Geological Field Trips

Società Geologica Italiana

2017 Vol. 9 (2.2) ISPRA

Dipartimento per il SERVIZIOSERVIZIO GEOLOGICOGEOLOGICO D’ITALIAD’ITALIA Organo Cartografico dello Stato (legge n°68 del 2-2-1960)

ISSN: 2038-4947

From ductile to brittle tectonic evolution of the Aspromonte Massif

Field excursion of the Italian Group of Structural Geology - , 2015

DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli GFT - Geological Field Trips geological fieldtrips2017-9(2.2) Periodico semestrale del Servizio Geologico d'Italia - ISPRA e della Società Geologica Italiana Geol.F.Trips, Vol.9 No.2.2 (2017), 66 pp., 30 figs. (DOI 10.3301/GFT.2017.03)

From ductile to brittle tectonic evolution of the Aspromonte Massif Field excursion of the Italian Group of Structural Geology - Catania (CT) 1st – 2nd October 2015

Rosolino Cirrincione1, Carmelo Monaco1, Gaetano Ortolano1, Luigi Ferranti2, Giovanni Barreca1, Eugenio Fazio1, Antonio Pezzino1, Roberto Visalli1 1 Università degli Studi di Catania - Dipartimento di Scienze Biologiche, Geologiche e Ambientali - Sezione di Scienze della Terra 2 Università degli Studi di Napoli Federico II - Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse

Corresponding Author e-mail address: [email protected]

Responsible Director Claudio Campobasso (ISPRA-Roma) Editorial Board Editor in Chief Andrea Marco Zanchi (Univ. Milano-Bicocca) M. Balini, G. Barrocu, C. Bartolini, 2 Editorial Responsible D. Bernoulli, F. Calamita, B. Capaccioni, Maria Letizia Pampaloni (ISPRA-Roma) W. Cavazza, F.L. Chiocci, R. Compagnoni, D. Cosentino, Technical Editor S. Critelli, G.V. Dal Piaz, C. D'Ambrogi, Mauro Roma (ISPRA-Roma) P. Di Stefano, C. Doglioni, E. Erba, publishing group R. Fantoni, P. Gianolla, L. Guerrieri, Editorial Manager Maria Luisa Vatovec (ISPRA-Roma) M. Mellini, S. Milli, M. Pantaloni, V. Pascucci, L. Passeri, A. Peccerillo, Convention Responsible L. Pomar, P. Ronchi, B.C. Schreiber, Anna Rosa Scalise (ISPRA-Roma) L. Simone, I. Spalla, L.H. Tanner, Alessandro Zuccari (SGI-Roma) C. Venturini, G. Zuffa. ISSN: 2038-4947 [online]

http://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/geological-field-trips

The Geological Survey of , the Società Geologica Italiana and the Editorial group are not responsible for the ideas, opinions and contents of the guides published; the Authors of each paper are responsible for the ideas, opinions and contents published. Il Servizio Geologico d’Italia, la Società Geologica Italiana e il Gruppo editoriale non sono responsabili delle opinioni espresse e delle affermazioni pubblicate nella guida; l’Autore/i è/sono il/i solo/i responsabile/i. DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli geological fieldtrips2017-9(2.2)

INDEX

Information

Riassunto ...... 4 STOP 1.2 - View of the Holocene raised wave-cut platforms Abstract ...... 5 along the Scilla coast ...... 33 Field Trip programme ...... 6 STOP 1.3 - Migmatitic complex of Scilla, Aspromonte unit .....35 Emergency Serices/Useful contact ...... 7 STOP 1.4 - Mylonitic skarns, tonalite and 3 migmatitic paragneiss of the Palmi area ...... 38 Excursion notes STOP 1.5 - View of the Armo fault ...... 44 STOP 1.6 - Contact between the Pleistocene deposits and the 1. Regional tectonic setting ...... 8 Palaeozoic crystalline basement along the Armo fault ...... 45 2. Tectono-metamorphic evolution ...... 12 STOP 1.7 - Holocene raised beachrock near Capo dell’Armi ...47 3. Recent and active tectonics ...... ……...... 18 Geophysical data ...... 18 Day 2 ...... 48 Morpho-structural data on vertical deformation ...... 23 STOP 2.1 - Tectono-stratigraphy of the Aspromonte Massif The Strait ...... 24 nappe edifice ...... 49 Stop 2.1a - Klippe of the Stilo unit phyllite ...... 49 Itinerary Stop 2.1b - Alternance of mylonitic para- and ortho-gneisses of the Aspromonte unit ...... 50 index Day 1 ...... 29 STOP 2.2 - Relics of late Variscan mylonitic structures in the STOP 1.1 - Recent tectonics of the Messina Strait: view of the Stilo unit ...... 53 Pleistocene terraces on the Campo Piale horst and of the Scilla fault ...... 30 References ...... 56

DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli

Riassunto geological fieldtrips2017-9(2.2)

Questa escursione è stata effettuata in occasione della riunione annuale del Gruppo Italiano di Geologia Strutturale (GIGS 2015) - sezione della Società Geologica Italiana - in collaborazione con il Gruppo Nazionale di Petrografia (GNP). Geologicamente, il Massiccio dell’Aspromonte ricade all’interno dell’Orogene Calabro- Peloritano (OCP), un segmento orogenico nastriforme arcuato localizzato nel più ampio dominio geodinamico del Mediterraneo occidentale, fisiograficamente composto inoltre dal Massiccio Silano, dalla Catena Costiera, dalle Serre e dai Monti Peloritani. L’OCP, comunemente noto col nome di Arco Calabro, è stato recentemente interpretato come la fusione di due microterranes (i.e. settentrionale e meridionale), caratterizzati da una differente evoluzione tettono-metamorfica, oggi separati lungo la stretta di Catanzaro. La fusione di questi due differenti settori può essere ragionevolmente connessa all’intensa attività tettonica trascorrente che ha accompagnato la geodinamica del Mediterraneo occidentale sin dal Cretacico e che oggi trova riscontro oltre che lungo la stretta di Catanzaro anche dalla presenza di altri allineamenti tettonici, come il complesso delle faglie della linea del , della linea di Palmi e quella di . In tale contesto si inserisce l’escursione qui proposta che ha lo scopo di permettere l’osservazione di alcuni elementi chiave utili 4 per capire meglio l’articolata storia geologica di questo settore della catena alpino-appennica a partire già dalla base del Paleozoico. Il percorso articolato in due giorni, attraversa alcuni tra i luoghi più affascinanti dell’Aspromonte ( meridionale), ha lo scopo di illustrare da un lato l’evoluzione tettono-metamorfica del basamento cristallino sviluppatasi a partire almeno dal passaggio Precambriano-Cambriano, contribuendo così a vincolare diversi aspetti chiave della geodinamica del Mediterraneo occidentale, dall’altro l’evoluzione morfotettonica tardo information quaternaria del segmento orogenico calabro in quanto l’Aspromonte ne rappresenta uno dei settori chiave, essendo stato interessato più volte da terremoti distruttivi. Per quest’ultima ragione, alcune delle tappe sono dedicate all’osservazione delle caratteristiche morfologiche, strutturali e sedimentarie di due delle strutture tettoniche più attive dell’Italia meridionale: le faglie normali di Scilla e Armo. Il percorso permette infine di visitare, lungo la costa tirrenica e ionica, due siti controllati da queste grandi faglie normali, che mostrano sequenze complete di terrazzi marini di età pleistocenica, generati dal forte sollevamento tettonico, significativamente più veloce rispetto all’innalzamento del livello medio marino nell’Olocene. Tali siti, spesso

DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli ben conservati, sono caratterizzati dalla presenza di paleolinee di costa oloceniche sollevate, elementi importanti per ricostruire la paleosismicità di questo settore e, in generale, utili anche per la valutazione del geological fieldtrips2017-9(2.2) rischio sismico dell’area.

Parole chiave: Aspromonte, Orogene Calabro-Peloritano, zone di taglio, Orogenesi Alpina, Neotettonica, Calabria

Abstract

The two-days field trip in the Aspromonte Massif (Calabria – ) was carried out for the annual meeting of the Italian Group of Structural Geology (GIGS, 2015) - Section of the Italian Geological Society (SGI) - in collaboration with the National Group of Petrography (GNP). It is planned to illustrate the tectono- metamorphic history of the metamorphic basement cropping out in this sector of the Southern Apennine. Attention will be focused on the complex poly-orogenic and poly-phase evolution that, since the Precambrian- Cambrian boundary, has driven the petrogenetic evolution as well as the structural features of its crystalline basements, permitting also to constrain some key aspects of the Western Mediterranean geodynamics. 5 Moreover, since the Aspromonte area was repeatedly struck by strong and represents one of the key sectors for the reconstruction of the late Quaternary morphotectonic evolution of the Southern Italy, some of the stops will be devoted to the observation of the morphological, structural and sedimentary features of two of the most active structures of this sector of the belt, the Scilla and the Armo normal faults. Finally, the field trip allows to visit two coastal sites controlled by these major normal faults, respectively in the Tyrrhenian and in the Ionian sector of the Messina Strait, which display complete sequences of Pleistocene marine terraces. Due to the tectonic uplift faster than the Holocene sea level rise, these sites also show well preserved information raised Holocene paleoshorelines that represent important proxies for reconstructing the paleoseismicity of this area and, in general, for the risk assessment. From a geological point of view, the Aspromonte Massif belongs to the Calabrian Peloritani Orogen (CPO), including the Sila Massif, the Coastal Chain, the Serre Massif and the Peloritani Mountains. This sector chain, also known in literature as Calabrian Arc, has been recently interpreted as a merged ribbon-like continental crustal section constituted by two main microterranes (i.e. the northern- and southern-CPO separated by the Catanzaro line, CL), which are characterized by different tectono-metamorphic evolutions. DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli The amalgamation of these two different sectors can be ascribed to the intense strike-slip tectonics which accompanied the evolution of the Western Mediterranean area from Cretaceous age, presently testified, in geological fieldtrips2017-9(2.2) addition to the Catanzaro line, also by the tectonic alignment of the Pollino fault zone (PFZ), Palmi line (PL) and Taormina line (TL). In particular, the Aspromonte Massif is a nappe edifice, constituting the Oligocene- Miocene accrectionary wedge of the European-Africa plate boundary. This is originated by the breakup of the earlier Southern European Variscan chain during the Mesozoic-Cenozoic Alpine orogeny. Afterwards, during Eocene-Quaternary times, it has also been involved in the subduction of the Ionian slab and in extensional and uplifting processes that make this area one of the most seismically active of the entire Mediterranean realm.

Key words: Aspromonte, Calabrian Peloritani Orogen, shear zones, Alpine Orogeny, Neotectonics, 6 Calabria

Field Trip programme

Duration: 2 days; difficulty level: low, intermediate. Departure and arrival: (RC) -

Railway station. information Route: 1st day: Villa San Giovanni (RC), Santa Trada (RC), Scilla (RC), Palmi (RC), Oliveto (RC), Brancaleone (RC) - night accommodation. Field trip route and 2nd day: Samo (RC), Chorio (RC) and San Lorenzo Stop locations (RC), Villa S. Giovanni (RC). DOI: 10.3301/GFT.2017.03 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli geological fieldtrips2017-9(2.2) Emergency Services

In case of emergency please contact the following Ente Parco Nazionale dell’Aspromonte numbers (valid all over Italy) Via Aurora, 1 – 89050 - Gambarie di S.Stefano in - Medical Emergency/Ambulance: 118 Aspromonte (RC). - Police: 113 or 112 Tel. +39 0965 743 060; Fax +39 0965 743 026. - Firemen: 115 E-mail: [email protected] Website: www.parcoaspromonte.gov.it Useful contacts

CAI Club Alpino Italiano - Sezione Aspromonte 7 Gruppo Italiano di Geologia Strutturale (GIGS) Via S. Francesco da Paola, 106 – 89127 - Reggio Dipartimento di Scienze – Sez. di Scienze Geologiche Calabria (RC). Tel/Fax: +39 0965 898295 (Univ. Roma TRE), Largo San L. Murialdo 1, pal. A, E-mail: [email protected] Roma, Italia. Tel. +39 06 57338027. Website: www.caireggio.it E-mail: [email protected] Website: FRONT COVER information www.socgeol.it/816/gigs_sezione_geologia_struttura Flow perturbation folds evolving to sheath folds in the le.html mylonitic skarns of the Palmi shear zone, Twitter: @GigsItalia Scoglio dell'Ulivarella, Palmi (RC). PHOTO BY ORTOLANO G.

DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2)

8 excursion notes From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli e) geological d) Schematic map of a) geological sketch map of the geological sketch c) geological sketch map of the geological sketch b) Fig. 1 - Geological sketch map of the Fig. 1 - Geological sketch Massif and Peloritani Mountain Belt. Massif and Peloritani Calabria-Peloritani Orogen (after Cirrincione Calabria-Peloritani 2015, modified): et al., the Alpine belt in southern Mediterranean Orogen; GK area (CPO – Calabrian Peloritani Sa – Kabylie; PK – Petit Kabylie; – Grande Sardinia), modified after Carminati et al., 1998; Orogen with distribution Calabria-Peloritani of its massifs and related Alpine pre- Alpine basement rocks (modified after Angì 2010); et al., sketch map of the Serre Massif; sketch Sila and Coastal Chain Massifs; map of the Aspromonte Geological sketch DOI: 10.3301/GFT.2017.03 1 - Regional tectonic setting of the Calabrian The evolution Orogen (CPO) basement Peloritani rocks (Fig. 1a) is the result of orogenic processes, Palaeozoic during the Alpine orogenic reworked disarticulated and lastly variably cycle by the nappe-piling activity and tectonics of the Apennine strike-slip orogenic stage. The CPO can be then as a composite considered nowadays terrane consisting of basement rocks geological field trips 2017 - 9(2.2)

9 excursion notes From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 deriving from a poly-orogenic multi-stage history,deriving from a poly-orogenic mainly formed during sub-terranes, currently merged in several orogenythe Variscan 2015). In this 2004; Cirrincione et al., 1984; Bonardi et al., et al., 1982; Atzori (Pezzino, domains known as Coastal Chain and Sila Massifs in in different orographic the CPO can be separated scenario, d) and Aspromonte Massifs Serre (Fig. 1b, northern Calabria (Fig. 1b,c), e) in southern Calabria, and the (Fig.1b, e) Mountains in (Fig. 1b, Peloritani 2015). Cirrincione et al., (e.g., 2000; Micheletti et al., (Ferla, has been recognized Local evidences of older tectono-metamorphic evolution during the different stages of Alpine 2012). These rocks were locally overprinted 2007; Williams et al., units and sedimentary oceanic-derived which also affected part of the Mesozoic metamorphic events, these 2008). During the Oligocene-Miocene boundary, 2008; Cirrincione et al., et al., sequences (Fazio in which involved thin-skinned thrusting events, by the Alpine-Apennine stacked basements were definitively the southern sector also syn-collisional turbiditic sequence of Stilo-Capo d’Orlando formation (SCOF), 2005; 1997; Ortolano et al., et al., (VC) (Cavazza clays locally followed by the backthrusting of varicolori 2008). et al., Pezzino fault system known bounded to North by the crustal-scale strike-slip the Aspromonte Massif, In this scenario, nappe edifice 2013), can be interpreted as a south-east verging d) (Ortolano et al., line (Fig. 1b, as Palmi 2015), where the two uppermost tectonic slices are composed of middle-upper crust (Ortolano et al., basement rocks (i.e. the Stilo unit - SU and Aspromonte AU) (Fig. 2). These two units are characterized only the deeper unit during latest stages of metamorphism, locally involving by a multi-stage Variscan 2008). The deepest tectonic unit, separated et al., 2005; Pezzino (Ortolano et al., Alpine metamorphic cycle formed during the Oligocene. This unit is horizon, by the intermediate Aspromonte unit a thick mylonitic metapelites, by medium grade characterized registered a complete Alpine metamorphic cycle, exclusively 2005; 1990; 2008; Ortolano et al., et al., unit (MPU) (Pezzino as Madonna di Polsi known in literature 2008) (Fig. 2). et al., 2008; Fazio Cirrincione et al., geological field trips 2017 - 9(2.2) excursion notes 10 The Upper Oligocene to Miocene turbiditic siliciclastic succession, the “Stilo-Capo d’Orlando formation” covers, the with angular unconformity, nappe edifice, sealing at times the tectonic contact between This succession SU and AU. includes flysch deposits mainly composed of siltstones, subordinate fine to medium- sandstones and fairly grained cemented conglomerates 2015). The (Ortolano et al., of the varicolori back-thrusting marks the final stage of clays the syn-sedimentary tectonic 1997). et al., activity (Cavazza the end of nappe At emplacement, the pile of unconformably nappes was by Upper Miocene to covered Pleistocene terrigenous sediments that can be schematically grouped in two major successions. The older one is made up of Upper Miocene-Lower Pliocene deposits that were : : MPU SU : Palaeozoic. : Palaeozoic. AU From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli schematic tectono-stratigraphic column of the tectono-metamorphic units schematic tectono-stratigraphic Geological sketch map of the Aspromonte Massif nappe-like edifice. map of the Aspromonte Massif nappe-like Geological sketch b) a) Fig. 2 - of the inset is reported in Fig. 27. Panoramic field of view Fig. 8 are indicated. of the inset is reported in Fig. 27. Panoramic Mesozoic; Mesozoic; 2015). Detail et al., 2015 and Fazio (see Fig. 1 for location - modified after Ortolano et al., Basement rocks are of Palaeozoic age and the cover is Mesozoic. is Mesozoic. age and the cover Basement rocks are of Palaeozoic DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) excursion notes 11 particular, since particular, From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 Late Pliocene, and more markedly in the Quaternary, concurrently with back-arc extension in the Tyrrhenian concurrently with back-arc in the Quaternary, Late Pliocene, and more markedly Sea, the inner side of Calabrian Arc has experienced extensional deformation accommodated by normal 1995; Monaco & et al., faulting (Ghisetti, 1984, 1992; Tortorici 2001). A 2000; Jacques et al., Tortorici, side of Calabrian prominent system of normal fault runs more or less continuously along the Tyrrhenian of Messina area. Extensional tectonics has accompanied a strong regional uplift as far the Strait terrane, along the coast and, on land, a deep of spectacular flights marine terraces which caused the development sediments along the coarse grained with the deposition of alluvial and/or transitional entrenchment of rivers & 1982; Ghisetti, 1992; Valensise major depressions on top of marine sequences (Dumas et al., Pantosti, 2011). Various 2006; Bianca et al., 1994; Cucci & Tertulliani, et al., 1993; Miyauchi 1992; Westaway, been claimed to explain the uplift of Calabrian Arc. Within one class models, is mechanisms have of the Ionian- of a high-density deep root, either through break-off viewed as an isostatic response to removal & 1993; Wortel Adriatic slab (Westaway, Spakman, 2000) or through decoupling of the upper crust from flow in the mantle wedge (Locardi &underlying slab and convective 1994; et al., Nicolich, 1988; Miyauchi been induced by slowing of the have uplift may 2001). Alternatively, 1999; Doglioni et al., Gvirtzman & Nur, continental landmasses of Adria and northern of Calabria between the buoyant slab roll-back and trapping 2004). Africa (Goes et al., sedimented 1996a). on top of crystalline thrust sheets (Monaco et al., within a series of perched basins developed Upper Pliocene- Sediments related to the infilling of perched basins are also represented by youngest Pleistocene successions cropping out on the eastern margin of Sila Massif and Ionian offshore (e.g. 1996b). Upper Pliocene-Pleistocene sediments Crotone basin) along the frontal portion of arc (Monaco et al., side of the arc where they fill extensional basins (Fig. 1).also crop out along the Tyrrhenian In geological field trips 2017 - 9(2.2) excursion notes 12 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli b) the former is (i) Geological sketch map of the Serre Geological sketch a) Fig. 3 - Festa et al., 2004). et al., Festa Massif and Capo Vaticano Promontory (after Massif and Capo Vaticano 2015 and references therein); Fiannacca et al., schematic lithological column for the Serre crustal section (see Fig. 1 for location - modified after DOI: 10.3301/GFT.2017.03 2 - Tectono-metamorphic evolution opening of The Oligocene-Miocene back-arc basins, as a Mediterranean the north-western consequence of the roll-back Ionian subducting plate, the dismembering of this sector of the original southern European chain (Fig. 1).Variscan This process begin to geodynamic puzzle of the present-day drive presently constituted by several the CPO, by crystalline basement sectors characterized a partially different tectono-metamorphic One of the result this geodynamic evolution. is, for instance, the lateral evolution juxtaposition of the Aspromonte Massif with the Serre Massif where: characterized by a relatively shortened nappe by a relatively characterized of three main by the overlap edifice given geological field trips 2017 - 9(2.2) excursion notes 13 the latter (ii) constitutes an entire crustal section, where on a rocks from roughly oriented NW-SE transect are exposed (Fig. lower to upper crustal levels crustal rocks, exposed at the 3). Deep Variscan passing through northern edge of the Massif, plutons granodiorite late Palaeozoic towards metamorphic grade southeast to low-medium rocks by covered unmetamorphosed Mesozoic 2010). The boundary sediments (Angì et al., between these two sectors of the southern CPO along a complex polyphase strike- can be traced line - Fig. 2), slip system (i.e. the Palmi since the Early Eocene (51±1 Ma and operating biotite ages on mylonitic 56±1 Ma, Rb-Sr 2003) up to the after Prosser et al., granitoids; age, as testified by the occurrence of Tortonian deep-seated shearing activity a relic mylonitic (PSZ), shear zone recognizable along the Palmi WNW- average by a quasi-vertical characterized ESE attitude which can be followed in outcrop for about 1200 m inland before disappearing siliciclastic formation (Tripodi below a Tortonian 2013) (Fig. 4), as well by the extension et al., of the shearing activity in brittle regime along slip system of the Molochio the strike 2013; Antonimina line (Fig. 5) (Ortolano et al., 2015). Cirrincione et al., tectonic basement units locally interested by an overprint mylonitic Oligocene weak to pervasive 2008) (Fig. 2); et al., (Pezzino From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Fig. 4 - Geological sketch map of the Palmi area with location of the map of the Palmi Fig. 4 - Geological sketch Ortolano et al., 2013). Details of the inset are reported in Fig. 20. Ortolano et al., mylonitic Palmi shear zone (see Fig. 1 for location - modified after shear zone Palmi mylonitic DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) excursion notes 14 Fig. 5 – Geological sketch map of the boundary between Fig. 5 – Geological sketch (see Fig. 1 for location - modified after Cirrincione et al., 2015). (see Fig. 1 for location - modified after Cirrincione et al., Serre and Aspromonte Massifs along the Molochio Antonimina line From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 More in detail, the Aspromonte Massif crystalline basement complex can be then described as a nappe pile consisting of three polyphase metamorphic unit. The uppermost one (i.e. the Stilo unit) is made up of to low amphibolite-facies Palaeozoic low greenschist- 1982; Bonardi et metamorphic rocks (Crisci et al., & Schenk, 1999), locally 1984, Graessner al., magmatic bodies intruded by Late Variscan contact aureole with producing a well developed and andalusite. biotite, muscovite of this unit consists a mono- The PTd evolution characterized metamorphic cycle, orogenic Variscan axial by an isoclinal folding, showing a pervasive followed by a crenulation cleavage plane schistosity, in PT conditions ranging associated with prograde for a temperature pressure from ~0.35 to ~0.7 GPa et al., spanning from ~480 to ~550 °C. (Fig. 6), Fazio of 570°C and temperature 2012. Pressure of 0.7 GPa were obtained for the peak metamorphic values followed conditions reached in this area, successively caused by the development evolution by a retrograde of a deep-seated shearing activity locally producing foliation, which is often mylonitic pervasive by the static effects ascribable to obliterated (Fig. 6). granitoids emplacement of the late-Variscan The ductile deformational phase has been recognized outcrops only within metre-tick biotite-paragneisses part of the occurring in the south-western area. On the basis of available investigated geological field trips 2017 - 9(2.2) excursion notes 15 =foliation; S the MPU prograde a) =fold axis; B =Alpine; A From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli =Variscan; (after Cirrincione et al., 2015 modified). (after Cirrincione et al., =Variscan; Fig. 6 – Pressure Temperature deformation (PTd) path of the Fig. 6 – Pressure Temperature V crystalline basement units of the Aspromonte Massif subdivided into scale of the Variscan paths along the temporal and retrograde prograde and Alpine orogenic stages: geological data, the exhumation of SU can be attributed to effects of a thin-skinned tectonics, coeval with the development of with the development effects of a thin-skinned tectonics, coeval the south-eastward thrusting activity testified by tectonic contacts the south-eastward exclusively marked by cataclastic horizons, with no evidence of by cataclastic horizons, marked exclusively post-Variscan mylonitic activity (Cirrincione et al., 2015). activity (Cirrincione et al., mylonitic post-Variscan The intermediate Aspromonte unit is made up of amphibolite- facies Palaeozoic rocks characterized by a relatively HT-LP by a relatively rocks characterized facies Palaeozoic Variscan clockwise PT path, locally replaced by a late Variscan Variscan strongly peraluminous plutonic emplacement (ca. 303-300 Ma; strongly peraluminous Graessner et al., 2000; Fiannacca et al., 2008) with weak 2000; Fiannacca et al., et al., Graessner evidence of HT re-equilibration. A strong Alpine age mylonitic evidence of HT re-equilibration. replacement developed at about 25-30 Ma (Bonardi et al., 1987), at about 25-30 Ma (Bonardi et al., replacement developed produced a thick mylonitic horizon marking the tectonic contact horizon produced a thick mylonitic between the Aspromonte unit with the underlying low- to between the Aspromonte unit with underlying low- medium- grade metamorphic rocks of Madonna di Polsi unit metamorphic rocks of Madonna di Polsi medium- grade path is characterized by a HP-LT trajectory ranging from 0.95 to 1.25 ranging trajectory by a HP-LT path is characterized these two units indicate two different evolutions: these two units indicate different evolutions: (MPU). The pervasive mylonitic deformation stage did not permit the mylonitic (MPU). The pervasive preservation of the pre-mylonitic structures. These are indeed only rarely of the pre-mylonitic preservation observable at the micro-scale in the AU, as survived inclusion trails as survived at the micro-scale in AU, observable assemblages in Variscan garnet (Cirrincione et al., 2008), or rarely garnet (Cirrincione et al., assemblages in Variscan detected at the outcrop scale in MPU rocks as isoclinal fold relic within late Alpine mylonitic foliation. late Alpine mylonitic According to Cirrincione et al. (2008) the pre-mylonitic prograde PT paths of prograde According to Cirrincione et al. (2008) the pre-mylonitic DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) excursion notes 16 related to From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Fractal distribution of thrusting activity from cm to m Fractal a Barrovian-type prograde path is instead characteristic prograde a Barrovian-type a, b, c) b) Fig. 7 – of the Apennine orogeny. sized ramp and flat structures developed during the final exhumation stage and flat structures developed ramp sized DOI: 10.3301/GFT.2017.03 GPa at temperature ranging from 400° to 600 °C (Fig. 6), ranging at temperature GPa crustal thickening occurred during an early Alpine deformational crustal thickening episode: of the AU rock-types, with temperature estimates ranging from 650 estimates ranging with temperature of the AU rock-types, low pressure conditions of 0.4–0.5 GPa to 675°C at relatively 2008) ascribable to an early 2005; Cirrincione et al., (Ortolano et al., followed by a final tectono-metamorphic evolution, Variscan under decreasing temperatures widespread episode of hydration emplacement of the late- (480°C), probably caused by the massive 1990; et al., at about 300 Ma (Fig. 6) (Rottura granitoids Variscan 2008). 2000; Fiannacca et al., et al., Graessner stage (top to NE sense of shear; mylonitic The subsequent pervasive 2008) et al., Pezzino foliation and a stretching produced a pervasive trending SW-NE)lineation (averagely in both AU and MPU rocks. folds findings of flow-perturbation Recent and sheath ones (Alsop & 2007) suggest, thatCarreras, such structures are related to the same deep-seated shearing phase which affected both units before they stages of the nappe-pile were exhumed during the final compressive 2005). During this last stage MPU and AU formation (Ortolano et al., in the formation of cm to dam up hm rocks were indeed involved asymmetric folds before being finally exhumed along a SSE-SE sized joint brittle tectonic contact (Fig. 7). This compressional of a brittle strike- often accompanied by the activation activity was relics of the early Alpine slip tectonics which locally re-activated preserved tectonics, which are only rarely deep-seated strike-slip 2013). Ortolano et al., shear zone; (e.g. Palmi geological field trips 2017 - 9(2.2) excursion notes 17 Fig. 8 - Normal fault system gneisses of the Aspromonte unit. highlighted by the presence of and ortho- triangular facets in the para- From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 Finally the switch from a compressional to an extensional tectonic regime starts with the activation of a normal Finally the switch from a compressional to an extensional tectonic regime starts with activation joint network, spanning from microscopically fault system evidenced by the presence of widespread high-angle structures horst and graben up to km-sized cleavage fracture structures, passing from dm-sized sized systems seismogenic structural to the main present-day linked and WSW-ENE, oriented WNW-ESE averagely 2011). 2008; Morelli et al., (Fig. 8) (Catalano et al., geological field trips 2017 - 9(2.2) excursion notes 18 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli hit by the ensuing . The present-day tectonic framework hit by the ensuing tsunami. The present-day of the Calabrian Arc (Figs 9, 10) is result Neogene- Africa- Quaternary geodynamic processes related to the ca. N-S , Us , Capo CM , Vulcano Island; , Vulcano Vu , Mount Etna; MtE , Aeolian-Tindari- fault , Aeolian-Tindari-Letojanni , Hyblean Plateau. The Africa- HP ATLF , Cefalù; , Salina Island; Ce Sa , Calabro-Peloritan Arc. , Calabro-Peloritan Fig. 9 - Simplified tectonic map of the Sicilian- CPA Calabrian area (from Palano et al., 2012). Tectonic et al., Calabrian area (from Palano et from Polonia structures in the redrawn al. (2011). Instrumental seismicity since 1983 with white for magnitude ≥2.5 (http://iside. rm.ingv.it): for occurring at depth h <30 km; yellow events between 30 and those occurring at depth ranging 200 km; red for those at depth >200 km. Focal with magnitude >3.0 mechanisms (FM) of events blue for thrust are also reported: red for strike-slip, faulting and black for normal faulting. Abbreviations are as follows: system; ; Milazzo; Ustica Island; Eurasia plate configuration is shown in the inset; plate configuration Eurasia DOI: 10.3301/GFT.2017.03 3 - Recent and active tectonics Geophysical data The Calabrian Arc is one of the most active Mediterranean, tectonic domains in the Central as shown by the number of disastrous 1995) (Boschi et al., historical earthquakes and the large geodetic displacements (Palano south-western 2012). In particular, et al., hit by theCalabria was 1783 seismic of Messina region sequence, while the Strait and by the 1908 has been shaked geological field trips 2017 - 9(2.2) excursion notes 19 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli , , Pa Ma , , Messina , Stromboli MS St HMEFS , Vulcano Island. , Vulcano , Aeolian-Tindari- , Hyblean Plateau; , Nebrodi; Vu , Island; HP NM ATL Li , Madonie; MM , Salina Island; , Etna; Sa , Ustica Island; MtE Us , Lampedusa Island; Fig. 10 - GPS velocities and 95% confidence Fig. 10 - GPS velocities 2012, modified. La ellipses in a fixed Central frame (from Europe frame Central ellipses in a fixed 2012). et al., Palano Letojanni fault system; Escarpment fault system; Malta Island; Strait; Strait; Inset shows the location of IGS stations et al., used to process GPS data from Palano Pantelleria; Pantelleria; Island; DOI: 10.3301/GFT.2017.03 Eurasia convergence (e.g., Barberi et al., (e.g., convergence Eurasia et al., 1989; Patacca 1973; Dewey et al., 1990). process occurred Despite the convergence of 1-2 cm/a, since the last 8-10 at a rate E to SE Ma the region experienced a rapid roll-back of the Ionian oceanic crust subducted below the Calabrian Arc at a 2004 et al., of 5-6 cm/a (Faccenna rate and references therein) leading to back-arc extension and sea-floor spreading of the during Sea basin. However, Tyrrhenian the Late Pleistocene, rollback and subduction et slowed at less than 1 cm/a (Faccenna 2011) et al., 2001). GPS data (D’Agostino al., motion of the Ionian margin suggest that the south eastward at 2 mm/a and might reflect movement to Apulia, is still active the trench, measured relative Calabria toward of 2011). et al., the Ionian accretionary complex (Polonia geological field trips 2017 - 9(2.2) excursion notes 20 is characterized by a NNW-SSE geodetic by a NNW-SSE is characterized From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli W-E oriented contractional belt offshore Northern Sicily DOI: 10.3301/GFT.2017.03 The presence of a ca. 70° NW-dipping Benioff-Wadati slab beneath the Calabrian Arc has been inferred since Benioff-Wadati The presence of a ca. 70° NW-dipping et al.,the early 1970s (Chiarabba 2008, and references therein). The slab geometry is defined by deep which occur downearthquakes, Sea Calabria and the Southern Tyrrhenian to 600 km depth between Western portion of the slab is no longer than 250 km the seismically active 1996). Laterally, (Frepoli et al., (from extent. The absence of the slab southern Calabria to the western ), less than its vertical underneath Sicily and the southern Apennines supports the idea of slab tears affecting subducting Ionian crust & Spakman 2000). Wortel (e.g., 2004; Billi et According to recent studies, mostly based on geodetic and seismological data (e.g. Goes et al., Sea is the result of of the Calabrian Arc and Southern Tyrrhenian 2011), the current tectonic framework al., into crustal area is fragmented data indicate that the southern Tyrrhenian plate reorganization. Geophysical affects mainly the western sector 2012). Contraction et al., belts (Palano by seismically active blocks separated belt which extends from the Aeolian Archipelago oriented compressive in which focal solutions depicts an E–W the 2006; 2007; 2011). Conversely, 2005; Billi et al., 2004; Neri et al., et al., to the Ustica Island (Pondrelli eastern sector (e.g. NE Sicily and western Calabria) is dominated by Late Quaternary extensional deformation 2011; Ferranti et al., 2004; D’Agostino & Selvaggi, 2001; D’Agostino 2000; Jacques et al., (Monaco & Tortorici, between these two belts is inferred to occur along a 2009). The transition 2008a, b; Scarfì et al., et al., et al., fault system, Palano oriented tectonic boundary (the Aeolian–Tindari–Letojanni NNW–SSE transversal to southwards part of the archipelago, complex, in the central 2012) which extends from the Lipari–Vulcano Mountains, to the Ionian coast of NE Sicily. and, across the Peloritani the Gulf of Patti The shortening of 1-1.5 mm/a and by frequent, moderate crustal (15-20 km of depth) thrust earthquakes with crustal (15-20 km of depth) thrust earthquakes shortening of 1-1.5 mm/a and by frequent, moderate 2006; et al., 2005; Pondrelli 2003; Neri et al., (Hollenstein et al., P-axes trending, sub-horizontal NW-SE 2011). According to Goes et al. (2004), it formed as a consequence of et al., 2011; Devoti Cuffaro et al., to the north, of convergence locking of the Sicilian frontal accretion during last 0.8 Ma and transfer Sea. In addition, extension in the Tyrrhenian by the presence of crust thinned back-arc probably favoured helped tectonic inversion have the crust may the presence of pre-existing normal faults cutting and weakening Sea, as 2004). The absence of deep seismicity below Northern Sicily and Southern Tyrrhenian et al., (Pepe & Spakman, 2000; studies (Wortel well as of subducted lithosphere material, suggested by tomography geological field trips 2017 - 9(2.2) excursion notes 21 , 1908 (M = th is documented by normal faulting rifting (Tortorici et al., 1995; Monaco et al., rifting (Tortorici response to counter clockwise rotation (i) (iv) , 1783 (M ~ 6) and December 28 th From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli back-arc stretching in the (Neri et al., 2005), Sea (Neri et al., stretching in the Tyrrhenian back-arc (ii) dynamic yet inadequate balance with regional, deep-induced uplift that has affected the Calabrian Arc dynamic yet extensional domain in North-Eastern Sicily and Western Calabria (iii) DOI: 10.3301/GFT.2017.03 Piromallo & Morelli, 2003), is an indication that the ongoing convergence reflects continental collision processes. Piromallo & Morelli, 2003), is an indication that the ongoing convergence in the recent tectonic alignment must be framed According to Billi et al. (2007, 2011), this structural margin has been In fact, the south-Tyrrhenian boundary. convergent reorganization of the Nubia-Eurasia propagating onset of compression and consequent basin inversion, in the last 2 Ma a progressive involved geological, However, Mediterranean. domains of the Western from west to east in the former back-arc compression is still accommodated by folding and thrusting seismological and geodetic data show that NNW-SSE of 15/01/68, M = 5.4, see also Monaco et al., at the frontal sectors of Sicilian chain (e.g. Belice earthquake 2015). 2014a; De Guidi et al., 2012; Barreca et al., 2007; Mattia et al., et al., 1996a, 1996b; Lavecchia The (Tortorici et al., 1995; Monaco & et al., (Tortorici Tortorici, (<10-20 km) with normal focal 2000), by crustal earthquakes 2006; et al., 2004; Pondrelli extension perpendicular to the arc (Neri et al., mechanisms related to a general geodetic extension at ~1.5 mm/a 2011) and by a WNW-ESE et al.,2010; 2009; D’Amico Scarfi et al., domain is related to 2011). Whereas it is widely proposed that the contractional et al., (D’Agostino the causes for extension in Calabrian Arc are still between Europe and Sicily-Nubia, convergence from processes are suggested, ranging alternative debated. Various & Tortorici, 2001), to 2000; Jacques et al., &of the Ionian block (D’Agostino 2004; Goes et al., Selvaggi, 2004). with M> 6, including events The distribution of crustal seismicity (Fig. 9) shows that most the earthquakes, of the distinct segments Quaternary normal faults (Monaco &are located in the hanging-wall 2000). Tortorici, and control both the fronts morphology, young by lengths from 10 to 50 km and very These are characterized and the coastline of of the main mountainous areas (Coastal Chain, Sila, Serre, Aspromonte, Peloritani) In Southern Calabria and Northeastern Sicily, Scilla, Messina Strait). Southwestern Calabria (Capo Vaticano, some bounding structures of an ancient Plio-Pleistocene Messina reactivated normal faults have the active in the Calabrian side, Scilla and Armo faults show evidence of recent movements basin. Particularly, Strait 6 of February sources of the earthquakes and are the likely to since the Middle Pleistocene (Ghisetti, 1992; Westaway, 1993), to since the Middle Pleistocene (Ghisetti, 1992; Westaway, geological field trips 2017 - 9(2.2) excursion notes 22 a (i) , 1169 th a lithospheric tear fault bounding the (ii) From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli a crustal transfer zone between the Northern Sicily W-E contractional belt contractional between the Northern Sicily W-E zone a crustal transfer (iii) , 1693 (M ~ 7) is probably located offshore, in the Western Ionian Sea, where they have also Ionian Sea, where they have , 1693 (M ~ 7) is probably located offshore, in the Western th DOI: 10.3301/GFT.2017.03 and the Ionian accretionary wedge (Goes et al., 2004; Neri et al., 2004; Billi et al., 2006). Whatever the 2006). Whatever 2004; Billi et al., 2004; Neri et al., and the Ionian accretionary wedge (Goes et al., extensional motion on this 2012) indicate ~3.6 mm/a dextral-oblique et al., interpretation, GPS data (Palano partitioned between discrete sectors of the and minor transpression (Fig. 10), with transtension shear zone fault system is of course fault system. The southern offshore continuation of the Aeolian-Tindari-Letojanni trending to NW-SE the presence in Ionian basin of NNW-SSE However, by geodesy. unconstrained 2011; 2012), to which several et al., 2000; Argnani & Bonazzi, 2005; Polonia structures (Nicolich et al., 2009), suggests the focal mechanisms can be associated (Scarfì et al., strike-slip with prevailing earthquakes the role fault system. These segments could play possible offshore extension of the Aeolian-Tindari-Letojanni 2000; Goes blocks (Nicolich et al., of lithospheric boundary between the Sicilian-Hyblean and Ionian-Apulian accommodate differential alternatively, 2008), or, et al., 2004; Chiarabba & Lister, 2004; Rosenbaum et al., belt, and connecting between the Calabria extensional belt and Northern Sicily contractional movements & Spakman, this latter to the frontal arc located on Ionian basin (Bousquet & Lanzafame, 2004; Wortel 2006). 2004; Billi et al., 2012 and references therein; Goes et al., 2000; Neri et al., transform fault, 350–400 km long, that extends from the Aeolian volcanic arc to the NW fault, 350–400 km long, that extends from the Aeolian volcanic transform to the Malta Escarpment to the southeast (Lanzafame & Bousquet, 1997); et al., 2001; Faccenna 2000, Doglioni et al., western wedge of the underplating Ionian slab (Nicolich et al., 2008); et al., 2004; Chiarabba and January 9 7.2), respectively (Ghisetti & Vezzani, 1982; Ghisetti 1992; Tortorici et al., 1995; Jacques et al., 2001; Ferranti 1995; Jacques et al., et al., 1982; Ghisetti 1992; Tortorici (Ghisetti & Vezzani, 7.2), respectively 4 of February earthquakes 2012, 2014). The source of the destructive 2008a; b; Aloisi et al., et al., triggered large (Bianca et al., 1999; Tinti & Armigliato, 2001; 1999; Tinti & Armigliato, triggered large tsunamis (Bianca et al., Argnani & Bonazzi, 2005; Monaco 2011). et al., 2007; Polonia 2007; Scicchitano et al., Tortorici, Aeolian-Tindari- and extensional domains occurs along the NNW-striking between compressive The transition by diffuse seismicity and evidenced field, multichannel marked Letojanni fault system, a main shear zone 2006; Argnani 2005; Billi et al., et al., 2003; Favalli 1995; De Astis et al., seismic and GPS data (Mazzuoli et al., 2012). et al., 2008; Palano 2007; Mattia et al., et al., interpreted as: This system has been variously geological field trips 2017 - 9(2.2) excursion notes 23 Fig. 11 - Late Pleistocene uplift rates in Fig. 11 - Late Pleistocene uplift rates from Spampinato et al., 2014. from Spampinato et al., Southern Calabria and Northeastern Sicily From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 Morpho-structural data on vertical deformation processes at the chain In Eastern Sicily and Calabria, contractional front and extension been followed by deep at the back have as a network from the coast to interior, entrenchment of the river of Quaternary uplifting. This process has been result of high rates marine and coastal-alluvial recorded by the formation of raised coasts. The occurrence of a along the Ionian and Tyrrhenian terraces represents, in fact, the result of sequence of marine terraces between long-term tectonic uplift and Quaternary cyclic interaction 1996) which are changes (Lajoie, 1986; Bosi et al., sea-level from the Oxygen derived represented in the global eustatic curve 2002 and et al., (Waelbroeck Isotope Time (OIT) scale. This curve by peaks trend characterized references therein) shows a cyclic corresponding to distinct marine high-stands and low-stands, Marine Isotope Stages represented by the odd- and even-numbered the are estimated by subtracting The uplift rates (MIS), respectively. of the assigned Marine from the sea level of each terrace elevation by the age assigned Isotopic Stage (MIS) and then dividing this value of about 0.5 mm/a from 400 (Fig. 11). Uplift rates to the terrace of 1.3 mm/a from about 200 ka along the southeastern coast of Sicily, ka in the Catania area and 1.5-2.0/a from 125 north-east of decreasing to been estimated, values Sicily and western Calabria have about 1.0 mm/a in northeastern Calabria (Ghisetti, 1984; 1992; 1999; 1998; Bianca et al., 1997; Bordoni & Valensise, et al., Stewart 2006; 2009). et al., 2006; Ferranti 2002; Catalano & De Guidi, 2003; Antonioli et al., 2011; Monaco et al., and their offset across the main faults has been used to establish relative of marine terraces The elevation (1993), 1.7 mm/a of post-Middle sources to uplift. According Westaway contribution of regional and fault-related partitioned into 1 mm/a due to regional processes and the residual Pleistocene uplift of Southern Calabria was by of uplifting provided confirmed by estimates of the shorter term rates displacement on major faults. This was geological field trips 2017 - 9(2.2) excursion notes 24 From ductile to brittle tectonic evolution of the Aspromonte Massif , R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli MEF , Sant’Eufemia fault; , fault; , Cittanova SEF CF , Armo fault; AF , Taormina fault. , Taormina , fault; , Reggio TF RCF , Scilla fault; Fig. 12 - Morphostructural setting of the northern sector Fig. 12 - Morphostructural SF Messina Strait (from Ferranti et al., 2008b). Normal faults with balls et al., (from Ferranti Messina Strait on the downthrown side, dashed where inferred. On-land faults et al. (1995), Del Ben slightly modified from Ghisetti (1992), Tortorici et al. (2007); dotted are Early Pleistocene et al. (1996), Ferranti of the deep faults. The dotted black line with teeth indicates the trace toe of the Messina landslide. The white dotted line outlines extent paleo- block landslide. On the Calabrian side raised Punta Paci of the Scilla fault (site a, Marina di shorelines occur at the footwall Inset shows historical seismicity Punta Paci). San Gregorio; site b, and Quaternary faults: Messina fault; DOI: 10.3301/GFT.2017.03 raised Holocene beaches, wave-cut platforms and tidal notches compared to the Holocene beaches, wave-cut raised (Firth et curves predicted sea level 2004; 2011; Antonioli 2003; Lambeck et al., 2000; De Guidi et al., & Kershaw, et al, 1997; Rust 1996; Stewart al., 2011; 2012; 2014). 2008, 2011a, b; Spampinato et al., 2007; Scicchitano et al., et al., 2004; 2006; Ferranti et al., sea up to about 5 m above raised markers of late Holocene (<5 ka) sea level example (Fig. 11), precise leveling For of 1.7-1.8 mm/a, with area suggest an important co-seismic contribution to the total uplift rate in the Taormina level 2003; Spampinato et attributed to the activity of offshore faults (De Guidi et al., at least three paleo-earthquakes 2012). Similar results were obtained along the eastern al., where the uplift of late Holocene shore of the Messina Strait, (<5 ka) up to ~ 2 mm/a has been paleo-shorelines at rates partitioned between regional and co-seismic contributions, the latter attributed to activity of Scilla fault (Ferranti 2007). et al., The Messina Strait Intense Quaternary extensional tectonics, coupled with coastal uplift, is well documented in the Messina Strait struck on 1908 (Fig. 12), a highly seismic area that was geological field trips 2017 - 9(2.2) excursion notes 25 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli by a M 7.1 earthquake and ensuing devastating tsunami (Baratta, and ensuing devastating by a M 7.1 earthquake 1910; Shick, 1977; Aloisi et th DOI: 10.3301/GFT.2017.03 al., 2012 and references therein). This structural depression is bounded by active normal faults, marked by normal faults, marked depression is bounded by active 2012 and references therein). This structural al., and Holocene shorelines (Ghisetti, scarps, which displace Pleistocene marine terraces well-preserved 1981; &Valensise Pantosti, 1992; Catalano et al., 2007; et al., 2003; Ferranti 2008a; Di Stefano &Scicchitano et al., Longhitano, 2009; 2011b). formed as a consequence of the striking extensional basin of the Messina Strait to SSW-NNE The WSW-ENE Pliocene-Early Pleistocene axial collapse of the inner sectors Calabrian Arc. The Late and subsequent development, followed by the uplift of border fault footwalls Pleistocene deposition was and sands). Since Pleistocene, of huge submarine fan-delta systems (Messina gravels during the Lower-Middle the Middle Pleistocene, strong regional uplift has caused emersion of these fan-delta systems. In fluctuations caused the formation between the uplift process and eustatic sea-level meantime, the interaction been higher in the Calabrian sector where have on the basin flanks. Uplift rates of flights marine terraces is located at in the Ganzirri area MIS 5.5 terrace In particular, normal faults show evidence of recent activity. 2006). et al., area it is uplifted up to 170 m (Ferranti an altitude of 90 m, while in the Villa San Giovanni Calabria shown that faults located at/or intersecting the coast (Scilla, Reggio Analyses of coastal tectonics have Late Holocene coseismic displacements on the ~30 recent activity. and Armo faults, see inset in Fig. 12) have km long Scilla fault (Westaway, 1993; Jacques et al., 2001) are suggested by Holocene marine platforms and et al., (sites a and b in Fig. 12, Ferranti on the fault footwall sea level beachrocks which are uplifted above 2007; with estimated slips at ~3.5 and ~1.9 ka BP, 2008a). The latter authors dated two co-seismic events between 1.5 and 2.0 mranging Calabria fault (Ghisetti, and magnitude of ~6.9–7.0 (see Stop 2). The Reggio et al. by Tortorici considered the source of 1908 earthquake 1984; 1992) was (1995) on the basis of deformation is scarce. but evidence of active morphotectonic, macroseismic and seismological observations, the Armo fault shows clearer evidence of PleistoceneIn contrast, activity (Ghisetti, 1984; 1992; Aloisi et al., during the Holocene (Scicchitano et al.,2014), and coastal studies suggest a possible reactivation 2011b). (Del Ben et al., investigations Marine geophysical 1996; Guarnieri, et al., 2006; Ferranti 2008b; Argnani et al., faults on the eastern part of strait. of active 2009) also highlight the prevalence et al., profiles (Fig. 12, Ferranti data and multichannel sparker bathymetry High resolution swath 2008b) show in two broad ~NE–SW are arranged that recent faults in the northern and narrower sector of Messina Strait December 28 geological field trips 2017 - 9(2.2) excursion notes 26 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 trending arrays with opposing polarity (Fig. 1). The NW-dipping fault array on the eastern side of the Strait, which on the eastern side of Strait, fault array with opposing polarity (Fig. 1). The NW-dipping trending arrays Calabria faults, is widerrepresents the offshore extension of Scilla and Reggio (~5 km), and large offsets of 2008b). et al., in the Middle Pleistocene–Holocene sedimentary sequence (Ferranti tens of meters are observed and is made up of discontinuous on the western side has more limited appearance the fault swarm By contrast, segments. The located between Messina and Reggio zone trending transfer are connected by a NW–SE arrays 2009). Calabria (Fig. 13), which seems to control the current release of low seismicity (Scarfì et al., multichannel seismic profiles collected by Argnani et al. (2009) within the southern, broader part of Similarly, and a 30-km long, NW-striking place the master faults on Calabrian side. Specifically, the Messina Strait Fig. 13). On the other hand, listric fault located at the SW tip of Calabria cuts seafloor (SCF, west-dipping 2009) do not show 1996; Argnani et al., 1996a; b; Del Ben et al., offshore seismic profiles (Monaco et al., According to Argnani et al., faults and of their effects underneath the Messina Strait. evidence of low-angle (2009), the lack of evidence extensional faults large enough to cause an M ~ within the 7 earthquake northern and western sector support the contention that 1908 seismogenic fault is located of the Strait along the South Calabria offshore. The lack of clear evidence made it difficult to surface faulting, however, (see below). determine the source of 1908 earthquake displacements documented by The few seismological recordings of 1908 coupled with co-seismic vertical been predominantly interpreted to support a blind low angle (30° data of Loperfido (1909) have levelling and located along the Sicilian to the Messina Strait the SE nearly parallel 40°) normal fault dipping towards 2015; De Natale & Pino, Group, Working 2002 DISS 1992; Amoruso et al., & Pantosti, coastline (e.g. Valensise and seismic profiles (Argnani et al., bathymetry high-resolution swath 2014 and references therein). However, striking faults 2014) show that the modeled through-going ~N-S 2012; Ridente et al., 2009; Doglioni et al., normal high-angle another set of models considers NW-dipping, are not present. Conversely, below the Strait sources of the seism (Schick, 1977; Mulargia &faults on mainland Calabria as causative Boschi, 1983; 1995; Bottari, 2008). In particular, et al., 1992; Tortorici 1986; Westaway, Ghisetti, 1984, 1992; Bottari et al., of the faults expression of many and fresh bathymetric the macroseismic picture (Fig. 13) and youthfulness This earthquakes. during large or moderate be activated indicates that these faults may in the eastern array by master area, characterized interpretation is consistent with the regional structure of Messina Strait faults on the Calabrian side and associated antithetic Sicilian (Ghisetti, 1984; Montenat et geological field trips 2017 - 9(2.2) excursion notes 27 , Reggio RCF , Cittanova fault; , Cittanova CF , Scilla fault. The focal SF , Southern Calabria fault; SCF , Armo fault; ARF , Motta San Giovanni fault; , Motta San Giovanni , S. Eufemia fault; , S. Fig. 13 - Seismotectonic setting of the from Aloisi et al., 2012. from Aloisi et al., SEF Calabria fault; Messina Strait region. Faults (thick solid lines region. Faults Messina Strait barbed on the downthrown side, dashed where inferred or submerged) after Ghisetti (1992), (2000), Jacques et al. Monaco & Tortorici et al. (2007), Argnani (2001), Ferranti (2009): MSGF mechanism (after Gasparini et al., 1985) and mechanism (after Gasparini et al., damage distribution of the December 1908 1910; Boschi et (data from Baratta, earthquake 2007) are 1995; Monaco & Tortorici, al., RC, are labeled in white boxes: indicated. Towns Calabria; Me, Messina. The projection is Reggio data of Loperfido (1909) WGS84. The levelling circles with average are reported as yellow The blue star shows the change values. vertical macroseismic location of Michelini et al. (2005). Inset shows the location of study area in Mediterranean tectonic setting of the Central From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 al., 1991; Tortorici et al., 1995). Recently, new field evidence along with a re-evaluation of the levelling and of the levelling new field evidence along with a re-evaluation 1995). Recently, et al., 1991; Tortorici al., normal fault 2012; 2014, to identify the Armo fault, a NW-dipping been used by Aloisi et al., seismic data have (Fig. 13). exposed in SW Calabria, as a possible source of the 1908 event geological field trips 2017 - 9(2.2) itinerary 28 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Field Trip : View of the Holocene raised wave-cut platforms along the Scilla coast (Barreca G., Ferranti L., Ferranti platforms along the Scilla coast (Barreca G., wave-cut : View of the Holocene raised : Recent tectonics of the Messina Strait: view of the Pleistocene terraces on the Campo Piale horst view of the Pleistocene terraces tectonics of the Messina Strait: : Recent : Contact between the Pleistocene deposits and the Palaeozoic crystalline basement along the Armo : Contact between the Pleistocene deposits and Palaeozoic : Migmatitic complex of the Scilla rock, Aspromonte unit (Fazio E., Cirrincione R., Ortolano G.). Cirrincione R., E., : Migmatitic complex of the Scilla rock, Aspromonte unit (Fazio : Monaco C.). L., View of the Armo fault (Ferranti : Monaco C.). L., (Ferranti beachrock near Capo dell’Armi Holocene raised E.). Fazio of the Aspromonte Massif basement complex (Ortolano G., : Tectono-stratigraphy Ortolano G.). E., structures in the Stilo unit (Fazio mylonitic of late Variscan : Relics : Cirrincione R.). area (Ortolano G., of the Palmi Mylonitic skarns, tonalite and migmatitic paragneiss 1.6 1.5 1.4 DOI: 10.3301/GFT.2017.03 Stop The planned route, that will cross the most fascinating places of Aspromonte Massif region, is aimed to geomorphology and sedimentary features of the from the geology, of issues ranging a variety illustrate coast of the Aspromonte Massif focusing attention on late Quaternary faults representing Tyrrhenian most important regional-scale seismogenic structures, as well on the complex tectono-metamorphic and relationships of the Variscan by overprinting of the crystalline basement outcrops, characterized evolution Alpine orogenesis. Day 1 Stop 1.1 Monaco C.). Stop 1.3 Stop Stop Day 2 Stop 2.1 Stop 2.2 fault Cirrincione R.). L., (Ferranti Stop 1.7 and of the Scilla fault (Barreca G., Ferranti L., Monaco C.) L., Ferranti and of the Scilla fault (Barreca G., Stop 1.2 geological field trips 2017 - 9(2.2) itinerary 29 Day 1 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Specific location of a) Specific location of the 1.4 stop; b) Specific location of the 1.5, 1.6 and 1.7 stops. c) the 1.1, 1.2 and 1.3 stops; Field trip route sub-areas of the first day. of the first day. Field trip route sub-areas DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 30 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Fig. 14 - Morphotectonic map of the northern sector of the Messina Strait area Fig. 14 - Morphotectonic map of the northern sector Messina Strait of views are indicated (after Monaco et al., 2017). of views are indicated (after Monaco et al., showing the major Quaternary faults, the distribution of Quaternary terraces and showing the major Quaternary faults, distribution of terraces field the location of dated deposits. Location Stops 1.1 and 1.2 panoramic DOI: 10.3301/GFT.2017.03 The first day’s excursion addresses excursion The first day’s the issue of Late Quaternary faulting and related uplift along some segments of the Calabrian Arc. The planned stops are on the southwestern Calabria edge along the of the Scilla fault where a footwall in age from ranging series of terraces 125 to 60 ka has been preserved. STOP 1.1: Recent tectonics of the Messina Strait: view of the Pleistocene terraces on the Campo Piale horst and of the Scilla fault (38°14’40’’N; 15°41’00’’E) Along the Calabrian side of between Villa S. Messina Strait, and Piano di Matiniti, a Giovanni complete sequence of ten Late- is Quaternary fluvial-coastal terraces from ranging at elevations observable 40 to 520 m (Fig. 14). The terraced deposits are formed by calcarenites, marine sands and conglomerates, more or less cemented, directly lying on the crystalline basement or Fm.), Pleistocene middle upper (Trubi (Vinco calcarenites) or middle-late and Pleistocene (Messina gravels geological field trips 2017 - 9(2.2) itinerary 31 Detail of the cataclastic b) From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli View of the onland western segment Scilla fault, bordering to north Campo Piale horst. The fault a) Fig. 15 - zone in the crystalline bedrock associated to the Scilla fault, including NW-dipping fault planes (from Ferranti et al., 2007). et al., fault planes (from Ferranti in the crystalline bedrock associated to Scilla fault, including NW-dipping zone trace and the up to 70-m-high triangular facets marking fault scarp are outlined with dashed lines. trace DOI: 10.3301/GFT.2017.03 sands fm.) sedimentary covers (Ghisetti, 1981; Miyauchi et al., 1994). The marine deposits generally pass upwards 1994). The marine deposits generally et al., (Ghisetti, 1981; Miyauchi sands fm.) sedimentary covers thick up to 20 meters. layers, to continental reddish silt with sands and gravels series is partly displaced by the Scilla fault that borders Campo Piale horst to north. The scarp The terraced by up to 70-m-high triangular facets, suggesting of the onland western segment Scilla fault is characterized fault planes (Fig. 15). The in the crystalline bedrock, including NW-dipping and by a cataclastic zone recent activity, worth noting that it extends along to the coast, with inner edge around at 40 meters. It’s lowest (I order) terrace V and VI extend around the Campo II, III, IV, (Fig. 14). Terraces seals the Scilla fault north of Villa San Giovanni of 60, 95, 120, 175 side, with inner edges at elevations outcropping along the south-west Piale Horst, extensively sequence of the remaining orders outcrops only along Campo The complete terraced and 200 m, respectively. of 285 m, 345 m and 415 meters. VII, VIII and IX show inner edges at elevations Piale horst, where the terraces from ~ 480 m to 520 meters. ranging X, the oldest and highest of whole series, extends at elevations Terrace to distinct orders of the Scilla fault, assignment terraces North of the Campo Piale horst, on hangingwall I shows a clear the terrace been recognized: surfaces have is more complex. In this area only three terraced between 70 m and 90 m, has to the coastline; a second surface, with inner edges at elevations continuity parallel geological field trips 2017 - 9(2.2) itinerary 32 a 1.4 mm/a. deposits (see Strombus bubonius in the Reggio Calabria area (Bonfiglio, 1972; Calabria area (Bonfiglio, in the Reggio From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Strombus bubonius Fig. 16 – Correlation between the altimetric position of the inner edges of marine terraces in the Calabrian side of Messin Fig. 16 – Correlation between the altimetric position of inner edges marine terraces Strait (see trace in Fig. 14) and the high stands of the eustatic curve of Waelbroek et al. (2002), modified for uplift rate of et al. (2002), modified for uplift rate of Waelbroek in Fig. 14) and the high stands of eustatic curve (see trace Strait DOI: 10.3301/GFT.2017.03 been attributed to the terrace III outcropping on the Villa S. Giovanni area, suturing the western end of Scilla Giovanni III outcropping on the Villa S. been attributed to the terrace between 100 m and 140 m, has been attributed to the V order fault; a third surface, with inner edges at elevations 2001). 1994; Jacques et al., et al., (MIS 5.5, 125 ka) by geomorphological correlations (see Miyauchi As regards the age attribution, finding of Dumas et al., 1987) and the absolute dating obtained by thermoluminescence (TL) optically stimulated Dumas et al., deposits the age of terraced 1997), perfectly constraint luminescence (OSL) methods (Balescu et al., an age of around 60 ka has been attributed to the sandy deposits between 60 and 330 ka. In particular, 1997, (Balescu et al., Giovanni (I order), outcropping in the Acciarello place near Villa S. the lowest terrace V with the see Fig. 14), while the morphological correlation of terrace 2004), has allowed to correlate this last the MIS 5.5 (125 ka). 1994; Dumas & Raffy, et al., also Miyauchi peaks of the eustatic curve with the other positive This allowed us to correlate the other orders of terrace of II and VI order cannot be correlated with occurred between the MIS 3.3 and 9.3 (Fig. 16). Terraces geological field trips 2017 - 9(2.2) itinerary 33 below the denser holes is found at ~1.4 m From ductile to brittle tectonic evolution of the Aspromonte Massif Lithophaga R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 positive peaks (see also Dumas & Raffy, 2004) and for this reason they have been tentatively attributed to the been tentatively 2004) and for this reason they have peaks (see also Dumas & Raffy, positive MIS 4 (74 ka) and to the 6.5 (167 ka), respectively. change in time and space represent the sum of regional signal, homogeneous The uplift rates deformation induced by the fault activity around 1993) and the co-seismic vertical last 700 ka (Westaway, of the seismogenic faults, while on main Quaternary faults. These two components are added on footwall hanging are removed movements the co-seismic vertical wall The estimated uplift rates from the regional rate. from 0.8 mm/a for the period 330-60 ka, on downthrown block of Scilla fault, to 2.0 (twice range the regional component of 1.0 mm/a estimated by Westaway (1993) for the period 330-200 ka, on Campo of 1.4 mm/a along the suggests a uniform uplift rate of the I order terrace Piale high. The constant elevation of the western sector Scilla fault in last 60 ka, a deactivation entire coastal area, and, consequently, (see Selli et al., though the offshore activity of segments belonging to same system is not excluded even in its eastern sector (see Stop 1.2), since it it is considered still active 2008a). However, et al., 1979; Ferranti 1783 (Monaco & Tortorici, on February-March is considered responsible of one the sequence earthquakes area, 2001) and of the co-seismic uplifts coastal area between Scilla Palmi 2000; Jacques et al., the 2007, 2008a). In general, et al., (Ferranti of the structure, in last 5000 years situated on the footwall Calabrian side of the Messina Strait of the uplifted more quickly than the Sicilian side, where elevation was slightly smaller than the regional (Bonfiglio & Violanti, 1983) suggests an uplift rate MIS 5.5 (125 ka) terrace component. STOP 1.2: View of the Holocene raised wave-cut platforms along Scilla coast (38°15’09’’N; 15°42’07’’E) been identified (Marina di San Gregorio and Punta Along the Scilla coast two Holocene uplifted shorelines have 2007; 2008a). Morphological and sedimentary et al., 2004; Ferranti see Fig. 12 for location; Antonioli et al., Paci, where a large wave-cut estimate at ~3.0 m for the upper shoreline Punta Paci, allow an elevation constraints between for the shoreline range platform outcrops, clearly visible from the national road (Fig. 17). Age constraints ranging by a prominent barnacle band, lying at elevations ~5-3.5 ka. The lower shoreline is characterized between ~0.8 and ~1.9 m, an algal rim bored by patch of the barnacle band. Duration of the lower shoreline is tightly constrained by radiocarbon ages of by radiocarbon of the lower shoreline is tightly constrained patch of the barnacle band. Duration barnacles between 3.5 and 1.9 ka, its inception is in good agreement with cessation of the older shoreline 2007; 2008a). et al., (Ferranti geological field trips 2017 - 9(2.2) itinerary 34 View from the sea of upper b) From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Uplifted Holocene marine platform at Punta Paci (Scilla, see Fig. 14 for location); Uplifted Holocene marine platform at Punta Paci a) Fig. 17 - shoreline (red dotted line). DOI: 10.3301/GFT.2017.03 Integration of on-land and offshore geomorphological and structural investigations coupled to mapping and investigations of on-land and offshore geomorphological structural Integration of the that these are located at the footwall Holocene beaches reveals dating of the raised radiometric extensive western segment of the Scilla fault (see Stop 1.1) and that uplift has both steady abrupt components (Ferranti co-seismic displacements occurred at dating of the shorelines indicates that rapid 2007; 2008a). Radiometric et al., and ~1.9 and ~3.5 ka, possibly at ~5 ka (Fig. 18). Co-seismic displacement shows a consistent site value for the fault. The ~1.5-2.0 m average behaviour of characteristic-type suggestive variation, pattern of along-strike uplift during co-seismic slips documents Mefootwall with ~1.6-1.7 ka recurrence time. The ~6.9-7.0 earthquakes palaeo-seismological record based on the palaeo-shorelines suggests that last rupture Scilla fault geological field trips 2017 - 9(2.2) itinerary 35 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli , lower LS , upper shoreline; US , 1783 Mw (Jacques = 5.9-6.3 earthquake th Fig. 18 – Uplift history of the Scilla coast during six shoreline. Elevation in meters (y axis). shoreline. Elevation distinct episodes of steady and abrupt displacement based on the relations between morphological features of above upper and lower palaeo-shorelines, their elevation ages (after and the radiometric the present sea-level, 2007). et al., Ferranti DOI: 10.3301/GFT.2017.03 February 6 February STOP 1.3: Migmatitic complex of Scilla, Aspromonte unit (38°15’22.28”N; 15°42’50.18”E) The Scilla promontory consists essentially of high metamorphic rocks belonging to the grade from the remaining Aspromonte unit, it is separated part of the Aspromonte Massif by a normal west- dipping fault oriented N 55°E (dip direction is towards Sea) with an amount of dip 70°. The the Tyrrhenian lithotype consists of migmatitic gneiss prevailing texture. It is commonly showing a flebitic-stromatitic et al., 2001) was at the expected time but it may have at the expected time but it may 2001) was et al., not entirely released the loaded stress since last at ~1.9 ka. Precise compensation for sea great event late Holocene steady uplift changes constrains level at ~1 mm/a, a value during the interseismic intervals consistent with long-term (0.1-1 Ma) estimates of 1993). Thus, late Holocene regional uplift (Westaway, total uplift of ~1.6-2.1 mm/a is nearly equally balanced between regional and co-seismic components. geological field trips 2017 - 9(2.2) itinerary 36 ) arranged into eterogranular ) arranged 25-30 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 characterized by coarse-medium grainsize and by a layering of biotite-rich and quartz-feldspar-rich levels (Fig. levels of biotite-rich and quartz-feldspar-rich and by a layering by coarse-medium grainsize characterized structure is subordinate. grano-xenoblastic with a massive paragneiss 19a). Fine grained from cm to m ranging 70°) with wavelength Isoclinal to tight folds show steeply dipping axial surfaces (avg. were recognized: dykes of aplite-pegmatite leucogranitic main generations scale. Two of the first dykes from 1 to 25 cm; whereas dykes with thickness ranging dipping to subvertical, are from moderately generation orientations with larger thickness (up to 60 cm). They have are usually sub-horizontal of second generation orientations are and NW-SE direction is the dominant one, whereas NE-SW forming three main clusters: a E-W 1975). et al., subordinate (Atzori with an omeoblastic microstructures. The coloured portion (melanosome) is fine grained The dark-gray folded gneiss are biotite, garnet, staurolite, andalusite, muscovite, of this intensively minerals paragenetic staurolite inclusions in andalusite imply the reaction microstructure like plagioclase and quartz. Reaction are accessory sometimes amphibole occurs. Titanite, apatite e iron oxides St+Ms+Qtz = Bt+And±Grt+V; The light-coloured and plagioclase grains. Monazite occurs as inclusions within biotite, muscovite minerals. portion (leucosome) is made of quartz and plagioclase magablasts (An millimetre to centimetre thick layers. from centimetre to metric thickness are often interbedded with two main lithotypes (Fig. Amphibolite layers by an omeoblastic or eteroblastic structure. Green coloured rocks characterized 19b). Usually are dark-green bitotite and cummingtonite are also amphibole, plagioclase and quartz are the main constituent minerals, garnet represent accessory assemblage. Apatite, zircon, rutile and sporadic present in the mineralogical crosscut the main and pegmatites often pervasively dykes granodioritic phases. A network of leucocratic structure. Oligoclase, quartz, biotite, sillimanite, an ipidiomorphic omeogranular usually have foliation. Dykes with coarse grained are exceptionally constitute the most common assemblage. Pegmatites and muscovite and biotite up to a decimetre in length (Fig. 19c, d). The age of this magmatism crystals of quartz, K-feldspar 2008). is 300±4 Ma (Fiannacca et al., et al. (1990) indicated a common metamorphic history for augen gneisses and associated biotitic Atzori with Rb/Sr ages on micas of 280–292 Ma, interpreted as from the north-eastern Peloritani paragneisses 2000) for similar et al., metamorphism. U–Pb monazite ages (Graessner cooling ages after the Variscan (amphibolite facies)paragneisses of the Aspromonte Massif indicated a metamorphic peak at 295 to 293 ± 4 conditions of 620Ma (with P–T °C at ca. 0.25 GPa). geological field trips 2017 - 9(2.2) itinerary 37 meter sized biotite alternance example of a Fig. 19 - a) leucosome/melano in some layering the migmatitic complex of Scilla; b) amphibolite layers interbedded within migmatitic leocosome; c) pegmatitic dyke intrusion postdating the migmatitic of the layering host rocks; d) megacryst within a pegmatite. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 Clockwise P–T–(t) paths inferred for the medium-to high-grade rocks of the Aspromonte Massif and Peloritani paths inferred for the medium-to high-grade Clockwise P–T–(t) and during early- been considered to be consistent with processes of crustal thickening Mountains have intrusion and unroofing during the middle-Hercynian collisional stages, followed by crustal thinning, granitoid extensionlate Variscan 2007). 2004; Caggianelli et al., et al., (Festa geological field trips 2017 - 9(2.2) itinerary 38 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 STOP 1.4: Mylonitic skarns, tonalite and migmatitic paragneiss of the Palmi area (38°22’50.80”N; 15°51’31.41”E) coast of Calabria at the crop out along the Southern Tyrrhenian shear zone rocks of the Palmi The mylonitic with respect to zone in a transitional northern margin of the Aspromonte Massif, the Serre Massif (Fig. 4). It foliation (Fig. 20a). The shear zone by a tabular structure with predominantly sub-vertical is characterized and tonalite. Most of the deformation essentially skarns and to a lesser extent migmatitic paragneiss involves between the more competent domains of layer is accommodated by skarns which act as a weakening foliated tonalites and of the migmatititic paragneisses (Figs 4, 20a). due show a layering shear zone with respect to the mylonitic cropping out northward Migmatitic paragneisses from 20° to 45° (Fig. 21a, b). SE with a dip ranging dipping toward to migmatitization processes averagely plutonic magmatism show textures variable gneisses ascribable to the former stages of late Variscan Tonalitic to well foliated, massive from relatively SE. attitude dipping toward with average foliation as well attitude of the subvertical rocks highlighted as the average analysis of mylonitic Structural of the shear zone suggesting an anostomosing character to NW-SE from W-E, the stretching lineation ranges (Fig. 20b). particularly the carbonaceous matrix of skarn reaching foliation involves The mylonitic that often act as undeformed rigid blocks within before tonalities and paragneiss plastic rheological behaviour carbonaceous matrix. mylonitized abundance of the rock- the whole rock rheology resulted strongly influenced by different relative Nevertheless, and that controlled in turn the deformational behaviour throughout the extension of shear zone types involved foliation in the skarns, for instance, resulted features. The trend of the mylonitic structural then the final mylonitic rotated strongly perturbed by the presence of widespread rigid metamorphic and plutonic inclusions, passively the increase of migmatitic skarns (Fig. 22a, b). By contrast, within the deformational flow mylonitized in the middle part of outcropping shear process, observed in the mylonitic and of tonalite involved paragneiss partioning, producing widespread inclusions of the strain strongly influenced the rheological behaviour zone, foliation (Fig. 22c, d). mylonitic of a pervasive by the developement characterized to the local stretching lineation, subordinately The occurrence of isoclinal fold sections with axis often parallel plunge (Figs 20b; 22e; 23), highlights the formation of sheath-folds, confirmed by rotating to a quasi-vertical sections (Fig. 22f)presence of cat eye accompanied by local evidence of highly curvilinear fold hinges (Fig. 23). Sheath folds formation indicates that probably already by a unique shearing event, characterized as the PSZ was geological field trips 2017 - 9(2.2) itinerary 39 tic From ductile to brittle tectonic evolution of the Aspromonte Massif Contour plot of the mylonitic structural features (Schmidt net, structural Contour plot of the mylonitic R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli b) Geological map of the Palmi shear zone; shear zone; Geological map of the Palmi a) Fig. 20 - stretching lineation (modified after Ortolano et al., 2013). stretching lineation (modified after Ortolano et al., lower hemisphere): blue contouring – poles of the mylonitic foliation, red contouring – sheath fold axes, black circles –myloni foliation, red contouring – sheath fold axes, lower hemisphere): blue contouring – poles of the mylonitic DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 40 a) particular of Fig. 21 - Alternance of leucosome/melan osome depicting of the layering the migmatitic complex of the Pietre Nere area RC); (Palmi b) migmatitic leucosome with ptygmatic folds. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 active during the former stage of the deep-seated Alpine tectonics of this area (i.e. Cretaceous-Paleocene boundary) during the former stage of deep-seated Alpine tectonics this area (i.e. Cretaceous-Paleocene active age obtained from whole mica analysis of mylonitic by the Rb-Sr up to 56 51 Ma ago as constrained and still active 2003), which can be interpreted as a minimum age constraint. tonalite (Prosser et al., by a dominant calcite, K- skarns are characterized also highlight that the mylonitic investigations, Microstructural quartz assemblage, subordinately accompanied by the presence of humite, olivine, clinopiroxene, feldspar, amphibole and talc. This last assemblage can be considered the result of metasomatic scapolite, clinozoisite, impure marbles with the fluid released by emplacement of late- activity between Variscan exchange also in thin sections, widespread skarns are indeed observable, tonalite magma. Within the mylonitic Variscan K- clasts of felsic olocystalline rocks with isotropic texture principally constituted by plagioclase, clinopiroxene, with the well-known relic assemblage linked feldspar and olivine, which can be interpreted as a high temperature 2003). These inclusions are thermal increase (Prosser et al., quasi-static late Variscan spared by the mylonitic deformation, almost totally accommodated by calcite that controls the whole rock rheology of this sector outcropping shear zone. tonalite are differently controlled by quartz dominated rock rheology as as well mylonitic Mylonitic paragneiss geological field trips 2017 - 9(2.2) itinerary 41 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli mylonitic d) cat eye section of sheath cat eye f) oblique fold with axis parallel to the E-W oblique fold with axis parallel e) Example of low strained tonalite porphyroclasts Example of low strained b) , a) alternance of mylonitic tonalite layers with feldspar tonalite layers alternance of mylonitic Fig. 22 fold (Malopasso area), see Fig. 20a for photo area location. within microcrystalline calcite of mylonitic skarns (Olive rock area); skarns (Olive within microcrystalline calcite of mylonitic c) rock area); skarns (Olive and mylonitic porphyroclasts tonalite (Sidaro area); rock area); stretching lineation (Olive DOI: 10.3301/GFT.2017.03 evidenced by the formation of dynamically recrystallized surrounding widespread plagioclase and k- layers quartz-rich microstructural layer Quartz-rich feldspar porphyroclasts. highlighted the presence of dominant sub-grain observations rotation re-crystallization (SR), subordinately accompanied (GBM), consistently with a boundary migration by grain during shearing. intermediate temperature relatively Analysis of the widespread kinematic indicators such as δ- and tonalite of plagioclase, K-feldspar type porphyroclasts mica fish, book shelf sliding structures and fragments, shear bands, testify to a top-to-E, SE sense of in the coordinates. geographic present-day by the been integrated have investigations Microstructural pattern, aiming to obtain study of the quartz c-axis on both the kinematics and temperature constraints during shearing deformation (see Cirrincione et operating 2009 and reference therein for further details on the al., applied procedure). patterns, carried out on 14 quartz- Inferred quartz c-axis and one rich domains of two migmatitic-paragneiss process, in the mylonitic samples involved tonalitic-gneiss of two different slip systems: the show the main activation geological field trips 2017 - 9(2.2) itinerary 42 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli by means of axial plane intersections method (see stereoplots- lower hemisphere – Schmidt projection), which is also consistent with clustering of stretching lineation, pointing towards a ESE direction (see Fig. 20a for photo area location). consistent with clustering of stretching lineation, pointing towards Fig. 23 - Various examples of sheath folds are clearly exposed at this site (four pictures). Curvilinear hinge folding patterns Fig. 23 - Various are extremely diffuse throughout the outcrop. A possible shear flow direction has been inferred from sheath fold geometries are extremely diffuse throughout the outcrop. DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 43 c) representative b) Selection of mylonitic a) Fig. 24 - Ortolano et al., 2013). Ortolano et al., rock samples (high resolution thin section scans - from the left: and skarn level alternance of mylonitic mylonitic tonalite layers, mylonitic tonalite) with mylonitic paragneiss, domains location of the quartz-rich patterns used for the quartz c-axis investigation; quartz c-axis pattern elaboration; pattern elaboration; quartz c-axis pattern synthesis of quartz c-axis analytical results (modified after (Fig. 24b, c). (Fig. 24b, present-day geographic coordinates geographic present-day top-to-E-SE sense of shear in the top-to-E-SE stretching lineation, confirming the asymmetry with respect to the shows a relatively marked internal marked shows a relatively (Fig. 24). The contour plots further conditions between 400° and 500°C developed in greenschist facies developed with a unique deformational event rhomb and basal , consistent From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 44 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli (a) Composite pseudo- (b) Fig. 25 - Morphotectonic map of the southeastern sector Location of Stops 1.5, 1.6 and 1.7 is indicated. DOI: 10.3301/GFT.2017.03 the Messina Strait (Calabrian side, see Fig. 13 for location). The the Messina Strait spatial distribution of elevation changes recorded by Loperfido spatial distribution of elevation (1909) are shown (blue for lowering and red circles uplift). in the inset show: Lower hemisphere Schmidt diagrams projections of Armo fault kinematic data. Arrows on planes block. indicate motion of the hanging wall fault plane solutions (FPS) computed from fault-kinematic data fault plane solutions (FPS) computed from fault-kinematic 1990), (Marrett & Allmendinger, v.1.2 Faultkin using software at ftp://www.geo.cornell.edu/pub/rwa/FaultKin/.Filled available Black are calculated kinematic axes. squares in stereo diagrams projection of the extensional axis. arrows show the horizontal STOP 1.5: View of the Armo fault (38°03’12’’N; 15°40’47’’E) The 18 km-long on-land section of the SSW-NNE the N30°E) Armo fault separates striking (average south-eastern margin of the Pleistocene Reggio Calabria basin (Ghisetti, 1984) from the upraised (Figs 13, basement rocks of the Aspromonte Range view of the ~ 300 m a panoramic 25). In this Stop, high Quaternary linear scarp is visible (Fig. 26a). during lower Pleistocene active The Armo fault was as testified by syn-sedimentary relationships 1987), but large (Ghisetti, 1984; Barrier, displacements occur since Middle Pleistocene the 1996a; b). To 1987; Monaco et al., (Barrier, (Motta San striking splay south, a NNW-SSE from Figs 13, 25) branches fault - MSGF; Giovanni the major fault. geological field trips 2017 - 9(2.2) itinerary 45 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 STOP 1.6: Contact between the Pleistocene deposits and Palaeozoic crystalline basement along Armo fault (38°03’08’’N; 15°42’23’’E) villages (Fig. 25), we part of the Armo fault near and Oliveto In the central the fault contact can observe crystalline basement and collect fault planes slip between the Lower Pleistocene deposits and Palaeozoic lineations data useful to perform kinematic analyses near the 2012; Figs 25, 26b). In this Stop, (Aloisi et al., the nearshore deposits of margins Upper Pliocene-Lower it is possible to observe village of Oliveto, Calabria Basin (Fig. 25), onlapping the major border fault scarp 26c). Next to Pleistocene Reggio beds and slumps containing blocks of basement rocks are frequently embedded lens-shaped gravel plane, several within marine deposits that are, in turn, deformed by small normal faults and cataclastic bands, thus suggesting a synsedimentary activity of the Armo fault. 2012) is in good agreement note that the azimuth of computed extension axis (Fig. 25; Aloisi et al., We 2004; Mattia et al., & Selvaggi, area (D’Agostino with the GPS-estimated tensile axis for Messina Strait analysis on the Scilla fault 2010), with the extension axis determined from structural 2008; Serpelloni et al., of the Armo and in the hanging-wall 2008a), and with the tensile axis of crustal earthquakes et al., (Ferranti 2009). Calabria faults (Scarfì et al., Reggio Quaternary history of the fault for the average analysis in the bedrock yields parameters Although fault-slip of it, activity in more recent times is documented by the deformation or for an unknown time interval 2012). (Aloisi et al., MIS 5.5 (125 ka BP) marine terrace and biotite-bearing micaschistsThe outcropping crystalline rocks consist of muscovite- and subordinate lenses of amphibole-bearing schists, belonging to the Stilo unit. The attitude with sporadic paragneisses of isoclinal to asymmetrical fold hinges with foliation is 333/32 (dip direction/dip). Relics main Variscan of the main foliation is developed places a crenulation cleavage are diffuse. At centimetre-scale wavelength of the main fault plane a progressively and a crenulation lineation is visible. Approaching the damage zone of basement rocks widely occurs. causing highly fracturing intense cataclastic overprint geological field trips 2017 - 9(2.2) itinerary 46 Slickenlines on Slickenlines Uplifted Partially Panoramic view Panoramic Upper Pliocene- Fig. 26 – a) of the southern sector of the Armo fault. b) crystalline rocks along the shear of the Armo zone fault (see Fig. 25 for location and for data inversion). c) Lower Pleistocene nearshore deposits deformed by the Armo fault near Oliveto. d) beachrock at Capo (see Fig. 25 dell’Armi for location). e) submerged Hellenistic millstone quarry at Capo dell’Armi (see Fig. 25 for location). From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 47 sp. at ~5 ka BP (Scicchitano et al., 2011a; at ~5 ka BP (Scicchitano et al., sp. Hinia From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 STOP 1.7: Holocene raised beachrock near Capo dell’Armi (37°57’06’’N; 15°41’11’’E) activity of the Armo fault is suggested by uplifted Holocene coastal deposits outcropping in its Shorter-term with a ~10 km linear extension (Fig. 25). Salvo, to Melito di Porto along the coast from Capo Pellaro footwall up to 3.0 m (Fig. 1997) is raised et al., beachrock (see also Pirazzoli Along this coastal stretch, a well preserved analysis on a shell of dated by AMS radiocarbon 26d), and was 2011b). Correction for the sea-level rise occurring since 5 ka yields an uplift rate of 1.2 mm/a, a value comparable of 1.2 mm/a, a value rise occurring since 5 ka yields an uplift rate 2011b). Correction for the sea-level and interpreted here as indicating ongoing late Holocene fault activity. uplift rate, to the long-term footwall into the beachrock in a partially submerged quarry carved Millstone for oil are also visible at Capo dell’Armi millstones 2011a; b; Fig. 26e). Several up to 1 m (Scicchitano et al., of between 0.2 m b.s.l. body at elevations between in size They are elliptical or sub-circular with the major axis ranging finished or extracted. were never cuts are up to 0.25 m deep and 0.10 large. Outcropping millstones 1.10 m and 1.30 meters. The extraction whereas the submerged ones are strongly eroded although their shape and dimensions are well preserved, cut is located at a depth of - of the base extraction can still be readily measured. The lowest elevation 0.2 m below the sea level. at Capo motion obtained by geological and archaeological markers indication on vertical The contrasting occurrence of co-seismic events by a cyclical could be explained by an uplift scenario characterized dell’Armi been probably and the 5000 a old beachrock have related to the activity of Armo fault. The MIS 5.5 terrace into account a possible Hellenistic deformation. Taking footwall affected by regional uplifting and fault-related of Motta San 2011a; b) and its location at the hangingwall age of the millstone quarry (Scicchitano et al., could be explained by local fault (Fig. 25), the present position of quarry below sea level Giovanni 2012). As a matter of fact, of the Armo fault (Aloisi et al., subsidence related to the activity of this splay area of of the Capo dell’Armi caused a coseismic down-warping displacement related to the1908 earthquake of Loperfido (1909). survey documented by the leveling about 10 cm which was geological field trips 2017 - 9(2.2) itinerary 48 DAY 2 The second day’s excursion addresses the issue excursion The second day’s of metamorphic basement rocks cropping out in the southeastern Calabria. The planned stops are focused on the crystalline basement nappe edifice of the Aspromonte Massif. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli respectively. b) and a) the 2.1 and 2.2 Stops in Fieldtrip route sub-areas of the second day. Specific location of of the second day. Fieldtrip route sub-areas DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) itinerary 49 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Fig. 27 - Geological map of the Zillastro zone with Fig. 27 - Geological map of the Zillastro zone Aspromonte Massif). DOI: 10.3301/GFT.2017.03 location of the stop areas (see Fig. 1 for within STOP 2.1: Tectono-stratigraphy of the Aspromonte Massif nappe edifice (38°05’26.54”N; 16°00’24.59”E) it is necessary turn to Samo. to Bianco, Arrived Portella After passing the village turn towards then follow the indications for D‘Orgaro, Zillastro spring. in a relatively In this Stop it is possible to observe of the small area the entire tectono-stratigraphy Aspromonte Massif nappe edifice as evidenced in the detailed geological map of Fig. 27. Stop 2.1a: Klippe of the Stilo unit phyllite (38°5'26.96"N; 16°00'24.23"E) In particular along the main road approaching Stop 2.1 the occurrence of it is possible to recognize sandwiched at the top a Stilo unit klippe of phyllites, of the SCOF (Stilo-Capo by the transgression d’Orlando formation) arenites and, at the bottom by the SU phyllites separating a huge cataclastic horizon (Fig. 28). paragneisses from the AU mylonitic geological field trips 2017 - 9(2.2) itinerary 50 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Fig. 28 – Phyllite of the Stilo unit partially covered, in non-conformity, by arenaceous layers of the Stilo-Capo d’Orlando by arenaceous layers in non-conformity, of the Stilo unit partially covered, Fig. 28 – Phyllite formation (SCOF) with widespread presence of quartz-rich isoclinal folds depicting the main Variscan foliation surface. isoclinal folds depicting the main Variscan formation (SCOF) with widespread presence of quartz-rich DOI: 10.3301/GFT.2017.03 Stop 2.1b: Alternance of mylonitic para- and ortho-gneisses of the Aspromonte unit (38°05'39.81"N; 16°00'14.63"E) para- Stop 2.1b: Alternance of mylonitic At gneiss, augen gneiss and paragneiss alternance of leucocratic an impressive it is possible to observe this Stop, process (Fig. 29a, b). extent in a late Alpine mylonitic at various of the AU involved and cataclasites showing a monotone attitude of mylonites, Outcropping rocks are highly foliated ultramylonites, softening are clearly N). Effects of strain oriented 265° with a dip of 50° towards foliation (averaging the mylonitic geological field trips 2017 - 9(2.2) itinerary 51 detail b) From ductile to brittle tectonic evolution of the Aspromonte Massif microphotos of APU mylonites showing K-feldspar porphyroclasts, showing K-feldspar microphotos of APU mylonites R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Outcrop view: leucocratic ortogneisses and paragneisses); ortogneisses and paragneisses); Outcrop view: leucocratic c - d) a) Fig. 29 - foliation (crossed polars). Sense of shear is top to the NE. of the contact between different lithologies where narrow shear zones preferentially of the contact between different lithologies where narrow shear zones developed; to the mylonitic band parallel quartz, mica fish, and an ultramylonite ribbon-like DOI: 10.3301/GFT.2017.03 recognizable at the outcrop scale, of responsible for the development In most narrow shear zones. very parts of the outcrop a constant alternation from proto- to ultra- due to the repetition by mylonite is horizon folding of the mylonitic shown. In this area indeed, previously metamorphic structures developed (in the AU) and early- of Variscan Alpine ages (in the MPU) (schematically depicted in Fig. 6), by were nearly totally obliterated the Oligocene-Miocene retrograde consistent with a event, mylonitic deep-seated exhumation of these two basement units in a regime (Ortolano et compressive et al., 2005; 2015; Pezzino al., this time, a pronounced 2008). At schistosity is produced mylonitic (Fig. 29c, d). These surfaces strikeaveragely with a ENE-WSW dip direction spanning from variable 15° a to 85°. Simultaneously, stretching lineation pervasive is predominantly oriented SW-NE geological field trips 2017 - 9(2.2) itinerary 52 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 formed, whose kinematic indicators provide a top-to-NE sense of shear in the current geographic coordinates. a top-to-NE sense of shear in the current geographic formed, whose kinematic indicators provide of a new axial plane foliation tight folds with the development folding stage produces very to late- mylonitic Syn- of an intersection lineation almost perpendicularly oriented to the stretching one. accompanied by the generation to sheath folds as evidenced by These tight folds can be interpreted as flow perturbation locally evolving in a context curvilinear hinge folding patterns ascribable to a fold propagation evolution the observed evolution. by the formation of a non-coaxial mylonitic characterized good Late tectonic phases (Alpine and Apennine) partially displace early structures it is possible to observe earlier ductile fabric. examples of brittle deformation overprinting during the Oligocene foliation originally developed This repetition brings to the folding of original mylonitic - Miocene tectonic emplacement of the AU upon MPU rocks. This is well evidenced in area by repetition of the contact between these last units, which together constitute two lowermost tectonic slices outcropping Aspromonte Massif nappe edifice (Fig. 27). by m-scale SSE- characterized during the last part of their exhumation a switch from ductile behavior, Finally, low angle brittle joints took place asymmetric folds, to a brittle one consisting of NE-SW NNW verging of normal fault (examples are visible on Fig. 7). The final record of the tectonic history is activation systems indicating the beginning of extensional regime. by quartz, plagioclase, K-feldspar, rocks outcropping at the Stop 2.1 is given The main assemblage of mylonitic and garnet are quite iron-oxides, white mica, and biotite sometimes retrogressed into chlorite. Tourmaline, under ductile deformation with features are typical of sub-simple shear developed Microstructural sporadic. eye- kinematic indicators (e.g. mica fish) suggesting a top to the NE sense of shear (Fig. 29c, d). Well-preserved at the micro-scale. Quartz occurs as also been recognized type folds (oblique- and sheath-type folds), have foliation. Quartz subgrains to the mylonitic ribbons, sometimes showing micro-folds with axial planes sub-parallel rotation recrystallization (SGR). Bulging (BLG) often form an oblique foliation, indicating a dominant subgrain which at the edges of larger sigmoid-shaped quartz grains, recrystallization is suggested by smaller quartz grains plasticity (chessboard pattern extinction). Mylonitic foliation is widely sometimes show effects of intra-crystalline testify usually forming elliptical smoothed porphyroclasts, Feldspars, network of veins. truncated by a pervasive show domino-type micro-textures (e.g. augens of K-feldspar an intense reworking during shearing. Fragmented to 001, and albite parallel filled by chlorite and sericite. Both biotite cleavage sliding) with micro-cracks book-shelf deformation and lattice bending. twins in plagioclase show intense intracrystalline geological field trips 2017 - 9(2.2) itinerary 53 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli microphotos of mylonitic paragneisses near Chorio village. paragneisses microphotos of mylonitic b) Variscan relic structures; Variscan a) Fig. 30 - DOI: 10.3301/GFT.2017.03 A network of post-shear discordant veins filled by quartz and feldspar crosscut at high angle the mylonitic discordant veins A network of post-shear foliation are common. dislocations affecting mylonitic showing micron-sized foliation. Late-fractures STOP 2.2: Relics of late Variscan mylonitic structures in the Stilo unit (38°01’30.43”N; 15°49’7.08”E) Bagaladi along the connecting road with Gambarie d’Aspromonte. turns toward Salvo to Melito di Porto Arrived belonging to the Stilo unit can be schists and paragneisses of phyllites, this Stop the classical appearance At between them. Cataclastic and sharp transitions All of these different lithotypes show both gradual observed. rocks are also exposed in the area close to San scales. Similar mylonitic are visible at various shear zones chlorite schists). metapsammites, quartzites, and muscovite village (phyllites, Lorenzo times, into At relics of earlier isoclinal folds (Fig. 30a). Only at lithotypes, it is possible to observe micaschist/paragneiss geological field trips 2017 - 9(2.2) itinerary 54 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli DOI: 10.3301/GFT.2017.03 microscopic scale the mylonitic textures are evident. They show a clear mylonitic foliation marked by syn- foliation marked textures are evident. They show a clear mylonitic microscopic scale the mylonitic by smaller grainsize. of white mica, which often is characterized kinematic crystals of biotite and quartz, rarely common to foliation coincides with the earlier isoclinal axial plane foliation. It is also very The main mylonitic to the last linked axial surfaces and metric wavelength chevron type folds with sub-horizontal observe has also been important for these rocks, which in the SU rocks. Recovery deformational episode recognized and associated ones. Recovery by new crystallized are partly obliterated highlight how syn-kinematic minerals 1980) is probably due static crystallization of andalusite (well documented by previous authors; e.g. Crisci et al., plutonic bodies (Fig. 30b). to the thermal perturbation induced in this area by emplacement of late Variscan with a pre- to late- within the SU is to be linked This feature put into evidence as the shear phase recognized phase reconstructed for the AU phase, which is totally different from the late Alpine mylonitic mylonitic Variscan 2010). and MPU rocks (Angì et al., From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - R. Visalli g e o l o g i c a l

f i e l d

t r i p s

2 0 1 7

-

9 ( 2 . 2 )

55 m e m o r a n d u m

DOI: 10.3301/GFT.2017.03 geological field trips 2017 - 9(2.2) references 56 , ng ta. mic trait ineraria From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli survey: possible implications for active tectonics in the Messina Strait. Tectonophysics, 476, 159–169. Tectonophysics, tectonics in the Messina Strait. possible implications for active survey: Siciliana N. 154-156. Geol. Soc. London, 141, 137-145. J. Arc, southern Italy: a review. Peloritan Mountains (Calabrian Arc), Italy European Journal of Mineralogy,nappe) of the north-eastern Peloritani 2 (3), pp. 363-371. (southern Italy).sediments from uplifted marine shorelines along the southwest coastline of Calabria Peninsula Palaeog. 130, 25-41. Palaeocl. Messina Strait earthquake reliable? Insights from a novel inversion and a sensitivity analysis of Loperfido (1909) levelling da and a sensitivity analysis of Loperfido (1909) levelling inversion reliable? Insights from a novel earthquake Messina Strait Journal International, DOI 10.1093/gji/ggs062. Geophysical and sensitivity analysis of levelli inversion reliable? Insights from a novel earthquake models of the M7.1 1908 Messina Strait Journal International, 197 (3), 1403-1409. 2012. Geophysical data” by Aloisi et al., 1915–1930. 107 (B4), 10.1029/2001JB000434. Res., Geophys. and seismic data. J. Orogen, southern Italy). Lithos, 115, 237–262. crustal section in the Serre Massif (Calabria-Peloritani 8, 71-84. Quaternaria Nova, area, Italy. Sea). Tectonophysics, Mediterranean Central in southern Calabria and northeastern Sicily (southern Italy, changing uplift-rates 422, 23–40. 4009, doi 24, TC based on new multichannel seismic data. Tectonics, :10.1029/2004TC001656. 1–7, http://dx.doi.org/10.1111/j.1365-3121.2007.00753.x. multichannel seismic and GPS data. TerraNova, DOI: 10.3301/GFT.2017.03 Atzori P., Messina A. & Pezzino A. (1975) - Indagini strutturali sull’affioramento migmatitico di Scilla (Calabria) - Rivista M sull’affioramento A. (1975) - Indagini strutturali Messina A. & Pezzino P., Atzori Orogen along the Calabrian- of the Variscan A. (1984) - Remnants Piccarreta G. & Rottura A., Paglionico P., Ferla P., Atzori (1990) Rottura, A., Del Moro, metamorphic rocks (Aspromonte data from medium- to high-grade - A. Rb/Sr radiometric P., Atzori, J. Lhénaff R. and Raffy Lamothe M., P., Guérémy (1997) Dumas B., Balescu S., - Thermoluminescence dating tests of Pleistocene Aloisi M., Bruno V., Cannavò F., Ferranti L., Mattia, M. & Monaco C. (2014) - Reply to ‘Comments on the paper “Are the source to ‘Comments on the paper “Are Mattia, M. & Monaco C. (2014) - Reply L., Ferranti F., Cannavò Bruno V., Aloisi M., Struct. Geol. 29 of sheath folds: A case study from Cap de Creus. J. evolution (2007) - The structural J. Alsop G.I. & Carreras from geodetic earthquake Italy, of the 1908 Messina Strait, Crescentini & L. Scarpa R. (2002) - Source parameters Amoruso A., A. (2010) - Ortolano G. & Pezzino Fiannacca P., E., Fazio Hercynian of preserved Metamorphic evolution Cirrincione R., Angì G., in Calabria and Messina S (2004) - New data on late Holocene uplift-rate Labini S. Segre A.G. & Sylos G., Dai Pra Antonioli F., G. (2006) - Late Pleistocene to Holocene record of & Dai Pra V. Verrubbi S., Kershaw Lambeck K., L., Ferranti Antonioli F., offshore eastern Sicily: Pliocene-Quaternary tectonic evolution Argnani A. & Bonazzi C. (2005) - Malta Escarpment fault zone Aeolian Islands: evidence from of deformation around the cen-tral Serpelloni E. & Bonazzi C. (2007) - Pattern Argnani A., 2006 seis & Lodolo E. (2009) - The result of the Taormina Zgur F. Accaino F., M., Rovere Bonazzi C., G., Brancolini Argnani A., References M. (2012) - Are the source models of M 7.1 1908 Monaco C. & Palano Mattia M., L., Ferranti F., Cannavò Bruno V., Aloisi M., geological field trips 2017 - 9(2.2) references 57 7, is. and 1–8. cano ctonic outhern (2011) - From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli International Geological Congress - Florence Italy August 20-28, 2004 nd - Volume n° 6 - from P55 to PW06, 60 pp. - Volume 6, 3-15. Fis. Dinam. Quater., orientale). Geogr. London, Special Publication, 46, 71-110. Geological Society, Vita-Finzi C. (Eds) Coastal Tectonics. Luminescence chronology of Pleis-tocene marine terraces of Capo Vaticano peninsula (Calabria, Southern Italy). Quat. Int. 232, of Capo Vaticano Luminescence chronology of Pleis-tocene marine terraces the edge and exten-sional domains located above between ongoing contractional Italy: crustal deformations at the transition 25, Tectonics, of a subducting slab. http://dx.doi.org/10.1029/2004TC001763. 112, B08302, Res. Geophys. region, Italy: clues for subduction inception. J. south-Tyrrhenian http://dx.doi.org/10.1029/2006JB004837. Bull.Soc. Géol. boundary heading for the closure of western Mediterranean. convergent reorganization of the Nubia-Eurasia 182, 279–303. de France 103, 279-309. Boll. Soc. Geol. It., Peloritano, 42, 301. SIMP, Calabria Meridionale. Rend. dell’Unità dell’Aspromonte, Guide Book - P66 32 (Southern Italy) - Field Trip source for the 1693 large earthquake. Geophysical Journal International, 139, 370–394. Geophysical source for the 1693 large earthquake. geological evidence of active tectonics in south-western Sicily (Italy). Journal of Geodynamics, 82, 138-149, tectonics in south-western geological evidence of active Doi:10.1016/j.jog.2014.03.004. southern Italy) from geological, geodetic and seismological data. Journal of Geodynamics, 82, 150-16 area (Aeolian archipelago, Doi: 10.1016/j.jog.2014.07.003. implications Research, Journal of Geophysical 78, 5221. p. DOI: 10.3301/GFT.2017.03 Bonfiglio L. (1972). Il Tirreniano di Bovetto e Ravagnese presso Reggio Calabria. Quaternaria, 16, 137-148. presso Reggio e Ravagnese Bonfiglio L. (1972). Il Tirreniano di Bovetto Bonfiglio L. & Violanti D. (1983) - (Sicilia nord- pleistocenica di Capo Peloro Prima segnalazione di Tirreniano ed evoluzione & I.S. in Italy: tectonic implications. In: Stewart G. (1998) - Deformation of the 125 ka marine terrace & Valensise Bordoni P. Billi A., Barberi G., Faccenna C., Neri G., Pepe F. & Sulli A. (2006) - Tectonics and seismicity of the Tindari Fault System, s System, and seismicity of the Tindari Fault & Sulli A. (2006) - Tectonics F. Pepe Neri G., C., Faccenna Barberi G., Billi A., Billi A., Presti D., Faccenna C., Neri G. & Orecchio B. (2007) - Seismotectonics of the Nubia plate compressive margin in the (2007) - Seismotectonics of the Nubia plate compressive Neri G. & Orecchio B. C., Faccenna Presti D., Billi A., te & Serpelloni E. (2011) - Recent Scrocca, D. Presti D., Piromallo C., Neri G., Minelli L., Bellier O., C., Faccenna Billi A., Calabro- di Stilo nel settore meridionale dell’Arco & Zuppetta A. (1984) - L’unita S. Russo V., Perrone Messina A., Bonardi G., tettonico-metamorfiche alpine (1987) - Riequilibrazioni V. Messina A. & Perrone Del Moro A., Compagnoni R., Bonardi G., Terrane across the Calabria-Peloritani (2004) - Geotraverse V. Messina A. & Perrone Critelli S., Caggianelli A., Bonardi G., Bianca M., Monaco C., Tortorici L. Tortorici Monaco C., Bianca M., & Cernobori L. (1999) - Quaternary normal faulting in southeastern Sicily (Italy): a seismic S.O. L. & Troja Tortorici G., Tortorici Stella, G., Ristuccia G.M., Monaco C., De Guidi, G. Gueli A.M., S. Catalano, Bianca M., Barreca G., Bruno V., Cultrera F., Mattia M., Monaco C. & Scarfì L. (2014b) - New insights in the geodynamics of Lipari–Vul Mattia M., F., Cultrera Bruno V., Barreca G., Barrier P. des dépots pliocènes et quaternaires du Détroit de Messine. Doc. Tiaz,. IGAL, 11:59-81, Par (1987) - Stratìgraphie Barreca G., Bruno V., Cultrera F., Ferranti L., Guglielmino F., Guzzetta L., Mattia M., Monaco C. & Pepe F. (2014a) - Geodetic F. Monaco C. & Pepe Mattia M., L., Guzzetta Guglielmino F., L., Ferranti F., Cultrera Bruno V., Barreca G., Baratta M. (1910) - La catastrofe sismica calabro-messinese (28 Dicembre 1908), Relazione alla Soc. Geogr. Ital. alla Soc. Geogr. M. (1910) - La catastrofe sismica calabro-messinese (28 Dicembre 1908), Relazione Baratta Barberi F., Gasparini P., & Innocenti F. Villari L. (1973) Sea and its geodynamic of the soutern Tyrrhenian - Volcanism geological field trips 2017 - 9(2.2) references 58 . s, te lts brian al 461 From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Rift Zone (Southern Italy). Tectonophysics, 453, 177-192. (Southern Italy). Tectonophysics, Rift Zone 116, 51-77. Boll. Soc.Geol. It., sedimentaria oligocenico-quaternaria del bacino calabro-ionico. 268, 408–423, doi:10.1016/j.epsl.2008.01.036. Earth Planet. Sci. Lett., Pleistocen evolution, pseudosections: An example from Aspromonte Massif basement rocks (Southern Calabria, Italy). Lithos, 103, 466–502. 166 (5-7), 995-1010. (Southern Calabria - Italy). Pure and Applied Geophysics, leucogneiss from an alpine shear zone scenario around the architecture and geodynamic significance for a pre-Alpine its overall Mediterranean; in Central terrane 84, di Mineralogia, Periodico basin. In: “Progresses in deciphering structures and compositions of basement rocks”. Tethyan 3B (Special Issue), 701-749. DOI: 10.2451/2015PM0446 38(3), 989-1014. S.I.M.P., Rend. petrografico. Geol. It., 51, 363-382. Geol. It., 19–20. pp. Calabria 10–12 dicembre 2008, Miscellanea I.N.G.V.,3, Reggio Terremoto, anni dal Grande Geodynamics, 5, 275-302. J. framework. in the regional geostructural foreland of the Apenine-Maghrebian chain in eastern Sicily (Italy): Geodynamic implications for Mt. Etna. GeoActa, 3, 165–177. 19(6), 502–514. Nova, extensional tectonics. Terra continental crust: compatibility with post-collisional evidence. Earth and Planetary Science Letters, 160 basins: some geological and geophysical Mediterranean western–central (3-4), 651-665, https://doi.org/10.1016/S0012-821X(98)00118-6. deformation. Journal of Geodynamics, 36 (4), pp. 445-467. of Messina area (Calabrian Arc):in the Strait 101 Quatern. Int., and morphological constraints. structural a.D. al 1980, Istituto Nazionale di Geofisica and S.G.A. Bologna, 970 pp. al 1980, Istituto Nazionale di Geofisica and S.G.A. a.D. DOI: 10.3301/GFT.2017.03 Cavazza W., Blenkinsop J., Decelles P.G., Patterson R.T. & Reinhardt E.G. (1997) - Stratigrafia e sedimentologia della sequenza E.G. (1997) - Stratigrafia & Reinhardt R.T. Patterson Decelles P.G., Blenkinsop J., W., Cavazza magmatism and Plio- Deep geometry, subduction zone. (2008) - The southern Tyrrhenian F. & Speranza De Gori P. C., Chiarabba inferred via P-T multi-stage metamorphic evolution A. & Punturo R. (2008) - Poly-orogenic Pezzino Ortolano G., Cirrincione R., deformed of naturally investigation Ortolano G. & Punturo R. (2009) - Microstructural Fiannacca P., E., Fazio Cirrincione R., Orogen, a composi A. & Punturo R. (2015) - The Calabria-Peloritani Pezzino Ortolano G., Fiannacca P., E., Fazio Cirrincione R., Studio geologico e superiore dell’Aspromonte. (1982) - L’Unità V. & Perrone S. Russo Messina A., Donati G., Crisci G. M., Bottari A. (2008) - Osservazioni macrosismiche e studi, in Riassunti estesi del Convegno 1908–2008 Scienza e Società a cento macrosismiche e studi, in Riassunti estesi del Convegno Bottari A. (2008) - Osservazioni C. (1986) - The 1908 Messina earthquake Lo Giudice E. & Pandolfo Cefali F., P., Carveni M., Carapezza E., Carapezza Bottari A., on the northern edge of Hyblean Mountain & Lanzafame G. (2004), Compression and Quaternary tectonic inversion Bousquet J.C. of the late Hercynian Calabria evolution G. (2007) - Pressure–temperature Prosser G. & Ranalli, Liotta D., Caggianelli A., Sabadinib R. (1998) - The role of slab detachment processes in the opening Spakmana W., M.J.R., Wortela Carminati E., De Guidi, G. (2003) S., Catalano, normal faulting with the active - Late Quaternary uplift of northeastern Sicily: Relation of the Late Quaternary normal fau L. (2003) - Long-term behaviour G. & Tortorici Tortorici Monaco C., De Guidi G., Catalano S., faulting and seismicity along the Siculo-Cala L. (2008) - Active G. & Tortorici, Tortorici Monaco C., De Guidi G., Catalano S., Bosi C., Carobene L. & Sposato A. (1996) - Il ruolo dell’eustatismo nella evoluzione geologica nell’area mediterranea, Mem. Soc geologica nell’area mediterranea, Carobene L. & Sposato A. (1996) - Il ruolo dell’eustatismo nella evoluzione Bosi C., Boschi E., Ferrari G., Gasperini P., Guidoboni E., Smriglio G. & Valensise G. (1995) - Catalogo dei forti terremoti in Italia d Smriglio G. & Valensise Guidoboni E., Gasperini P., G., Ferrari Boschi E., geological field trips 2017 - 9(2.2) references 59 S te on of 15) ment From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli tensor solutions for small and mod-erate earthquakes in the Calabrian-Peloritan arc region. Boll. Geo. Teor. Appl. 52,283–298, Teor. arc region. Boll. Geo. in the Calabrian-Peloritan earthquakes tensor solutions for small and mod-erate http://dx.doi.org/10.4430/bgta0009. 22 (4), 1040, http://dx.doi.org/10.1029/2003TC001506. seismological and geochemical data. Tectonics in light of structural, region (NE Sicily). Journal of Geodynamics, 36, 193-211. Taormina thrusting and folding south of Mt. Etna (eastern Sicily): revaluati - Geological, seismological and geodetic evidence of active of “seismic efficiency” the Sicilian Basal Thrust. Journal Geodynamics, 90, 32–41, doi: org/10.1016/j.jog.2015.06.001. 51, 703-717. dei dati geologici e sismici. Mem. Soc. Geol. It., analisi comparata data’ and sensitivity analysis of levelling inversion Insights from a novel M. L. Ferranti, Cannavò, F. Bruno, by M. Aloisi, V. 197, 1399–1402, doi: 10.1093/gji/ggu063. Int., J. Geophys. Mattia, C. Monaco & M. Palano. 311, 230–241, doi:10.1016/j.epsl.2011.09.034. Earth Planet. Sci. Lett., data in the Italian subduction boundary, Geological Society London Special publication, 45, 265-283. Tectonics”, (Ed.), “Alpine Dietrich & R.G. Park D. Coward, Southern Italy): the onset of opening Mts (NE Sicily, siliciclastic/bioclastic sedimentary successions of the Ionian Peloritani European Journal of Geosciences, 1(1), 33–62. Central the Messina Strait, © INGV 2015 - Istituto larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, sources for earthquakes Doi:10.6092/INGV.IT-DISS3.2.0 - All rights reserved; Nazionale di Geofisica e Vulcanologia regionale o anche di deformazionecosismica? Il Quaternario 19, 89–101. 100(8), 1915–1924, doi:10.1007/s00531-010-0625-z. Earth Sci., Sea, Int. J. 109 (B11402), doi: 10.1029/2004JB002998 Res., Geophys. from GPS measurements. J. extension in the Messina Strait active Lett. 38, L17304, Res. slow rollback of the Calabrian Arc from GPS measurements. Geophys. http://dx.doi.org/10.1029/2011GL048270. Earth Planet. Int 179, 97–106, . Phys. Italy. in the Messina Strait,Southern earthquakes DOI: 10.3301/GFT.2017.03 De Astis G., Ventura G. & Vilardo G. (2003) - Geodynamic significance of theAeolian volcanism (Southern Tyrrhenian Sea, Italy) (Southern Tyrrhenian G. & Vilardo (2003) - Geodynamic significance of theAeolian volcanism Ventura De Astis G., L. (2003) - Morphological evidence of Holocene coseismic deformation in the Monaco C. & Tortorici Catalano S., De Guidi G., Scarfì L. Monaco C., Mattia M., Imposa S., S, Grassi & F., Cultrera (20 Scudero S. Bruno V., Barreca G., Barberi G., De Guidi G., (1996) – Gargano C. & Lentini F. Del Ben A., dell’area dello Stretto di Messina median e stratigrafica Ricostruzione strutturale reliable? earthquake the source models of M 7.1 1908 Messina Strait De Natale G. & Pino N.A. (2014) - Comment on ‘Are (2011) - Evidence of large scale deformation patterns from GP Pisani A.R. & Riguzzi F. G., Pietrantonio Esposito A., R., Devoti In: M.P. (1989) - Kinematics of the western Mediterranean. & Knott S.D. Hutton D.H.W. E., Turco Helman M.L., Dewey J.F., and sedimentation of the Lower Middle Pleistocene mixed (2009) - Tectonics Di Stefano A. & Longhitano S.G. 3.2.0: A compilation of potential Version Group (2015) - Database of Individual Seismogenic Sources (DISS), Working DISS Cuffaro M., Riguzzi F., Scrocca D. & Doglioni C. (2011) - Coexisting tectonic settings: The example of the southern Tyrrhenian Scrocca D. Riguzzi F., Cuffaro M., plate boundary In the Calabrian Arc and Sicily G. (2004) - Crustal motion along the Eurasia-Nubia N. & Selvaggi D’Agostino extension and See-ber L. & Steckler M. (2011) - Forearc M.R., Nedimovi´c I., Guerra A., Gervasi E., D’Anastasio N., D’Agostino of moderate inversion & Neri G. (2010) - Broad-band waveform Herrmann R.B. Zhu L., Presti D., Orecchio B., S., D’Amico the stability of mo (2011) - Testing Zhu L. & Herrmann R.B. Neri G., I., Guerra A., Gervasi Presti D., Orecchio B., S., D’Amico Cucci L. & Tertulliani A. (2006) - I terrazzi marini nell’area di Capo Vaticano (Arco Calabro): solo un record di sollevamento marini nell’area di Capo Vaticano A. (2006) - I terrazzi Cucci L. & Tertulliani geological field trips 2017 - 9(2.2) references 60 : al ait nic P., oc. the Unit tern eismic in the i F. (2012) i F. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli insights from morpho-structural and marine geophysical data. Tectonophysics, 453, 74-93. data. Tectonophysics, and marine geophysical insights from morpho-structural 1, Note Brevi, online Soc. Geol. It., new evidence from marine geological data. Rendiconti Messina Strait: 219-221. slip to the vertical crustal motion in the Messina Strait, Southern Italy: evidence from raised Late Holocene shorelines. Journ Southern Italy: evidence from raised crustal motion in the Messina Strait, slip to the vertical 112, B06401, doi: 10.1029/2006JB004473. Research, of Geophysical Geol. It., 55, 87-93. Geol. It., highstand along the coast of Italy: Tecto of the last interglacial sea level (2006) - Markers V. & Verrubbi Sansò P. P., Romano 145-146, 30-54. implications. Quaternary Int., Mediterranean arcs. Tectonics, 23, arcs. Tectonics, Mediterranean http://dx.doi.org/10.1029/2002TC001488. 68, 157–170. DEM data. Bull. Volcanol. Archipelago (Southern Italy) based on integrated 93, 111-142. and Petrology, Calabria). Mineralogy the tectonic windows of Cardeto area (southern Aspromonte Massif, Special meeting of crystalline complexes. Calabria) and correlations with analogue Sardinian Variscan (Aspromonte Massif, 1, 111-113. Geologie de la France, Sassari, Italy. May-22-23 2012”, French and Italian Geological Societies “Variscan Journal of Maps, 11, 1,(southern Calabria -Italy), 85-100. Central Mediterranean. Earth Planet.Sci. Lett. 187, 105–116. Mediterranean. Central - The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data. Scientific Reports, 2, - The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data. Scientific Reports, 970, Doi: 10.1038/srep00970. 8, 79-99. of Messina. Quaternaria Nova, 23, 27-40. Phys., Géogr. 63, 119-132. Geomorphologie N.F., Calabria (Italy). Zeitschrift DOI: 10.3301/GFT.2017.03 Ferranti L., Monaco C., Morelli D., Tonielli R., Tortorici L. & Badalini M. (2008b) – Tortorici R., Tonielli faults setting and active Morphostructural Morelli D., Monaco C., L., Ferranti Ferranti L., Monaco C., Antonioli F., Maschio L. & Morelli D. (2008a) – Maschio L. & Morelli D. Antonioli F., Monaco C., L., Ferranti Holocene activity of the Scilla fault, southern Calabria Ferranti L., Antonioli F., Mauz B., Amorosi A., Dai Pra G., Mastronuzzi G., Monaco C., Orrù P., Pappalardo M., Radtke U., Renda U., Radtke M., Pappalardo Orrù P., Monaco C., Mastronuzzi G., G., Dai Pra Amorosi A., Mauz B., Antonioli F., L., Ferranti (2007) - The contribution of regional uplift and cos V. & Verrubbi S. Kershaw Maschio L., Antonioli F., Monaco C., L., Ferranti Favalli M., Karatson D., Mazzuoli R., Pareschi M.T. & Ventura G. (2005) - Volcanic geomorphology and tectonics of the Aeolian G. (2005) - Volcanic & Ventura M.T. Pareschi Mazzuoli R., D., Karatson M., Favalli conditions of Alpine-type metamorphism using multistage garnet in A. (2008) - Estimating P-T Cirrincione R. & Pezzino E., Fazio estimates for the metamorphic rocks of Stilo A. (2012) - P-T & Pezzino Massonne H.-J. Cirrincione R., Casini L., E., Fazio flank of the Aspromonte Massif map of the south-western A. (2015) - Tectono-metamorphic Cirrincione R. & Pezzino E., Fazio Mountains (Sicily). Mem. S in the geological history of Peloritani (2000) - A model of continental crust evolution P. Ferla Faccenna C., Piromallo C., Crespo-Blanc A., Jolivet L. & Rossetti F. (2004) - Lateral slabdeformation and the origin of Wes (2004) - Lateral F. L. & Rossetti Jolivet Crespo-Blanc A., Piromallo C., C., Faccenna Dumas B. &Dumas B. in Calabria, facing the Str (2004). Late Pleistocene tectonic activity deduced from uplifted marine terraces J. Raffy Géol. Dyn. quaternaire de la Calabre méridionale. Rev (1982) - Le soulèvement J. Lhenaff R. & Raffy P., Gueremy Dumas B., Dumas B., (1987) J. Lhenaff R. & Raffy P., Gueremy - Quaternary shorelines in Southern of uplift as shown by raised Rates in extensionduring restricted mantle convection (2001) - Episodic back-arc & Lucente P. Giardini D. Funiciello F., C., Faccenna Doglioni C., Innocenti F. & Mariotti G. (2001) - Why Mt. Etna? Terra Nova 13, 25–31. Nova Mt. Etna? Terra & Mariotti G. (2001) - Why Innocenti F. Doglioni C., & Riguzz Muccini F. V., Forleo D’Oriano F., Cuffaro M., Carminati E., Bortoluzzi G., Bigi S., Scrocca D., Ligi M., Doglioni C., geological field trips 2017 - 9(2.2) references 61 , - ni m ns ints The thern 191-208. 95, 107–118. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli for the thermal evolution in the Calabrian crustal cross-section during the Variscan orogeny. J. Metam. Geol., 17(2), 157-172. Metam. Geol., J. orogeny. in the Calabrian crustal cross-section during Variscan for the thermal evolution 18, 409-421. Metam. Geol., cooling in the Hercynian crustal cross-section of Calabria. J. metamorphism and post-metamorphic Tectonophysics, 210, 117-133. Tectonophysics, 226, 335-345. Earth Planet. Sci. Lett., Mewditerranean. central plane solutions, Geophys. J. Int., 125, 879–891, doi:10.1111/j.1365-246X.1996.tb06031.x. Int., J. plane solutions, Geophys. 117, 59-78. 40, 93–118. Calabria (Italy), Z. Geomorphol., 85 (3-4), pp. Tectonophysics, seismotectonic zoning 149-165. in the Southern Calabria Peloritani Orogen, Southern Italy: Petrogenetic Inferences and the Gondwana Connection. Journal of Inferences and the Gondwana Orogen, Southern Italy: Petrogenetic in the Southern Calabria Peloritani 49, 1897-1514. Petrology, Calabria (southern Italy). Lithos, 236-237, 123-140. magmatism in central intrusive geochemical message of Late Paleozoic Instability on the Earth and (Eds.), Volcano Neuberg, J. Jones, A.P., instability at Mount Etna. In: McGuire, W.M., for volcano 110, 153–167, Other Planets. Geol. Soc. London, Spec. Publ., Apennines in northern Calabria by integration of geomorphologic, structural, and marine geophysical data. Rendiconti online data. Rendiconti and marine geophysical of geomorphologic, structural, Apennines in northern Calabria by integration 5, 97-99. Soc. Geol. It., segment of the Alpine chain, southern Italy. 73 (2), 57-71. di Mineralogia, Periodico An overview. (Southern Italy). Geological Journal terrane of the Calabria-Peloritani new insights for the Alpine evolution shear zone: Palmi 51, 670-681. DOI: 10.3301/GFT.2017.03 Gvirtzman Z. & Nur A. (1999) - The formation of Mount Etna as the consequence slab rollback. Nature, 401, 782-785. Graessner T., Schenck V., Brocker M. & Mezger K. (2000) - Geochronological constraints on timing of granitoid magmatism, on timing of granitoid M. & Mezger K. (2000) - Geochronological constraints Brocker Schenck V., T., Graessner Earth Sci. (Geol. Rundsch.), forearc basin, Int. J. (2006) - Plio-Quaternary segmentation of the south Tyrrhenian Guarnieri P. Ghisetti F. (1992) - Fault parameters in the Messina Strait (southern Italy) and relations with the seismogenic source. in the Messina Strait parameters (1992) - Fault Ghisetti F. A. (2004) - A recent tectonic reorganization in the south- H.G. & Geiger, Kahle Hollenstein C., S., Jenny Giardini D. Goes S., pelites in the Aspromonte, southern Calabria: constra metamorphism of Palaeozoic (1999) - Low-pressure & Schenk V. T. Graessner Gasparini C., Iannaccone G. & Scarpa R. (1985) - Fault-plane solutions and seismicity of the Italian Peninsula. Tectonophysics, solutions and seismicity of the Italian Peninsula. Iannaccone G. & Scarpa R. (1985) - Fault-plane Gasparini C., as indicators of neotectonic pattern: an example from southern (1981) - Upper Pliocene-Pleistocene uplift rates Ghisetti F. L. (1982) Different styles of deformation in the calabrian arc (Southern Italy): Implications for a Vezzani, Ghisetti, F., 109, (southern Italy). Tectonophysic, deformations and the seismogenic source in Messina Strait (1984) - Recent Ghisetti F. Fiannacca P., Cirrincione R., Bonanno F. & Carciotto M. (2015) Source-inherited compositional diversity in granite batholiths: in granite & Carciotto M. (2015) Source-inherited compositional diversity Bonanno F. Cirrincione R., Fiannacca P., changes in eastern Sicily: implicatio & Vita-Finzi C. (1996) - Coastal elevation S. Kershaw McGuire W.M., I., Stewart Firth C., from fault Subduction Zone & Amato A. (1996) - State of stress in the southern Tyrrhenian C. Chiarabba. G. Selvaggi Frepoli A., Festa V., Messina A., Paglionico A., Piccarreta G. & Rottura A. (2004) - Pre-Triassic history recorded in the Calabria-Pelorita A. (2004) - Pre-Triassic Piccarreta G. & Rottura A., Paglionico Messina A., V., Festa (2016) – & Mele D. Langone A., A., Grande Caggianelli A., Prosser G., analysis to the The application of the vorticity V., Festa Magmatis A. (2008) - Crustal Contributions to Late Hercynian Peraluminous Cirrincione R. & Pezzino Williams I.S., Fiannacca P., Ferranti L., Mazzella M.E., Monaco C., Morelli D. & Santoro E. (2009) - Active transpression within the frontal zone of the Sou within the frontal zone transpression & Santoro E. (2009) - Active Morelli D. Monaco C., M.E., Mazzella L., Ferranti geological field trips 2017 - 9(2.2) references 62 s a bria n Sicily From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli of augen gneisses from Calabria (Italy), with inference to the Alboran microplate in the evolution of the peri-Gondwana microplate in the evolution of augen gneisses from Calabria (Italy), with inference to the Alboran 96, 843-860. Earth Sc., Jour. Inter. terranes. 1607-7962/gra/EGU05-A-07909. 7, 07909, SRef-ID: Abstracts, Res. Geophys. earthquakes. Calabria and the 1908 Messina Strait seismic sequence. Geophys. J. Int., 147, 499-516. Int., J. seismic sequence. Geophys. 95–124. pp. Press, Washington, NationalAcademy Tectonics. Active Resources, 23, 1567-1598. Quaternary Science Reviews, Italian coast during the Holocene projections for future. Quat. Int. 232, 250–257. 9, 113–120. Acta Vulcanol. of a lithospherediscontinuity. importance and evolution 445, 145-167. and seismological data. Tectonophysics, structural–kinematic (Southern Italy): Some insights from integrated Soc. Geol. It. 41, 121–140. in Relazione Salvo, a Melito di Porto e sulla costa occidentale della Calabria da Gioia Tauro Peloro Catania, a Gesso ed Faro più adatte per la ricostruzione degli abitati colpiti dal terremoto del incaricata di designare le zone della Commissione Reale Accademia Nazionale dei Lincei, Roma. 28 dicembre 1908 o da altri precedenti, pp.131–156, 973–986. 20, 370–377. Nova (1996–2006) of GPS data. Terra Italy) from10 years (Aeolian Archipelago, Italy) from GPS data, Geol. Acta, 10, 1–9, doi:10.1344/105000001705. Plateau (Sicily, 83, 464-468. tectonics. Geol. Rund., Mediterranean 444–452. Nova7, Sea, Italy). Terra Tyrrhenian boundary zone in southern Italy, Geophys. Res. Lett., 30(18), 1935, doi:10.1029/2003GL017554. Lett., Res. Geophys. in southern Italy, boundary zone DOI: 10.3301/GFT.2017.03 Michelini A., Lomax A., Nardi A., Rossi A., Palombo B. & Bono, A. (2005) - A modern re-examination of the locations 1905 & Bono, B. Palombo A., Rossi Nardi A., Lomax A., Michelini A., Lajoie K.R. (1986) - Coastal tectonics. In: Geophysics Studies Committee, Commission Physical Sciences, Mathematics and Studies Committee, Commission Physical Lajoie K.R. (1986) - Coastal tectonics. In: Geophysics Purcell A. Antonioli F., Lambeck K., & change along the Italian coast for past 10,000 yrs. (2004) - Sea level Silenzi S. Scicchitano G. Leoni G., L., Ferranti Anzidei M., & Antonioli F., Lambeck K., change along the (2011) - Sea level Silenzi S. (1997) The Maltese escarpment and its extension fromMt. Etna to the Aeolian Islands (Sicily): Lanzafame G. & Bousquet J.C. thrusting as a possible seismogenic source i (2007) - Active & Barbano M.S. Visini F. De Nardis R., F., Ferrarini G., Lavecchia Mem. carta della Moho. centro-meridionale: la nuova Locardi E. & Nicolich R. (1988) - Geodinamica del Tirreno e dell’Appennino geometrica di precisione eseguita dall’I.G.M. sulla costa orientale della Sicilia, da Messin Loperfido A. (1909) - Livellazione R.W. & Allmendinger, Marrett, R.A., (1990) - 12, p. v. Geology, data: Journal of Structural Kinematic analysis of fault-slip complex features of the Lipari–Vulcano (2008) - Tectonic Bonaccorso A. & Gresta S. F., Cannavò Bruno V., M., Palano Mattia M., pattern along the northern rim of Hyblean M. (2012) - Evidences of a contractional & Palano F. Cannavò Bruno V., Mattia M., motion for Africa–Europe: some implications recent central & Helman M. (1994) - Neogene patterns of relative S. Mazzoli islands (Aeolian Islands, Southern G. (1995) - Oblique rifting in Salina, Lipari and Vulcano L.& Ventura Tortorici Mazzuoli R., Piccarreta G. & Deloule E. (2007) - Latest Precambrian to Early Cambrian U–Pb zircon age A., Fornelli Barbey P., Micheletti F., Jacques E., Monaco C., Tapponnier P., Tortorici L. & Winter T. (2001) - Faulting and earthquake triggering during the 1783 Cala and earthquake (2001) - Faulting L. & Winter T. Tortorici P., Tapponnier Monaco C., Jacques E., Hollenstein C., Kahle H.G., Geiger A., Jenny S., Goes S. S., Jenny Geiger A., H.G., Kahle Hollenstein C., & plate on the Africa-Eurasia (2003) New GPS - constraints Giardini D. geological field trips 2017 - 9(2.2) references 63 d y. di sif in From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Geofisica Teorica e Applicata, 48 (2), 163-184. Geofisica Teorica (southern Italy). Italian Journal of Geosciences, 136 (3), 337-346, doi:10.3301/IJG.2016.10. the Messina Straits 194, 203-215. Tectonophysics, 32, 139-149. Res. Geophys. and Capo Rizzuto (Italy). Mar. Calabrian margin between Capo Spartivento theory and interpretation, 493-518. observation, Earthquakes: 31, L10602, doi:10.1029/2004GL019742. Lett., Res. Geophys. south Italy, earthquake, of the Earth and Planetary Interiors, 148, 175-191. Physics 101(7), 1949–1969. Earth Sci. (Geol. Rundsch.), evidences, Int. J. along the Calabrian Arc in southern Italy: geophysical 329, 121–139. of regional evolution.Tectonophysics the frame Mitteilungen, 85, 31-56. und Petrographische Mineralogische (Calabria - Italy). Schweizer Online Societa Geologica Italiana, 29, 126-129. rheological implications. Rendiconti geo-data management from thin section – an example of interoperable crystalline basement (southern Italy-Calabria): to field scale. Journal of Maps, 11(1), 181-200. Tyrrhenian coast of South Calabria, Italy. Il Quaternario 7(1), 17–34. coast of South Calabria, Italy. Tyrrhenian 8, 372-381. Nova, sequence. Terra earthquake southern Calabrian Arc (Italy). Tectonophysics, 266, 233-249. speciale n.1, 901-913. Volume eastern Sicily: evidences from geological and geomorphological features. Boll. Soc. Geol. It., DOI: 10.3301/GFT.2017.03 Monaco C., Barreca G., Di Stefano A. (2017) - Quaternary marine terraces and fault activity in the northern mainland sectors of Di Stefano A. (2017) - Quaternary marine terraces Barreca G., Monaco C., of Messina, Italy. (1991) - Some aspects of the recent tectonics in Strait P. & Ott d’Estevou Barrier P. Montenat C., (2011) - Geomorphic setting and geohazard related features along the Ionian F. Colizza E. & Fanucci Cuppari A., Morelli D., E. Fermi, Prc. Int. School Phys. and related seismicity. & Boschi E. (1983) - The 1908 Messina earthquake Mulargia F. stress and seismogenic faulting in the area of 1908 Messina (2004) - Tectonic G. & Orecchio B. Oliva Barberi G., Neri G., South Ital of seismogenic stress orientations in Sicily, (2005) - Spatial variation G. & Orecchio B. Oliva Barberi G., Neri G., Barzaghi R. C., Totaro Presti D., Orecchio B., Marotta A.M., &Neri G., Borghi A. (2012) - How lithospheric subduction changes Cernobori L. Hirn A., Laigle M., Nicolich R., & (2000) - Crustal structure ofthe Ionian margin of Sicily: Etna volcano Gallard J. Cirrincione R. &Ortolano G., of Alpine metamorphism in the southern Aspromonte Massif A. (2005) - PT evolution Pezzino A. & Pezzino Cirrincione R., Ortolano G., Kinematic an shear zone: study of the Palmi Puliatti, G. (2013) - Geo-Petro-Structural & V. Tripodi geology of the Eastern Aspromonte Mas L. (2015) - Petro-structural A., Zappalà Pezzino Cirrincione R., Ortolano G., Monaco C., Mazzoli S. & Tortorici L. (1996a) - Active thrust tectonics in western Sicily (Southern Italy): the 1968 Belice L. (1996a) - Active & Tortorici S. Mazzoli Monaco C., Cernobori L. & Costa M. (1996b) - From collisional to rifted basins: an example from the Nicolich R., L., Tortorici Monaco C., Geodynamics, 29, 407-424. J. faulting in the Calabrian Arc and eastern Sicily. L. (2000) - Active Monaco C. & Tortorici L. (2002) – De Guidi G. & Tortorici Catalano S., Bianca M., Monaco C., Sudden change in the Late Quaternary tectonic regime Calabria. Bollettino faulting and related tsunami in eastern Sicily south-western L. (2007) - Active Monaco C. & Tortorici Miyauchi T., Dai Pra G. & Sylos Labini S. (1994) - Geochronology of Pleistocene marineterraces and regional tectonics in the (1994) - Geochronology of Pleistocene marineterraces Labini S. G. & Sylos Dai Pra T., Miyauchi geological field trips 2017 - 9(2.2) references 64 i . . e e ds ne (Ionian 1, 61-70. From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Sea), Nat. Hazards Earth Syst. Sci., 12, 2311-2328, doi:10.5194/nhess-12-2311-2012. Sci., Sea), Nat. Hazards Earth Syst. 145, 127–147 . Earth Planet. Int., 2001 and 2002. Phys. years 159, 286–303, doi:10.1016/j.pepi.2006.07.008. Earth Planet. Inter., present, Phys. Southern Italy). GeoActa, 2, 35–46. terrane, (Calabria–Peloritani 208, 149-159. and tsunami. Geomorphology, (Southern Italy). New insights on the 1908 earthquake doi:10.1029/2003TC001518. 23, TC1013, Sicilian Maghrebides, Tectonics, Ionian Sea: regional architecture, active deformation and seismic hazard: Tectonics, v. 30, TC5018, v. deformation and seismic hazard: Tectonics, Ionian Sea: regional architecture, active doi:10.1029/2010TC002821. 108(B2), 2065, doi:10.1029/2002JB001757. Mem. Soc. Geol. It., 45, 425-451 384(1–4), 257–273, Sea), Tectonophysics, Tyrrhenian doi:10.1016/j.tecto.2004.04.002. 1, 35-50. di Mineralogia, (Sicilia). Periodico Unit (Lower Unit) in the central Unit (Upper Unit) and Madonna dei Polsi contact between the Aspromonte - Peloritani 109, 455-469. Aspromonte area (Calabria). Boll. Soc. Geol. It., for the southern sector of Calabria-Peloritani metamorphism in the Aspromonte Massif: implications for a new framework 50, 423-441. Geol. Review, Orogen (Italy). Inter. in Sicily and southern Calabria, Italy: updated geodetic constraints on tectonic block interaction in the central Mediterranean in the central on tectonic block interaction in Sicily and southern Calabria, Italy: updated geodetic constraints 117, B07401, Res. Geophys. J. http://dx.doi.org/10.1029/2012JB009254. region, 161-171. and seismicity of the Mediterranean evolution Recent constraints DOI: 10.3301/GFT.2017.03 Pondrelli S., Morelli A. & Ekström G. (2004) - European-Mediterranean Regional Centroid Moment Tensor catalog: solutions for Centroid Moment Tensor Regional Morelli A. & Ekström G. (2004) - European-Mediterranean S., Pondrelli G. (2006) - The Italian CMT dataset from 1977 to th & Vannucci Gasperini P. Morelli A., Ekström G., Salimbeni S., S., Pondrelli shear zone the Palmi by marble layers: localisation driven A. & Del Moro (2003) - Strain Rottura Caggianelli A., Prosser G., imaging of the Messina Strait (2014) - High-resolution morpho-bathymetric Bosman A. & Chiocci F.L. Martorelli E., Ridente R., Sea, the Apennines and of the Tyrrhenian (2004) - Neogene and Quaternary rollbac evolution G. & Lister G.S. Rosenbaum Polonia A., Torelli L., Gasperini L. & Mussoni P. (2012) - Active faults and historical earthquakes in the Messina Strait area in the Messina Strait faults and historical earthquakes (2012) - Active Gasperini L. & Mussoni P. L., Torelli A., Polonia Piromallo C. & Morelli A. (2003) - P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., Geophys. area, J. of the mantle under Alpine-Mediterranean tomography Piromallo C. & Morelli A. (2003) - P wave (2011) - The Calabrian Arc subduction complex in th Artoni A. & Klaeschen, D. Gasperini L., Mussoni P., L., Torelli A., Polonia Pepe F., Bertotti G. & Cloething S. (2004) - Tectono-stratigraphic modelling of the North Sicily continental margin (southern (2004) - Tectono-stratigraphic Bertotti G. & Cloething S. F., Pepe i basamenti metamorfici delle unità inferiori dei Monti Peloritan tra e strutturali (1982) - Confronti petrografici A., Pezzino of the & Lo Giudice A. (1990) - Geometry and metamorphic environment Ioppolo S. P., Atzori Puglisi G., S., Pannucci A., Pezzino Ortolano G. & Punturo R. (2008) - Alpi Lo Giudice A., Fiannacca P., E., Fazio E., De Vuono Cirrincione R., Angi G., A., Pezzino 14 Marine Geology, 1997: Late Holocene emergence in Calabria, Italy. and Sansò P.; Saliège J.F. Mastronuzzi G., P.A., Pirazzoli Patacca, E., Sartori, R., Scandone, P. (1993) Tyrrhenian Basin and Apennines. Kinematic evolution and related dynamic Basin and Apennines. Kinematic evolution (1993) Tyrrhenian Scandone, P. Sartori, R., E., Patacca, times Basin and Apenninic Arcs: kinematic relations since late Tortonian (1990). Tyrrhenian Scandone P. Sartori R., E., Patacca Palano M., Ferranti L., Monaco C., Mattia M., Aloisi M., Bruno V., Cannavò F. Cannavò Bruno V., & Aloisi M., Mattia M., Monaco C., L., Ferranti M., fiel Palano and strain Siligato G. (2012) - GPS velocity geological field trips 2017 - 9(2.2) references 65 on ina ines Italy), . (1990) From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Strait and its approaches. Giornale di Geologia, 42 (2), 1-70. Strait and kinematics of Sicily Calabria from GPS data dislocation modeling. Earth Planetary Science Messina Strait Letters, 298, 1–14. change during the Holocene in coastal south-eastern Sicily: new data from boreholes. Quaternary International, 232, 214-227, doi: 10.1016/j-quaint.2010.06.025. new evidence of recent co-seismic deformation in northeastern Sicily (Italy). Journal Geodynamics, 55, 18-31, . Taormina: doi:10.1016/j.jog.2011.11.007. of Geodynamics, 82, 178-193, Doi:10.1016/j.jog.2014.03.003. (western Calabria). J. at Capo Vaticano Geodynamics, 24, 37-50. implications for the southern prolongation of Calabrian seismogenic belt. J. 139-162. Dordrecht, pp. at the End of a Critical Decade. Kluwer, Research (Ed.), Tsunami tsunami. In: Hebenstreit, G.T. Phys. Earth Planet. Inter., 177, 65–78, doi:10.1016/j.pepi.2009.07.010. Earth Planet. Inter., Phys. 238, 75-91. Marine Geology, eastern Sicily. 70, change. Quaternary Research, sea level the Ionian Coast of south-eastern Sicily and implications for Holocene relative 26-39. deformation. Quaternary International, 232, 201- Italy): evidence of co-seismic and steady-state (NE Sicily, at Capo Milazzo 213, doi: 10.1016/j-quaint.2010.06.028. Quaternary changes in northern Sicily and southern Calabria coastlines, Italy. sea-level Millstones as indicators of relative International, 232, 92-104, doi: 10.1016/j-quaint.2010.08.019. – Lithos, 24, 97-119. from the Calabrian Arc, Southern Italy. Hercynian granitoids of contrasting Petrogenesis 167, 105-126. outcrops. Marine Geology, DOI: 10.3301/GFT.2017.03 Serpelloni E., Bürgmann R., Anzidei M., Baldi P., Mastrolembo Ventura B. & Boschi E. (2010) - Strain accumulation across the & Boschi E. (2010) - Strain B. Mastrolembo Ventura Baldi P., Anzidei M., Bürgmann R., Serpelloni E., sea-level Monaco C. & Scicchitano G. (2011) - The contribution of tectonics to relative Di Stefano A., Costa B., Spampinato C., L. & Monaco C. (2012) – Ferranti Scicchitano G., Spampinato C.R., Holocene paleo-shorelines along the Capo Schisò coast, Raised (2014) - Holocene coastal uplift and coseismic deformati Scicchitano G. & Antonioli F. Monaco C., L., Ferranti Spampinato C.R., area, northeastern Sicily: & Firth C. (1997) - Holocene coastal uplift in the Taormina S. Kershaw Cundy A., I.S., Stewart Tinti S. Italy: The case of the 28 December 1908 & Armigliato A. (2001) - Impact of large tsunamis in the Messina Strait, Scicchitano G., Monaco C. & Tortorici L. (2007) - Large boulder deposits by tsunami waves along the Ionian coast of south- L. (2007) - Large boulder deposits by tsunami waves Monaco C. & Tortorici Scicchitano G., Dutton A. & Monaco C. Castagnino Berlinghieri E.F., (2008) - Submerged archaeological sites along Antonioli F., Scicchitano G., Capano M. & Lubritto C. (2011a) - Uplifted Holocene shorel Monaco C., Antonioli F., L., Ferranti Spampinato C., Scicchitano G., L. & Monaco C. (2011b) - Ferranti Auriemma R., Scicchitano Antonioli F., Gasparo Morticelli M., Spampinato C., Lo Presti V., G., 11, 3-74. Messina im Jahre 1908. Geol. Jahrb., Schick R. (1977) - Eine seismotektonische Bearbeitung des Erdbebens von Borsetti A.M. and Gallignani P. S., Rossi A., Fabbri (1979) - Colantoni P., Selli R., on the Mess Marine geological investigation Rust D. & Kershaw S. (2000) - Holocene tectonic uplift patterns in northeastern Sicily: evidence from marine notches coastal S. & Kershaw D. Rust ( structure of the Messina Strait seismotectonics and crustal velocity Langer H. & Scaltrito A. (2009) - Seismicity, Scarfì L., Rottura A., Bargossi G. M., Caironi V., Del Moro A., Maccarrone E., Macera P., Paglionico A., Petrini R., Piccareta G. & Poli G Piccareta G. & Poli R., Petrini A., Paglionico P., Macera Maccarrone E., Del Moro A., Caironi V., Bargossi G. M., A., Rottura geological field trips 2017 - 9(2.2) references 66 no ern From ductile to brittle tectonic evolution of the Aspromonte Massif R. Cirrincione - C. Monaco - G. Ortolano - L. Ferranti - G. Barreca - E. Fazio - A. Pezzino - G. Barreca E. Fazio R. Cirrincione - C. Monaco G. Ortolano L. Ferranti - R. Visalli Italy) and the 1908 earthquake (Ms 71/2). Terra Nova, 4, 472-483. Nova, (Ms 71/2). Terra Italy) and the 1908 earthquake 21, 295–305. isotopic records. Quatern. Sci. Rev., from benthic foraminifera changes derived temperature and deep water 97, 15437-15464. 22, 855-865. Research, Mountains. Gondwana A zircon tale from the basement of Peloritani 1910-1917. Tectonophysics, 243, 37-49. Tectonophysics, 55, 4,468-481. International Geology Review, Basin, southern Calabrian Arc, Italy, DOI: 10.3301/GFT.2017.03 Waelbroeck C., Labeyrie L., Michel E., Duplessy J.C., Mcmanus J.F., Lambeck K., Balbon E. & Labracherie M. (2002) - Sea-level Balbon E. & Labracherie Lambeck K., Mcmanus J.F., Duplessy J.C., Michel E., Labeyrie L., C., Waelbroeck Res., Geophys. in Italy: tectonic implications. J. R. (1992) - Seismic moment summation for historical earthquakes Westaway 98, 21741- 21772. Res., Geophys. J. R. (1993) - Quaternary uplift of Southern Italy. Westaway origin and early geodynamic history of NE Sicily: A. (2012) - Peri-Gondwanan Cirrincione & Pezzino Fiannacca P., Williams I.S., region. Science, 290, (2000) - Subduction and slab detachment in the Mediterranean-Carpathian & Spakman W. M.J.R. Wortel Tripodi V., Muto F. & Critelli S. (2013) - Structural style and tectono-stratigraphic evolution of the Neogene–Quaternary Sider evolution style and tectono-stratigraphic (2013) - Structural & Critelli S. Muto F. V., Tripodi (south geological record of seismic source repeatability: the Messina Strait (1992) - A 125 Kyr-long D. G. & Pantosti Valensise Tortorici L., Monaco C., Tansi C. & Cocina O. (1995) - Recent and active tectonics in the Calabrian Arc (Southern Italy). and active (1995) - Recent C. & Cocina O. Tansi Monaco C., L., Tortorici