Unified Changes in Cell Size Permit Coordinated Leaf Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Unified Changes in Cell Size Permit Coordinated Leaf Evolution Research Unified changes in cell size permit coordinated leaf evolution Tim J. Brodribb1, Greg J. Jordan1 and Raymond J. Carpenter2 1School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia; 2School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia Summary Author for correspondence: The processes by which the functions of interdependent tissues are coordinated as lineages Tim Brodribb diversify are poorly understood. Tel: + 61 362261707 Here, we examine evolutionary coordination of vascular, epidermal and cortical leaf tissues Email: [email protected] in the anatomically, ecologically and morphologically diverse woody plant family Proteaceae. Received: 11 February 2013 We found that, across the phylogenetic range of Proteaceae, the sizes of guard, epidermal, Accepted: 27 March 2013 palisade and xylem cells were positively correlated with each other but negatively associated with vein and stomatal densities. The link between venation and stomata resulted in a highly New Phytologist (2013) efficient match between potential maximum water loss (determined by stomatal conduc- doi: 10.1111/nph.12300 tance) and the leaf vascular system’s capacity to replace that water. This important linkage is likely to be driven by stomatal size, because spatial limits in the packing of stomata onto the Key words: adaptation, cell size, genome leaf surface apparently constrain the maximum size and density of stomata. size, leaf thickness, stomatal density, We conclude that unified evolutionary changes in cell sizes of independent tissues, possibly stomatal size, vein density. mediated by changes in genome size, provide a means of substantially modifying leaf function while maintaining important functional links between leaf tissues. Our data also imply the presence of alternative evolutionary strategies involving cellular miniaturization during radiation into closed forest, and cell size increase in open habitats. Introduction during the uptake of CO2 for photosynthesis (Sack & Holbrook, 2006), plants with higher rates of photosynthesis per unit leaf Recent characterization of genes and core regulatory networks area lose more water (Cowan & Farquhar, 1977) and thus has revolutionised our understanding of how tissues develop. demand greater investment in leaf veins (McKown et al., 2010). However, the development of individual tissues is only one This investment comes largely as increased branching of leaf requirement for building complex organisms. Another, less minor veins, because a greater density of minor veins delivers understood process is how the development of spatially discrete water closer to sites of evaporation in the leaf (Brodribb et al., but functionally interdependent tissues is coordinated. One pos- 2007), leading to increased transport efficiency (Sack & Frole, sible mechanism for such coordination is colocation of primor- 2006). However, these veins are expensive to synthesize, and dial tissues. Thus, lymphatic and blood-carrying vessels of plants are likely to coordinate the production of photosynthetic mammals develop from a common embryonic vascular system, and water supply tissues to maximize returns on investments in and the xylem and phloem of plants derive from a shared the water transport system (Brodribb & Jordan, 2011). Further- cambium. However, complex organisms also depend on the more, while vein density determines water supply in the leaf, the coordinated development of many tissues with different origins density of stomata determines maximum rates of water loss and (Cavalier-Smith, 2005); for example, lung capacity, vascular vol- photosynthesis, and thus maintaining a balance between these ume and muscle mass are necessarily coordinated (Rubner, traits during adaptation to the environment should be of high 1883). Similarly, developmental coordination is essential for functional and adaptive importance. Such coordination has been plants because their primordial tissues have indeterminate demonstrated both within trees during plastic adaptation to light growth. Thus, plants can show great plasticity in response to the (Murphy et al., 2012) and between species (Edwards, 2006; environment, but this plasticity is only effective if the diverse Dunbar-Co et al., 2009; Zhang et al., 2012). tissues involved remain functionally coordinated. However, little is known about how this critically important One important example of coordination between discrete tis- link between vascular and stomatal tissues is maintained. A recent sues is found between the veins and stomata in the leaves of land study of a tree species showed that plasticity in epidermal cell size plants. Branching density in the leaf vein network determines changed vein and stomatal density in concert during light accli- water transport efficiency of the lamina (leaf hydraulic conduc- mation. Hence, larger epidermal cells in the shade result in larger tance), which is closely linked to maximum rates of photosynthe- leaves that have lower densities of veins and stomata than sun sis (Brodribb et al., 2005) and transpiration (Boyce et al., 2009). leaves (Murphy et al., 2012). This coordinating role of cell size Because leaf vascular networks replace water lost by evaporation during plastic adaptation of leaves to different evaporative and Ó 2013 The Authors New Phytologist (2013) 1 New Phytologist Ó 2013 New Phytologist Trust www.newphytologist.com New 2 Research Phytologist photosynthetic conditions of sun and shade raises the prospect and it is an ecologically important group in the southern hemi- that changing cell size could also be an important mechanism for sphere where species range from trees in tropical rainforest to evolutionary adaptation in plants. shrubs in the arid zone. We sampled cell size and densities from A correlation between cell volume and genome size has been 48 species and stomatal size from 417 species of Proteaceae from long recognized as a fundamental feature of eukaryotic organisms all major branches of the phylogeny. (Mirsky & Ris, 1951; Cavalier-Smith, 1985); however, the evolu- Species were categorized as being from open vegetation or tionary significance of variation in cell size, and associated closed forest according to descriptions from regional floras. genome size in plants and animals, has been hotly debated Closed canopies are typically > 70% canopy cover, which is gen- (Cavalier-Smith, 1978, 2005; Petrov, 2001; Hodgson et al., erally only achieved in rainforest communities. Proteaceae species 2010). In animals, transitions in cell and genome size are impli- are typically canopy species, so regardless of habitat type, all cated in several important evolutionary transitions (such as the leaves were collected in the field from sun-exposed branches. In evolution of birds from dinosaurs; Organ et al., 2007), but in most cases, leaves were sampled from three trees and immediately plants the adaptive significance of cell size variation remains fixed in FAA (50% ethanol, 5% (v/v) acetic acid and 3.7% (v/v) obscure. Attempts to account for the enormous range in genome formaldehyde). Leaves were returned to the laboratory where they and cell size in plants have recently focused on variation in sto- were soaked in water in preparation for anatomical sectioning. matal size as a potentially important functional consequence of The leaf area and mass of at least 10 leaves per species were variable cellular and nuclear volume (Beaulieu et al., 2008). The- measured to yield leaf mass per unit area (LMA). ory and observation suggest that large stomata are associated with low rates of gas exchange as a result of limits on the packing Stomata and vein density density of guard cells (if stomata become larger, then fewer can fit on the leaf surface), and diminishing benefits in terms of maxi- Paradermal sections of leaves were made using a handheld razor mum diffusive conductance of larger, deeper pores (Franks & blade to remove the adaxial epidermis and palisade, exposing the Beerling, 2009). Other potentially important tissues that share minor veins. Sections were then bleached in commercial house- À À size-constrained functional properties include leaf veins, which hold bleach (50 g l 1 sodium hypochlorite and 13 g l 1 sodium have analogous associations between the size of cells and the den- hydroxide) until clear. Bleach was removed by washing, and sec- sity (Field & Brodribb, 2013) and conductivity (Sack & Frole, tions stained in 1% toluidine blue for 30 s to colour the lignin- 2006; Brodribb et al., 2007) of the vascular system. Epidermal rich veins. Finally sections were mounted in phenol glycerine jelly cell size also appears to be a primary determinant of the final size and photographed with a Nikon Digital Sight DS-L1 camera of leaves, as well as influencing the thickness of the photosyn- (Melville, NY, USA) mounted on a Leica DM 1000 microscope thetic mesophyll (Perez-Perez et al., 2011). Here we examine (Nussloch, Germany) with a 910 objective. ImageJ (http:// how these interconnected systems in the leaf respond to family- rsbweb.nih.gov/ij/index.html) was used to measure the total wide variation in cell size. length of venation in five fields of view that were aligned midway Considering the diversity of influences that cell size has on leaf between the midrib and the margin. Wire frames of the veins physiology, we investigate how key functional attributes of leaves were drawn manually and their total length counted. remain coordinated if cell size changes. This is of particular
Recommended publications
  • Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-Current
    Sunshine Coast Street Tree Master Plan 2018 Part A: Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-current. Sunshine Coast Council™ is a registered trademark of Sunshine Coast Regional Council. www.sunshinecoast.qld.gov.au [email protected] T 07 5475 7272 F 07 5475 7277 Locked Bag 72 Sunshine Coast Mail Centre Qld 4560 Acknowledgements Council wishes to thank all contributors and stakeholders involved in the development of this document. Disclaimer Information contained in this document is based on available information at the time of writing. All figures and diagrams are indicative only and should be referred to as such. While the Sunshine Coast Regional Council has exercised reasonable care in preparing this document it does not warrant or represent that it is accurate or complete. Council or its officers accept no responsibility for any loss occasioned to any person acting or refraining from acting in reliance upon any material contained in this document. Foreword Here on our healthy, smart, creative Sunshine Coast we are blessed with a wonderful environment. It is central to our way of life and a major reason why our 320,000 residents choose to live here – and why we are joined by millions of visitors each year. Although our region is experiencing significant population growth, we are dedicated to not only keeping but enhancing the outstanding characteristics that make this such a special place in the world. Our trees are the lungs of the Sunshine Coast and I am delighted that council has endorsed this master plan to increase the number of street trees across our region to balance our built environment.
    [Show full text]
  • Finschia-"A Genus of "Nut" Trees of the Southwest Pacific
    Finschia-" A Genus of "Nut" Trees of the Southwest Pacific c. T. WHITE1 INTRODUCTION A PLANT FAMILY with a most interesting and F. Muell., Carnarvonia F. Muell., D arlin"gia F; intriguing distribution is Proteaceae, which finds Muell., Hollandaea F. Muell. (two spp.) , Mus­ its greatest development in Australia (650 " gravea F. Muell., and Placospermum White & species) on the one hand and South Africa (300 Francis. A surprising feature is the absence, species) on the other, though the two countries with the exception of one species in New Zea­ have no genera in common. Practically all the land, of the family "from Polynesia. South African species and the vast majority of There is in the islands of the southwest Paci­ "Australian ones are markedly xerophytic. The fic-Caroline Islands, New Guinea, Solomon largest genus, Greoillea R. Br., consists mainly Islands, and the New Hebrides-a group of trees of xerophytic shrubs or small trees but a few with the floral characters of Greuillea R. Br. are large trees found in the rain forests of and the fruit of Helicia Lour. These, I consider, tropical and subtropical eastern Australia, New all belong 'to Finschia Warb. This genus was Guinea, and New Caledonia. In the southwest founded by Warburg (1891: 297 ) on"a tree Pacific area the family finds its greatest develop­ from northeastern New Guinea. His original ment in northeastern Australia, where trees be­ description would cover Grevillea R. Br. exactly longing to it provide the great bulk of cabinet though he does not mention this genus and on timbers known in the trade as "Silky Oaks." the following page the distinctions he gives for There is close affinity between the Proteaceae of separating his proposed new genus from H elicia eastern Australia and of western South America are exactly those which distinguish Greuillea as illustrated by the genera Embothrium Forst.
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Grow Natives in Pots
    ATG About the Garden ATGFACTAbout SHEET the Garden Fact Sheet No. 21 GROWING NATIVES IN POTS The key factors to successfully growing Australian plants in containers are exactly the same as for exotic plants - drainage and nutrition. The main points to remember are that good drainage is even more important for certain natives (mainly those originating in arid areas with very light, sandy soils) and that plants in the Proteaceae family require low phosphorus fertilisers. When growing plants in containers it is important *PLANTS IN THE to know their type and origin so ask yourself the following questions: FAMILY PROTEACEAE • Tree, shrub or climber/groundcover? • Does it originate in a high or low rainfall area? INCLUDE: • Is its natural habitat sun or shade? • Natural soil type - light (sandy) or heavy (clay)? Athertonia banksia The type of plant determines the ultimate pot size. buckinghamia Knowing its origins will tell you the type of growing cardwellia medium you need, how much water and whether it darlingia should be placed in sun or shade. If the label doesn’t dryandra give you enough information, ask nursery staff. hakea lomatia Any type of container can be used, providing it has macadamia plenty of adequate sized drainage holes. Too small and oreocallis they will drain too slowly and block up easily; too large persoonia and all your precious water will run away too fast. Most petrophile, good quality terracotta and plastic pots come with stenocarpus and good drainage holes; a medium-sized pot should have telopea no less than four, about the size of a five cent piece.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Fynbos Proteaceae As Model Organisms for Biodiversity Research and Conservation
    Page 1 of 4 News and Views Fynbos Proteaceae as model organisms for biodiversity research and conservation Woody plants of the Proteaceae family are a symbol of fynbos. Of the approximately 360 southern Authors: 1 Frank M. Schurr1,2 African species, over 330 are restricted to the Fynbos biome and form an important part of this Karen J. Esler3 biome’s exceptional plant diversity.2 Proteaceae dominate the overstorey of fynbos vegetation, Jasper A. Slingsby4 play a key role for water, carbon and nutrient cycling, and provide resources for many species of Nicky Allsopp4 pollinators and herbivores.1,3 Moreover, Proteaceae are responsible for the bulk of the economic 4 Affiliations: value generated by the fynbos wildflower industry and serve as flagship species for conservation. 1Plant Ecology and Nature Conservation, Institute of The key role of Proteaceae for the functioning, conservation and economic use of fynbos has Biochemistry and Biology, led scientists, conservation managers and volunteers to collect a wealth of information on the University of Potsdam, Potsdam, Germany geographical distribution, ecology and evolutionary history of this group. The foundation for this knowledge was laid by intense research on the population biology of Proteaceae conducted 2Institut des Sciences de in the 1980s.3,5 This research concentrated on ‘serotinous’ species (36% of fynbos Proteaceae, l’Evolution, UMR-CNRS 5554, including most overstorey species, Figure 1a) that store their seeds in fire-safe woody cones and Université Montpellier II, Montpellier, France therefore form ‘canopy seed banks’ but no persistent soil seed banks. Fire triggers the release of seeds from the cones, limiting dispersal and seedling establishment to a short period post- 3Department of Conservation fire.
    [Show full text]
  • RAINFOREST STUDY Glicjjp
    RAINFOREST STUDY GlICJJP ,. Group Leader DAVID JENKINSON NEWSLElTER NO, fi JULY 1991 18 SKENES AVE, ISSN 0729-5413 EASTWOOD NSW 21 22 Annual Subscription $5 "Rainforest provides a living laboratory harbouring many of the most primitive members of Australia's plant and animal groups." ANNUAL REPORT This is my second year of co-ordinating the Study Group and I admit to a certain amount of satisfaction at our achievements in that time. Membership has increased from 79 to 124. Contact during the year was through 4 Newsletters, various correspondence, and by meeting very many members. Three meetings were held at Sydney venues and a NSW campout. An active Brisbane branch that has recently been established, ably organised by Ran Twaddle, held 2 meetings in pleasant aurrowdings. Seed exchange is increasing and the first tentative steps in organlsing a cuttings exchange have been taken. Esther Taylor of Ipswich has accepted the position of Plant Registrar. We are setting up a library of donated material. A Flews- letter exchange with kindred groups has been initiated. We again have a bank balance. I would particularly wish to thank those many members for their various contributions - news and views for the Newsletter, material for the library, seed for offering to others, plants for fund raising, cash donations, the hospitality of people providing meeting places, the welcome given to Ber1.l and me by those . members we were able to contact on our travels in gaining knowledge on Rainforest generally and in seek- ing items and ideas for Newsletters. The Group's appreciation should be shown to the SGAP regions, QLD, NSW, Vic.
    [Show full text]
  • Supplementary Material Saving Rainforests in the South Pacific
    Australian Journal of Botany 65, 609–624 © CSIRO 2017 http://dx.doi.org/10.1071/BT17096_AC Supplementary material Saving rainforests in the South Pacific: challenges in ex situ conservation Karen D. SommervilleA,H, Bronwyn ClarkeB, Gunnar KeppelC,D, Craig McGillE, Zoe-Joy NewbyA, Sarah V. WyseF, Shelley A. JamesG and Catherine A. OffordA AThe Australian PlantBank, The Royal Botanic Gardens and Domain Trust, Mount Annan, NSW 2567, Australia. BThe Australian Tree Seed Centre, CSIRO, Canberra, ACT 2601, Australia. CSchool of Natural and Built Environments, University of South Australia, Adelaide, SA 5001, Australia DBiodiversity, Macroecology and Conservation Biogeography Group, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, 37077 Göttingen, Germany. EInstitute of Agriculture and Environment, Massey University, Private Bag 11 222 Palmerston North 4474, New Zealand. FRoyal Botanic Gardens, Kew, Wakehurst Place, RH17 6TN, United Kingdom. GNational Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, NSW 2000, Australia. HCorresponding author. Email: [email protected] Table S1 (below) comprises a list of seed producing genera occurring in rainforest in Australia and various island groups in the South Pacific, along with any available information on the seed storage behaviour of species in those genera. Note that the list of genera is not exhaustive and the absence of a genus from a particular island group simply means that no reference was found to its occurrence in rainforest habitat in the references used (i.e. the genus may still be present in rainforest or may occur in that locality in other habitats). As the definition of rainforest can vary considerably among localities, for the purpose of this paper we considered rainforests to be terrestrial forest communities, composed largely of evergreen species, with a tree canopy that is closed for either the entire year or during the wet season.
    [Show full text]
  • The Flower Chain the Early Discovery of Australian Plants
    The Flower Chain The early discovery of Australian plants Hamilton and Brandon, Jill Douglas Hamilton Duchess of University of Sydney Library Sydney, Australia 2002 http://setis.library.usyd.edu.au/ozlit © University of Sydney Library. The texts and images are not to be used for commercial purposes without permission Source Text: Prepared with the author's permission from the print edition published by Kangaroo Press Sydney 1998 All quotation marks are retained as data. First Published: 1990 580.994 1 Australian Etext Collections at botany prose nonfiction 1940- women writers The flower chain the early discovery of Australian plants Sydney Kangaroo Press 1998 Preface Viewing Australia through the early European discovery, naming and appreciation of its flora, gives a fresh perspective on the first white people who went to the continent. There have been books on the battle to transform the wilderness into an agriculturally ordered land, on the convicts, on the goldrush, on the discovery of the wealth of the continent, on most aspects of settlement, but this is the first to link the story of the discovery of the continent with the slow awareness of its unique trees, shrubs and flowers of Australia. The Flower Chain Chapter 1 The Flower Chain Begins Convict chains are associated with early British settlement of Australia, but there were also lighter chains in those grim days. Chains of flowers and seeds to be grown and classified stretched across the oceans from Botany Bay to Europe, looping back again with plants and seeds of the old world that were to Europeanise the landscape and transform it forever.
    [Show full text]
  • Flora and Vegetation Of
    __________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ...................................................................................
    [Show full text]
  • CHAPTER 1 INTRODUCTION the Proteaceae Benth. & Hook. F. Is One
    CHAPTER 1 INTRODUCTION The Proteaceae Benth. & Hook. f. is one of the most prominent flowering plants in the southern hemisphere. It is an ancient family made up of two subfamilies (the Proteoideae and Grevilleoideae), which existed before Gondwana began to break up some 140 million years ago. There are about 1,400 species, in more than 60 genera. Leucospermum (Lsp.), Leucadendron (Lcd.), Banksia and Protea are the genera that are widely used in floriculture. The name Protea, given by Linnaeus in 1753, referred to the Greek mythical god, Proteus, who could change his shape at will. It is an apt name due to the diversity of this genus (Rebelo, 1995). The worldwide development of Protea has established them as a horticultural crop, with a world sale of approximately 8 million flowering stems per year (Coetzee & Littlejohn, 2001). The Proteaceae industry in Zimbabwe was founded by a few flower producers in the Eastern Highlands, who began growing proteas in the early 1970’s (Archer, 2000). As the industry grew, production areas spread to include Centenary, Chimanimani, Karoi, Makonde, Mvurwi, Norton and Ruwa. In 2001 there was 290 Ha of Proteaceae being grown (Percival, 2002). By 2003, this area had increased to an excess of 350 Ha. There are over 200 growers with plantations ranging from a couple of hundred plants, to 70 hectares in size (Percival, 2004). Between 1997 and 2001 the Proteaceae population in Zimbabwe had doubled to 1,36 million protea plants; of which 42 % was comprised of Leucadendron, 39 % Leucospermum, 14 % Protea and 5 % of other Proteaceae genus, such as Banksia and Grevillea (Percival, 2002).
    [Show full text]
  • For Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft
    Elsevier Editorial System(tm) for Perspectives in Plant Ecology, Evolution and Systematics Manuscript Draft Manuscript Number: PPEES-D-15-00109R1 Title: Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea Article Type: Research paper Section/Category: Keywords: Black cockatoo; Crypsis; Fruit and seed size; Granivory; Resprouter; Spinescence Corresponding Author: Prof. Byron Lamont, Corresponding Author's Institution: Curtin University First Author: Byron Lamont Order of Authors: Byron Lamont; Byron Lamont; Mick Hanley; Philip Groom Abstract: Nutrient-impoverished soils with severe summer drought and frequent fire typify many Mediterranean-type regions of the world. Such conditions limit seed production and restrict opportunities for seedling recruitment making protection from granivores paramount. Our focus was on Hakea, a genus of shrubs widespread in southwestern Australia, whose nutritious seeds are targeted by strong-billed cockatoos. We assessed 56 Hakea species for cockatoo damage in 150 populations spread over 900 km in relation to traits expected to deter avian granivory: dense spiny foliage; large, woody fruits; fruit crypsis via leaf mimicry and shielding; low seed stores; and fruit clustering. We tested hypothesises centred on optimal seed defenses in relation to to a) pollination syndrome (bird vs insect), b) fire regeneration strategy (killed vs resprouting) and c) on-plant seed storage (transient vs prolonged). Twenty species in 50 populations showed substantial seed loss from cockatoo granivory. No subregional trends in granivore damage or protective traits were detected, though species in drier, hotter areas were spinier. Species lacking spiny foliage around the fruits (usually bird-pollinated) had much larger (4−5 times) fruits than those with spiny leaves and cryptic fruits (insect-pollinated).
    [Show full text]