initial draft V0.1 Lincoln et al. January 2021 External peer review completed V0.2 Lincoln et al. February 2021 QC QA corrections and final draft V1.0 Lincoln et al. February 2021 Comments from Emily Hardman V1.1 (Marine Management Organisation) Lincoln et al. March 2021 Editorial comments from Silvana V2.0 Birchenough et al. Lincoln et al. March 2021 Editorial comments from V2.1 Christopher Darby Lincoln et al. March 2021 All comments addressed Final Lincoln et al. April 2021 Final checks by reviewers prior Checked to publication This report has been reviewed by: Sheppard, C. (University of Warwick, UK), Wabnitz, C.
    [Show full text]
  • Status of Alcyonacean Corals Along Tuticorin Coast of Gulf of Mannar, Southeastern India
    Indian Journal of Geo-Marine Sciences Vol. 43(4), April 2014, pp. 666-675 Status of Alcyonacean corals along Tuticorin coast of Gulf of Mannar, Southeastern India S. Rajesh, K. Diraviya Raj, G. Mathews, T. Sivaramakrishnan & J.K. Patterson Edward Suganthi Devadason Marine Research Institute 44-Beach Road, Tuticorin – 628 001, Tamil Nadu, India [E-mail: [email protected]] Received 28 November 2012; revised 7 December 2012 In this study, the assessment of alcyonaceans was conducted in Tuticorin coast of the Gulf of Mannar during the period between 2010 and 2012 in 5 locations; Vaan, Koswari, Kariyachalli and Vilanguchalli islands and mainland Punnakayal patch reef. Average alcyonacean coral cover in Tuticorin coast was 6.76% during 2011-12 which was 5.61% during 2010- 2011. Percentage cover of alcyonacean corals increased in all the study locations; Kariyachalli 12.04 to 13.96%; Vilanguchalli 8.94 to 10.23%; Koswari 1.6 to 3.69; Vaan 0.53 to 0.72; mainland Punnakayal patch reef 4.95 to 5.21% was documented. In total, 15 species from 7 genera were recorded during the study period. Though anthropogenic threats in Tuticorin coast are comparatively high, the abundance of alcyonacean corals has increased considerably showing their resilience and adaptability. [Keywords: Alcyonacean corals, Status, Diversity, Tuticorin, Gulf of Mannar] Introduction experience all the natural and anthropogenic threats. Alcyonacean corals (soft corals and gorgonians) Reef ecosystems of Gulf of Mannar are heavily are modular cnidarians composed of polyps that stressed due to various human induced threats like always have eight tentacles and are oftentimes destructive and over fishing practices, coral mining, connected by vessels classified under subclass domestic and industrial pollution, seaweed and other Octocorallia while hard corals have six tentacles resource collection in reef areas and invasion of (which are hexa corals).
    [Show full text]
  • St. Kitts Final Report
    ReefFix: An Integrated Coastal Zone Management (ICZM) Ecosystem Services Valuation and Capacity Building Project for the Caribbean ST. KITTS AND NEVIS FIRST DRAFT REPORT JUNE 2013 PREPARED BY PATRICK I. WILLIAMS CONSULTANT CLEVERLY HILL SANDY POINT ST. KITTS PHONE: 1 (869) 765-3988 E-MAIL: [email protected] 1 2 TABLE OF CONTENTS Page No. Table of Contents 3 List of Figures 6 List of Tables 6 Glossary of Terms 7 Acronyms 10 Executive Summary 12 Part 1: Situational analysis 15 1.1 Introduction 15 1.2 Physical attributes 16 1.2.1 Location 16 1.2.2 Area 16 1.2.3 Physical landscape 16 1.2.4 Coastal zone management 17 1.2.5 Vulnerability of coastal transportation system 19 1.2.6 Climate 19 1.3 Socio-economic context 20 1.3.1 Population 20 1.3.2 General economy 20 1.3.3 Poverty 22 1.4 Policy frameworks of relevance to marine resource protection and management in St. Kitts and Nevis 23 1.4.1 National Environmental Action Plan (NEAP) 23 1.4.2 National Physical Development Plan (2006) 23 1.4.3 National Environmental Management Strategy (NEMS) 23 1.4.4 National Biodiversity Strategy and Action Plan (NABSAP) 26 1.4.5 Medium Term Economic Strategy Paper (MTESP) 26 1.5 Legislative instruments of relevance to marine protection and management in St. Kitts and Nevis 27 1.5.1 Development Control and Planning Act (DCPA), 2000 27 1.5.2 National Conservation and Environmental Protection Act (NCEPA), 1987 27 1.5.3 Public Health Act (1969) 28 1.5.4 Solid Waste Management Corporation Act (1996) 29 1.5.5 Water Courses and Water Works Ordinance (Cap.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Review on Hard Coral Recruitment (Cnidaria: Scleractinia) in Colombia
    Universitas Scientiarum, 2011, Vol. 16 N° 3: 200-218 Disponible en línea en: www.javeriana.edu.co/universitas_scientiarum 2011, Vol. 16 N° 3: 200-218 SICI: 2027-1352(201109/12)16:3<200:RHCRCSIC>2.0.TS;2-W Invited review Review on hard coral recruitment (Cnidaria: Scleractinia) in Colombia Alberto Acosta1, Luisa F. Dueñas2, Valeria Pizarro3 1 Unidad de Ecología y Sistemática, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia. 2 Laboratorio de Biología Molecular Marina - BIOMMAR, Departamento de Ciencias Biológicas, Facultad de Ciencias, Universidad de los Andes, Bogotá, D.C., Colombia. 3 Programa de Biología Marina, Facultad de Ciencias Naturales, Universidad Jorge Tadeo Lozano. Santa Marta. Colombia. * [email protected] Recibido: 28-02-2011; Aceptado: 11-05-2011 Abstract Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles) into a population, is a fundamental process for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coral populations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal and maintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect) and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness) and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation.
    [Show full text]
  • Guide to Some Harvested Aquarium Corals Version 1.3
    Guide to some harvested aquarium corals Version 1.3 ( )1 Large septal Guide to some harvested aquarium teeth corals Version 1.3 Septa Authors Morgan Pratchett & Russell Kelley, May 2020 ARC Centre of Excellence for Coral Reef Studies Septa James Cook University Townsville, Queensland 4811 Australia Contents • Overview in life… p3 • Overview of skeletons… p4 • Cynarina lacrymalis p5 • Acanthophyllia deshayesiana p6 • Homophyllia australis p7 • Micromussa pacifica p8 • Unidentified Lobophylliid p9 • Lobophyllia vitiensis p10 • Catalaphyllia jardinei p11 • Trachyphyllia geoffroyi p12 Mouth • Heterocyathus aequicostatus & Heteropsammia cochlea p13 Small • Cycloseris spp. p14 septal • Diaseris spp. p15 teeth • Truncatoflabellum sp. p16 Oral disk Meandering valley Bibliography p17 Acknowledgements FRDC (Project 2014-029) Image support: Russell Kelley, Cairns Marine, Ultra Coral, JEN Veron, Jake Adams, Roberto Arrigioni ( )2 Small septal teeth Guide to some commonly harvested aquarium corals - Version 1.3 Overview in life… SOLID DISKS WITH FLESHY POLYPS AND PROMINENT SEPTAL TEETH Cynarina p5 Acanthophyllia p6 Homophyllia p7 Micromussa p8 Unidentified Lobophylliid p9 5cm disc, 1-2cm deep, large, thick, white 5-10cm disc at top of 10cm curved horn. Tissue 5cm disc, 1-2cm deep. Cycles of septa strongly <5cm disc, 1-2cm deep. Cycles of septa slightly septal teeth usually visible through tissue. In unequal. Large, tall teeth at inner marigns of primary unequal. Teeth of primary septa less large / tall at conceals septa. In Australia usually brown with inner margins. Australia usually translucent green or red. blue / green trim. septa. In Australia traded specimens are typically variegated green / red / orange. 2-3cm disc, 1-2cm deep. Undescribed species traded as Homophyllia australis in West Australia and Northern Territory but now recognised as distinct on genetic and morphological grounds.
    [Show full text]
  • SA Wioresearchcompendium.Pdf
    Compiling authors Dr Angus Paterson Prof. Juliet Hermes Dr Tommy Bornman Tracy Klarenbeek Dr Gilbert Siko Rose Palmer Report design: Rose Palmer Contributing authors Prof. Janine Adams Ms Maryke Musson Prof. Isabelle Ansorge Mr Mduduzi Mzimela Dr Björn Backeberg Mr Ashley Naidoo Prof. Paulette Bloomer Dr Larry Oellermann Dr Thomas Bornman Ryan Palmer Dr Hayley Cawthra Dr Angus Paterson Geremy Cliff Dr Brilliant Petja Prof. Rosemary Dorrington Nicole du Plessis Dr Thembinkosi Steven Dlaza Dr Anthony Ribbink Prof. Ken Findlay Prof. Chris Reason Prof. William Froneman Prof. Michael Roberts Dr Enrico Gennari Prof. Mathieu Rouault Dr Issufo Halo Prof. Ursula Scharler Dr. Jean Harris Dr Gilbert Siko Prof. Juliet Hermes Dr Kerry Sink Dr Jenny Huggett Dr Gavin Snow Tracy Klarenbeek Johan Stander Prof. Mandy Lombard Dr Neville Sweijd Neil Malan Prof. Peter Teske Benita Maritz Dr Niall Vine Meaghen McCord Prof. Sophie von der Heydem Tammy Morris SA RESEARCH IN THE WIO ContEnts INDEX of rEsEarCh topiCs ‑ 2 introDuCtion ‑ 3 thE WEstErn inDian oCEan ‑ 4 rEsEarCh ActivitiEs ‑ 6 govErnmEnt DEpartmEnts ‑ 7 Department of Science & Technology (DST) Department of Environmental Affairs (DEA) Department of Agriculture, Forestry & Fisheries (DAFF) sCiEnCE CounCils & rEsEarCh institutions ‑ 13 National Research Foundation (NRF) Council for Geoscience (CGS) Council for Scientific & Industrial Research (CSIR) Institute for Maritime Technology (IMT) KwaZulu-Natal Sharks Board (KZNSB) South African Environmental Observation Network (SAEON) Egagasini node South African
    [Show full text]
  • Ships!), Maps, Lighthouses
    Price £2.00 (free to regular customers) 03.03.21 List up-dated Winter 2020 S H I P S V E S S E L S A N D M A R I N E A R C H I T E C T U R E 03.03.20 Update PHILATELIC SUPPLIES (M.B.O'Neill) 359 Norton Way South Letchworth Garden City HERTS ENGLAND SG6 1SZ (Telephone; 01462-684191 during my office hours 9.15-3.15pm Mon.-Fri.) Web-site: www.philatelicsupplies.co.uk email: [email protected] TERMS OF BUSINESS: & Notes on these lists: (Please read before ordering). 1). All stamps are unmounted mint unless specified otherwise. Prices in Sterling Pounds we aim to be HALF-CATALOGUE PRICE OR UNDER 2). Lists are updated about every 12-14 weeks to include most recent stock movements and New Issues; they are therefore reasonably accurate stockwise 100% pricewise. This reduces the need for "credit notes" and refunds. Alternatives may be listed in case some items are out of stock. However, these popular lists are still best used as soon as possible. Next listings will be printed in 4, 8 & 12 months time so please indicate when next we should send a list on your order form. 3). New Issues Services can be provided if you wish to keep your collection up to date on a Standing Order basis. Details & forms on request. Regret we do not run an on approval service. 4). All orders on our order forms are attended to by return of post. We will keep a photocopy it and return your annotated original.
    [Show full text]
  • EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
    Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands
    [Show full text]