Fat Man Steven Shapin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE RADAR WAR Forward
THE RADAR WAR by Gerhard Hepcke Translated into English by Hannah Liebmann Forward The backbone of any military operation is the Army. However for an international war, a Navy is essential for the security of the sea and for the resupply of land operations. Both services can only be successful if the Air Force has control over the skies in the areas in which they operate. In the WWI the Air Force had a minor role. Telecommunications was developed during this time and in a few cases it played a decisive role. In WWII radar was able to find and locate the enemy and navigation systems existed that allowed aircraft to operate over friendly and enemy territory without visual aids over long range. This development took place at a breath taking speed from the Ultra High Frequency, UHF to the centimeter wave length. The decisive advantage and superiority for the Air Force or the Navy depended on who had the better radar and UHF technology. 0.0 Aviation Radio and Radar Technology Before World War II From the very beginning radar technology was of great importance for aviation. In spite of this fact, the radar equipment of airplanes before World War II was rather modest compared with the progress achieved during the war. 1.0 Long-Wave to Short-Wave Radiotelegraphy In the beginning, when communication took place only via telegraphy, long- and short-wave transmitting and receiving radios were used. 2.0 VHF Radiotelephony Later VHF radios were added, which made communication without trained radio operators possible. 3.0 On-Board Direction Finding A loop antenna served as a navigational aid for airplanes. -
The Making of an Atomic Bomb
(Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries. -
Chapter 4. CLASSIFICATION UNDER the ATOMIC ENERGY
Chapter 4 CLASSIFICATION UNDER THE ATOMIC ENERGY ACT INTRODUCTION The Atomic Energy Act of 1946 was the first and, other than its successor, the Atomic Energy Act of 1954, to date the only U.S. statute to establish a program to restrict the dissemination of information. This Act transferred control of all aspects of atomic (nuclear) energy from the Army, which had managed the government’s World War II Manhattan Project to produce atomic bombs, to a five-member civilian Atomic Energy Commission (AEC). These new types of bombs, of awesome power, had been developed under stringent secrecy and security conditions. Congress, in enacting the 1946 Atomic Energy Act, continued the Manhattan Project’s comprehensive, rigid controls on U.S. information about atomic bombs and other aspects of atomic energy. That Atomic Energy Act designated the atomic energy information to be protected as “Restricted Data” and defined that data. Two types of atomic energy information were defined by the Atomic Energy Act of 1954, Restricted Data (RD) and a type that was subsequently termed Formerly Restricted Data (FRD). Before discussing further the Atomic Energy Act of 1946 and its unique requirements for controlling atomic energy information, some of the special information-control activities that accompanied the research, development, and production efforts that led to the first atomic bomb will be mentioned. Realization that an atomic bomb was possible had a profound impact on the scientists who first became aware of that possibility. The implications of such a weapon were so tremendous that the U.S. scientists conducting the initial, basic research related to nuclear fission voluntarily restricted the publication of their scientific work in this area. -
The Development of Military Nuclear Strategy And
The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew. -
A Singing, Dancing Universe Jon Butterworth Enjoys a Celebration of Mathematics-Led Theoretical Physics
SPRING BOOKS COMMENT under physicist and Nobel laureate William to the intensely scrutinized narrative on the discovery “may turn out to be the greatest Henry Bragg, studying small mol ecules such double helix itself, he clarifies key issues. He development in the field of molecular genet- as tartaric acid. Moving to the University points out that the infamous conflict between ics in recent years”. And, on occasion, the of Leeds, UK, in 1928, Astbury probed the Wilkins and chemist Rosalind Franklin arose scope is too broad. The tragic figure of Nikolai structure of biological fibres such as hair. His from actions of John Randall, head of the Vavilov, the great Soviet plant geneticist of the colleague Florence Bell took the first X-ray biophysics unit at King’s College London. He early twentieth century who perished in the diffraction photographs of DNA, leading to implied to Franklin that she would take over Gulag, features prominently, but I am not sure the “pile of pennies” model (W. T. Astbury Wilkins’ work on DNA, yet gave Wilkins the how relevant his research is here. Yet pulling and F. O. Bell Nature 141, 747–748; 1938). impression she would be his assistant. Wilkins such figures into the limelight is partly what Her photos, plagued by technical limitations, conceded the DNA work to Franklin, and distinguishes Williams’s book from others. were fuzzy. But in 1951, Astbury’s lab pro- PhD student Raymond Gosling became her What of those others? Franklin Portugal duced a gem, by the rarely mentioned Elwyn assistant. It was Gosling who, under Franklin’s and Jack Cohen covered much the same Beighton. -
A Selected Bibliography of Publications By, and About, J
A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02]. -
CPC Outreach Journal #740
USAF COUNTERPROLIFERATION CENTER CPC OUTREACH JOURNAL Maxwell AFB, Alabama Issue No. 740, 02 September 2009 Articles & Other Documents: U.S. Eyes 12 Giant "Bunker Buster" Bombs Pakistan Denies It Altered US-made Missiles U.S. Mulls Alternatives For Missile Shield NSA: India Doesn‘t Need Another Nuclear Test Iran is Continuing Nuclear Activity, says United Nations Pakistani Nuke Scientist says Restrictions Lifted Watchdog Iran Ducking Scrutiny of Alleged Nuclear-Weapon 'Pak Enhancing Its Nuclear Weapons Capabilities' Studies, IAEA Says Nuclear Agency Says Iran Has Bolstered Ability to Ministry Wants ¥176 Billion for Missile Shield Make Fuel but Slowed Its Output Iran, Syria have not Carried Out Sufficient Cooperation Would-Be Killer Linked to Al Qaeda, Saudis Say in Clarifying Nuke Issues: IAEA Cargo of North Korea Materiel is Seized En Route to Israel Has Iran in Its Sights Iran Watchdog Extends Probe into Alleged Secret Site Don't Get Scammed By Russia Again 'IAEA Hiding Incriminating Evidence' Israeli Nuclear Weapons and Western Hypocrisy Iran 'Ready' for Nuclear Talks Another Attempt to Malign Pak Nuke Program Russia: Building a Nuclear Deterrent for the Sake of Controversy Over Pokhran-II Needless: Manmohan Peace (60th Anniversary of the First Soviet Atomic Test) U.S. Says Pakistan Made Changes to Missiles Sold for Defense Welcome to the CPC Outreach Journal. As part of USAF Counterproliferation Center’s mission to counter weapons of mass destruction through education and research, we’re providing our government and civilian community a source for timely counterproliferation information. This information includes articles, papers and other documents addressing issues pertinent to US military response options for dealing with chemical, biological, radiological, and nuclear (CBRN) threats and countermeasures. -
Scientists, Statesmen and War: the Case of the Scientific Advisory Committee
James Goodchild Ex Historia 46 James Goodchild 1 University of Exeter Scientists, Statesmen and War: The Case of the Scientific Advisory Committee. The now extensive historiography of the Second World War confirms with fascinating certainty that twentieth-century total technological warfare forced developed nation states to marry their statesmen to their scientists. While the long-term marriage itself proved a near cataclysmic affair, the wedding too had many moments of turbulence. This article examines one particular event in twentieth-century British history of scientific and technological institutionalisation. Piecing together previously unconnected primary evidence, this article re-interprets the uneasy beginnings of the Scientific Advisory Committee (SAC) to the War Cabinet established in October 1940. This article further demonstrates that even in an emergency so immense as modern war, science and politics continued to remain as awkward bedfellows. It was during the First World War that the British Government began to appreciate the value of a permanent civil partnership developing between scientists and the state. From the high pinnacles of David Lloyd George’s ‘Garden Suburbs’ – ideas men attached to the Cabinet – down to the nitty-gritty of keeping common men alive through the work of the Medical Research Committee, science began to permeate the Whitehall corridors of power in an unprecedented fashion essentially as a consequence of total war. 2 This scientific incursion was 1 James Goodchild’s ([email protected] ) academic interests are the inter-relations between twentieth-century war, science and technology, and the British state and society. He holds a BA (Hons.) in history and an M.Res (distinction) which specialised in the scientific developments of the Great War. -
Iasinstitute for Advanced Study
IAInsti tSute for Advanced Study Faculty and Members 2012–2013 Contents Mission and History . 2 School of Historical Studies . 4 School of Mathematics . 21 School of Natural Sciences . 45 School of Social Science . 62 Program in Interdisciplinary Studies . 72 Director’s Visitors . 74 Artist-in-Residence Program . 75 Trustees and Officers of the Board and of the Corporation . 76 Administration . 78 Past Directors and Faculty . 80 Inde x . 81 Information contained herein is current as of September 24, 2012. Mission and History The Institute for Advanced Study is one of the world’s leading centers for theoretical research and intellectual inquiry. The Institute exists to encourage and support fundamental research in the sciences and human - ities—the original, often speculative thinking that produces advances in knowledge that change the way we understand the world. It provides for the mentoring of scholars by Faculty, and it offers all who work there the freedom to undertake research that will make significant contributions in any of the broad range of fields in the sciences and humanities studied at the Institute. Y R Founded in 1930 by Louis Bamberger and his sister Caroline Bamberger O Fuld, the Institute was established through the vision of founding T S Director Abraham Flexner. Past Faculty have included Albert Einstein, I H who arrived in 1933 and remained at the Institute until his death in 1955, and other distinguished scientists and scholars such as Kurt Gödel, George F. D N Kennan, Erwin Panofsky, Homer A. Thompson, John von Neumann, and A Hermann Weyl. N O Abraham Flexner was succeeded as Director in 1939 by Frank Aydelotte, I S followed by J. -
Notices of the American Mathematical Society
• ISSN 0002-9920 March 2003 Volume 50, Number 3 Disks That Are Double Spiral Staircases page 327 The RieITlann Hypothesis page 341 San Francisco Meeting page 423 Primitive curve painting (see page 356) Education is no longer just about classrooms and labs. With the growing diversity and complexity of educational programs, you need a software system that lets you efficiently deliver effective learning tools to literally, the world. Maple® now offers you a choice to address the reality of today's mathematics education. Maple® 8 - the standard Perfect for students in mathematics, sciences, and engineering. Maple® 8 offers all the power, flexibility, and resources your technical students need to manage even the most complex mathematical concepts. MapleNET™ -- online education ,.u A complete standards-based solution for authoring, nv3a~ _r.~ .::..,-;.-:.- delivering, and managing interactive learning modules \~.:...br *'r¥'''' S\l!t"AaITI(!\pU;; ,"", <If through browsers. Derived from the legendary Maple® .Att~~ .. <:t~~::,/, engine, MapleNefM is the only comprehensive solution "f'I!hlislJer~l!'Ct"\ :5 -~~~~~:--r---, for distance education in mathematics. Give your institution and your students cornpetitive edge. For a FREE 3D-day Maple® 8 Trial CD for Windows®, or to register for a FREE MapleNefM Online Seminar call 1/800 R67.6583 or e-mail [email protected]. ADVANCING MATHEMATICS WWW.MAPLESOFT.COM I [email protected]\I I WWW.MAPLEAPPS.COM I NORTH AMERICAN SALES 1/800 267. 6583 © 2003 Woter1oo Ma')Ir~ Inc Maple IS (J y<?glsterc() crademork of Woterloo Maple he Mar)leNet so troc1ema'k of Woter1oc' fV'lop'e Inr PII other trcde,nork$ (ye property o~ their respective ('wners Generic Polynomials Constructive Aspects of the Inverse Galois Problem Christian U. -
The First Americans the 1941 US Codebreaking Mission to Bletchley Park
United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................ -
Weapon Physics Division
-!! Chapter XV WEAPON PHYSICS DIVISION Introduction 15.1 At the time of its organization in August 1944, the Weapon Physics or G Division (G for gadget, code for weapon) was given a directive to carry out experiments on the critical assembly of active materials, to de- vise methods for the study of the implosion, and to exploit these methods to gain information about the implosion. In April 1945, the G Division directive was extended to fnclude the responsibility for the design and procurement of the hnplosion tamper, as well as the active core. In addition to its primary work with critical assemblies and implosion studies, G Division undertook the design and testing of an implosion initiator and of electric detonators for the high explosive. The Electronics Group was transferred from the Experi- mental Physics Division to G Division, and the Photographic Section of the Ordnance Division became G Divisionts Photographic Group. 15.2 The initial organization of the division, unchanged during the year which this account covers, was as follows: G-1 Critical Assemblies O. R. Frisch G-2 The X-Ray Method L. W. Parratt G-3 The Magnetic Method E. W. McMillan G-4 Electronics W. A. Higginbotham G-5 The Betatron Method S. H. Neddermeyer G-6 The RaLa Method B. ROSSi G-7 Electric Detonators L. W. Alvarez G-8 The Electric Method D. K. Froman G-9 (Absorbed in Group G-1) G-10 Initiator Group C. L. Critchfield G-n Optics J. E. Mack - 228 - 15.3 For the work of G Division a large new laboratory building was constructed, Gamma Building.