(2,4-D) Herbicide on Growth and Development of Three Weeds Associated with Maize Growth

Total Page:16

File Type:pdf, Size:1020Kb

(2,4-D) Herbicide on Growth and Development of Three Weeds Associated with Maize Growth Int.J.Curr.Microbiol.App.Sci (2016) 5(2): 794-801 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 2(2016) pp. 794-801 Journal homepage: http://www.ijcmas.com Original Research Article doi: http://dx.doi.org/10.20546/ijcmas.2016.502.090 Impact of Post-Emergence Application of Dichlorophenoxy Acetic Acid (2,4-D) Herbicide on Growth and Development of Three Weeds Associated with Maize Growth Hanan. M. Abou El-Ghit* Botany and Microbiology department, Science Faculty, Helwan University, Cairo, Egypt *Corresponding author ABSTRACT K e yw or ds Post emergence application of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a Maize, herbicide even at low concentrations showed an effective control on three Weeds, weeds (slender amaranth, goosefoot and prickly burweed) associated with Chemical control, maize growth. 2,4-D was applied at 0.0, 125, 250, 500 and 1000 ppm. 500 (2,4-D), ppm 2,4-D treatment significantly decreased numbers and fresh weights of Auxin the three weeds by 50% approximately. At 1000 ppm 2,4-D, there were Article Info sever reductions in weeds numbers, fresh weights and photosynthetic Accepted: pigments contents of the three weeds. Fresh weights and photosynthetic 28 January 2016 Available Online: pigments contents of maize were favored significantly after application of 10 , February 2016 2,4-D on its associated weeds at all tested rates. Introduction Maize (Zea mays L.) is the second most Weed compete with crop plants for soil important cereal crop in Egypt in terms of nutrients, light and water. Slender amaranth total food production. It is grown for fodder (Amaranthus viridis), goosefoot as well as for grain. The grains of maize are (Chenopodium album) and prickly burweed used in a variety of ways by the human (Xanthium spinosum) are troublesome broad beings. Weeds are a major problem in crop leaved weeds associate with maize growth production and drastically decrease crop (Malik et al. 2006). Amaranthus viridis is a yield. Weed control is an important cosmopolitan weed belong to management practice to ensure optimum family Amaranthaceae, Chenopodium grain yield. Yield losses due to weeds have album is a fast-growing weed belong to been reported up to 35 % (Oerke, 2005; Chenopodiaceae, whereas Xanthium Dangwal, et al. 2010). The use of herbicides spinosum is a noxious weed in may reduce such losses, as herbicides may Asteraceae family. reduce the weed infestation provided that the herbicide-treated weeds are not herbicide Some herbicides are synthetic mimics of resistant. natural plant hormones (Kellogg et al., 794 Int.J.Curr.Microbiol.App.Sci (2016) 5(2): 794-801 2000). Selective herbicides kill specific action. However, with increasing targets, while leaving the desired crop concentration and auxin activity in the relatively unharmed. Herbicide use has tissue, growth is disturbed and the plant is undoubtedly contributed to crop yield lethally damaged (Grossmann, 2003). increases and the efficiency of production (Andrew, 2012). Some substantial benefits In general, grasses are much less sensitive to can be gained through the use of herbicides synthetic auxin herbicides than are dicots. to manage unwanted vegetation. So, for example, at the doses used to kill Unintended but economically important dandelions, grasses are largely unaffected damage to crop plants is sometimes a (Cobb, 1992 and Grossmann 2003). Auxin- consequence of the inappropriate use of based herbicides are referred to as herbicides (Robert, 1941 and Mehmeti, “selective” herbicides because they kill so- 2004). Herbicides have different modes of called “broadleaf” plants (dicots) but not actions on enzymes (catalysts of biological grasses, hence, that’s why they’re popular reactions), this means that the target herbicides with growers of lawns. enzymes may no longer function properly, or at all. Herbicide distort enzymes Phenoxy herbicides work by binding to molecules in some way, so component some or all of the same sites in the plant chemicals for the reaction accumulate and cells as naturally occurring IAA. While may be directly or indirectly damaging. naturally occurring IAA concentrations in Absence of the reaction’s products will the cell are highly regulated, when phenoxy restrict growth, either through starvation of herbicides are applied, plant growth key building blocks or because the reaction becomes deregulated. This deregulation makes chemicals which normally protect the causes twisting, thickening and elongation plant (Santra and Baumann, 2008). of leaves and stems and eventually leads to plant death as the plant cannot mobilize Over decades, the so-called auxin herbicides reserves, repair or function properly (Song, had resisted all efforts to elucidate their 2014). molecular interactions and the biochemical and physiological basis of their 2,4-D was the first compound that, at low phytotoxicity (Cobb, 1992). doses, could selectively control dicots broadleaf plants, but not most monocots Auxin herbicides started a new era of weed narrow leaf crops like wheat, maize (corn), control in modern crop production due to rice, and similar cereal grass crops (Andrew their systemic mobility in the plant and to et al., 2010). 2,4-D generally has low their selective action, preferentially against toxicity for humans (Aylward, 2010). dicot weeds in cereal crops (Cobb, 1992 and Grossmann, 2007). Auxin herbicides mimic Materials and Methods the action of the main auxin, indole-3-acetic acid (IAA) in higher plants (Cobb, 1992). A pot experiment was carried out to However, they are long-lasting, particularly examine the effect of foliar application of due to their higher stability in the plant, and, 2,4-Dichlorophenoxyacetic acid (2,4-D) as a therefore, more effective than IAA. Auxins herbicide on the growth of three weeds stimulate a variety of growth and (slender amaranth, goosefoot and prickly developmental processes when present at burweed) which grow associated with maize low concentrations at the cellular sites of plant. 2,4-D was applied at different 795 Int.J.Curr.Microbiol.App.Sci (2016) 5(2): 794-801 concentrations (0.0, 125, 250, 500 and 1000 their corresponding controls and this effect ppm). Seeds of Zea mays var. amylacea and was in a concomitant trend with that of the three weeds were obtained from the growth parameters in response to 2,4-D Agriculture Research Center, Ministry of treatments (Tables 3,4,5). The lowest Agriculture, Giza, Egypt. Maize and weeds pigments content was recorded by the were grown in pots (40 cm in diameter) of highest 2,4-D concentration (1000 ppm). 15 kg of clay loamy soil. The reducing effect of 2,4-D on slender Fifteen seeds of each weed were sown with amaranth, goosefoot and prickly burweed ten seeds of maize. 2,4-D was sprayed on plants may be a consequence effect of weeds with a hand sprayer after 2 weeks of increasing the endogenous auxin sowing and repeated after one week. concentrations to supraoptimal and Precautions were taken to avoid damage of extensive perception by auxin receptors maize plant. There were three replicates of (Badescu, 2006 and Dharmasiri et al. 2005). each treatment of 2,4-D. Irrigation was done Also, it may be attributed to stimulation of regularly to maintain soil field capacity. The ethylene production which trigger the effect of 2,4-D herbicide was measured after overproduction of abscisic acid (ABA), five weeks of sowing by counting of slender causing its accumulation. Over production amaranth, goosefoot and prickly burweed of ethylene causes number of plant numbers (plants/pot) and estimation of fresh responses, including epinasty and weights of each weed (g/ 3plants). Also, senescence. fresh weight (g) of maize plant was estimated after 2,4-D application on the Accumulated ABA in the shoot tissue is associated weeds. Chlorophyll a, b and translocated within the plant and mediates carotenoids contents in the fresh leaves of events in the auxin herbicide syndrome, weeds and maize (mg/g. F.W) were such as growth inhibition, tissue decay and determined in samples according to plant death. The recent identification of Metzener et al., (1965). Data were receptors for auxin perception and the statistically analyzed by Snedecore and discovery of a new hormone interaction in Cochran (1981) method. signalling between auxin, ethylene and the upregulation of abscisic acid biosynthesis Results and Discussion account for a large part of the repertoire of auxin-herbicide-mediated responses, which Tables (1 and 2) indicate that 2,4-D include growth inhibition, senescence and herbicide controlled both number and fresh tissue decay in sensitive dicots (Chae et al. weights of slender amaranth, goosefoot and 2005). prickly burweed plants even at low rates. 500 ppm 2,4-D treatment led to approximately Stimulation of ethylene biosynthesis plays a 50% reduction in plant numbers and plants key role in eliciting the herbicidal symptoms fresh weights. Few plants of the slender in sensitive plants (Grossmann, 2010). amaranth, goosefoot and prickly burweed These results are in agreement with Hansen plants survived at 1000 ppm 2,4-D, but they and Grossmann (2000), Grossmann (2003) were very small and damaged. Concerning and Kepinski et al. (2005). Chae (2005) the photosynthetic pigments content of reported that ethylene is a factor in weeds, it was found that chlorophyll a, b and defoliation caused by 2,4-D. Because plants carotenoids of 2,4 D sprayed weeds were can’t break down 2,4-D, it’s action persists. considerably diminished compared with 796 Int.J.Curr.Microbiol.App.Sci (2016) 5(2): 794-801 Table.1 Effect of 2,4-D Application on Numbers of Slender Amaranth, Goosefoot and Prickly Burweed 2,4-D conc. Plant numbers/pot (ppm) Slender Goosefoot Prickly amaranth burweed 0.0 15 15 15 125 13.6 12.3 13.3 250 11.3 9.6 10.6 500 9.3 7.3 9.3 1000 3.3 4.6 5.3 L.S.D.
Recommended publications
  • Toxicidade De Herbicidas Pós- Emergentes Em Cultivares De Feijão-Caupi
    TOXICIDADE DE HERBICIDAS PÓS- EMERGENTES EM CULTIVARES DE FEIJÃO-CAUPI THIAGO REIS PRADO 2016 THIAGO REIS PRADO TOXICIDADE DE HERBICIDAS PÓS-EMERGENTES EM CULTIVARES DE FEIJÃO-CAUPI Dissertação apresentada à Universidade Estadual do Sudoeste da Bahia, Campus de Vitória da Conquista, para obtenção do título de Mestre em Agronomia. Orientador: Prof. D.Sc.Alcebíades Rebouças São José VITÓRIA DA CONQUISTA BAHIA - BRASIL 2016 P915t Prado, Thiago Reis. Toxicidade de herbicidas pós-emergentes em cultivares de feijão-caupi. / Thiago Reis Prado. 55f. Orientador (a): D.Sc. Alcebíades Rebouças São José. Dissertação (mestrado) – Universidade Estadual do Sudoeste da Bahia, Programa de Pós-graduação em Agronomia, área de concentração em Fitotecnia. Vitória da Conquista, 2016. Referências: f. 50-55. 1. Vigna unguiculata - Cultivo. 2. Controle químico. 3. Planta daninha. 4. Fitotoxidade. I. São José, Alcebíades Rebouças II. Universidade Estadual do Sudoeste da Bahia, Programa de Pós-Graduação em Agronomia, área de Concentração em Fitotecnia. III. T. CDD: 633.33 Catalogação na fonte : Juliana Teixeira de Assunção – CRB 5/18 90 UESB – Campus Vitória da Conquista - BA Aos meus pais, Paulo Soares Prado e Maria José Reis Prado, que, sempre dedicados à minha educação e fortes na fé, atuam de forma singular com seus ensinamentos e suas orações. Dedico Agradecimentos A Deus, por iluminar minha vida e guiar por todos os caminhos. Aos meus pais, Paulo Soares Prado e Maria José Reis Prado, pelo amor e por apoiarem sempre as decisões para realização dos meus sonhos. Ao Prof. Dr. Alcebíades Rebouças São José, pela confiança, orientação, compreensão e amizade durante todo o curso do mestrado.
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Orfadin, INN-Nitisinone
    SCIENTIFIC DISCUSSION 1. Introduction 1.1 Problem statement Hereditary tyrosinaemia type 1 (HT-1) is a devastating inherited disease, mainly of childhood. It is characterised by severe liver dysfunction, impaired coagulation, painful neurological crises, renal tubular dysfunction and a considerable risk of hepatocellular carcinoma (Weinberg et al. 1976, Halvorsen 1990, Kvittingen 1991, van Spronsen et al. 1994, Mitchell et al. 1995). The condition is caused by an inborn error in the final step of the tyrosine degradation pathway (Lindblad et al. 1977). The incidence of HT-1 in Europe and North America is about one in 100,000 births, although in certain areas the incidence is considerably higher. In the province of Quebec, Canada, it is about one in 20,000 births (Mitchell et al. 1995). The mode of inheritance is autosomal recessive. The primary enzymatic defect in HT-1 is a reduced activity of fumarylacetoacetate hydrolase (FAH) in the liver, the last enzyme in the tyrosine degradation pathway. As a consequence, fumaylacetoacetate (FAA) and maleylacetoacetate (MAA), upstream of the enzymatic block, accumulate. Both intermediates are highly reactive and unstable and cannot be detected in the serum or urine of affected children. Degradation products of MAA and FAA are succinylacetone (SA) and succinylacetoacetate (SAA) which are (especially SA) toxic, and which are measurable in the serum and urine and are hallmarks of the disease. SA is also an inhibitor of Porphobilinogen synthase (PBG), leading to an accumulation of 5-aminolevulinate (5-ALA) which is thought to be responsible for the neurologic crises resembling the crises of the porphyrias. The accumulation of toxic metabolites starts at birth and the severity of phenotype is reflected in the age of onset of symptoms (Halvorsen 1990, van Spronsen et al.
    [Show full text]
  • Quantification of the Flux of Tyrosine Pathway Metabolites During Nitisinone Treatment of Alkaptonuria
    www.nature.com/scientificreports OPEN Quantifcation of the fux of tyrosine pathway metabolites during nitisinone treatment of Received: 21 August 2018 Accepted: 20 June 2019 Alkaptonuria Published: xx xx xxxx A. M. Milan 1,2, A. T. Hughes1,2, A. S. Davison 1,2, M. Khedr 1, J. Rovensky3, E. E. Psarelli4, T. F. Cox4, N. P. Rhodes2, J. A. Gallagher2 & L. R. Ranganath1,2 Nitisinone decreases homogentisic acid (HGA) in Alkaptonuria (AKU) by inhibiting the tyrosine metabolic pathway in humans. The efect of diferent daily doses of nitisinone on circulating and 24 h urinary excretion of phenylalanine (PA), tyrosine (TYR), hydroxyphenylpyruvate (HPPA), hydroxyphenyllactate (HPLA) and HGA in patients with AKU was studied over a four week period. Forty AKU patients, randomised into fve groups of eight patients, received doses of 1, 2, 4 or 8 mg of nitisinone daily, or no drug (control). Metabolites were analysed by tandem mass spectrometry in 24 h urine and serum samples collected before and after nitisinone. Serum metabolites were corrected for total body water and the sum of 24 hr urine plus total body water metabolites of PA, TYR, HPPA, HPLA and HGA were determined. Body weight and urine urea were used to check on stability of diet and metabolism over the 4 weeks of study. The sum of quantities of urine metabolites (PA, TYR, HPPA, HPLA and HGA) were similar pre- and post-nitisinone. The sum of total body water metabolites were signifcantly higher post-nitisinone (p < 0.0001) at all doses. Similarly, combined 24 hr urine:total body water ratios for all analytes were signifcantly higher post-nitisinone, compared with pre-nitisinone baseline for all doses (p = 0.0002 – p < 0.0001).
    [Show full text]
  • Nityr, Orfadin) Reference Number: CP.PHAR.132 Effective Date: 08.28.18 Last Review Date: 11.20 Line of Business: Commercial, HIM, Medicaid Revision Log
    Clinical Policy: Nitisinone (Nityr, Orfadin) Reference Number: CP.PHAR.132 Effective Date: 08.28.18 Last Review Date: 11.20 Line of Business: Commercial, HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Nitisinone (Nityr™, Orfadin®) is a hydroxy-phenylpyruvate dioxygenase inhibitor. FDA Approved Indication(s) Nityr and Orfadin are indicated for the treatment of adult and pediatric patients with hereditary tyrosinemia type 1 (HT-1) in combination with dietary restriction of tyrosine and phenylalanine. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Nityr and Orfadin are medically necessary when the following criteria are met: I. Initial Approval Criteria A. Hereditary Tyrosinemia Type 1 (must meet all): 1. Diagnosis of HT-1; 2. Prescribed by or in consultation with an endocrinologist or a metabolic or genetic disease specialist; 3. Request is for use as an adjunct to dietary restriction of tyrosine and phenylalanine; 4. Dose does not exceed 2 mg/kg per day. Approval duration: 6 months B. Other diagnoses/indications 1. Refer to the off-label use policy for the relevant line of business if diagnosis is NOT specifically listed under section III (Diagnoses/Indications for which coverage is NOT authorized): CP.CPA.09 for commercial, HIM.PHAR.21 for health insurance marketplace, and CP.PMN.53 for Medicaid. II. Continued Therapy A. Hereditary Tyrosinemia Type 1 (must meet all): 1.
    [Show full text]
  • Effect of Post-Emergence Application of Dichlorophenoxy Acetic Acid (2,4-D) Herbicide on Growth and Development of Three Weeds Associated with Maize Plant Growth
    520 Current Science International 3(4): 520-525, 2014 ISSN: 2077-4435 Effect of Post-emergence Application of Dichlorophenoxy acetic acid (2,4-D) Herbicide on Growth and Development of three Weeds Associated with Maize plant growth Hanan M. Abou El-ghit Botany and Microbiology department, Science Faculty, Helwan University, Cairo, Egypt. ABSTRACT Post emergence application of 2,4-Dichlorophenoxyacetic acid (2,4-D) as a herbicide even at low concentrations showed an effective control on three weeds (slender amaranth, goosefoot and prickly burweed) associated with maize growth. 2,4-D was applied at 0.0, 125, 250, 500 and 1000 ppm. 250 ppm 2,4-D treatment significantly decreased numbers and fresh weights of the three weeds by 50% approximately. At 1000 ppm 2,4- D, there were sever reductions in weeds numbers, fresh weights and photosynthetic pigments contents of the three weeds. Maize was undamaged by any tested 2,4-D treatment. Fresh weights and photosynthetic pigments contents of maize were favored significantly after application of 2,4-D on the associated weeds at all tested rates. Key words: Maize, Weeds, Chemical control, Herbicides, Phenoxy herbicides, 2,4-Dichlorophenoxy acetic acid (2,4- D), Auxins. Introduction Maize (Zea mays L.) is the second most important cereal crop in Egypt in terms of total food production. It is grown for fodder as well as for grain. The grains of maize are used in a variety of ways by the human beings. Weeds are a major problem in crop production and drastically decrease crop yield. Therefore, weed control is an important management practice for maize production that should be carried out to ensure optimum grain yield.
    [Show full text]
  • Orfadin® (Nitisinone) P&T Approval Date 5/2016, 5/2017, 5/2018, 5/2019, 5/2020, 5/2021 Effective Date 8/1/2021; Oxford Only: 8/1/2021
    UnitedHealthcare Pharmacy Clinical Pharmacy Programs Program Number 2021 P 1185-6 Program Prior Authorization/Notification Medication Orfadin® (nitisinone) P&T Approval Date 5/2016, 5/2017, 5/2018, 5/2019, 5/2020, 5/2021 Effective Date 8/1/2021; Oxford only: 8/1/2021 1. Background: Orfadin (nitisinone) is a hydroxy-phenylpyruvate dioxygenase inhibitor indicated for the treatment of adult and pediatric patients with hereditary tyrosinemia type 1 (HT-1) in combination with dietary restriction of tyrosine and phenylalanine. Coverage for Orfadin will be provided for patients who meet the following criteria: 2. Coverage Criteria: A. Initial Authorization 1. Orfadin will be approved based on the following criteria: a. Diagnosis of hereditary tyrosinemia type 1 AND b. Orfadin is being used as an adjunct to diet modification. Authorization will be issued for 12 months. B. Reauthorization 1. Orfadin will be approved based on the following criterion: a. Patient shows evidence of positive clinical response (e.g., decrease in urinary/plasma succinylacetone and alpha-1-microglobulin levels) while on Orfadin therapy Authorization will be issued for 24 months. 3. Additional Clinical Rules: • Notwithstanding Coverage Criteria, UnitedHealthcare may approve initial and re- authorization based solely on previous claim/medication history, diagnosis codes (ICD-10) and/or claim logic. Use of automated approval and re-approval processes varies by program and/or therapeutic class. • Supply limits may be in place. © 2021 UnitedHealthcare Services, Inc. 1 4. References: 1. Orfadin [prescribing information]. Waltham, MA. Sobi, Inc. May 2019. Program Prior Authorization/Notification – Orfadin (nitisinone) capsules, for oral use, and oral suspension Change Control 5/2016 New program 5/2017 Annual review.
    [Show full text]
  • Public Release Summary
    PUBLIC RELEASE SUMMARY on the evaluation of the new active bicyclopyrone in the product Talinor Herbicide APVMA Product Number [P82256] APRIL 2017 © Australian Pesticides and Veterinary Medicines Authority 2017 ISSN: 1443–1335 (electronic) ISBN: 978-1-925390-68-1 (electronic) Ownership of intellectual property rights in this publication Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this publication is owned by the Australian Pesticides and Veterinary Medicines Authority (APVMA). Creative Commons licence With the exception of the Coat of Arms and other elements specifically identified, this publication is licensed under a Creative Commons Attribution 3.0 Australia Licence. This is a standard form agreement that allows you to copy, distribute, transmit and adapt this publication provided that you attribute the work. A summary of the licence terms is available from www.creativecommons.org/licenses/by/3.0/au/deed.en. The full licence terms are available from www.creativecommons.org/licenses/by/3.0/au/legalcode. The APVMA’s preference is that you attribute this publication (and any approved material sourced from it) using the following wording: Source: Licensed from the Australian Pesticides and Veterinary Medicines Authority (APVMA) under a Creative Commons Attribution 3.0 Australia Licence. In referencing this document the Australian Pesticides and Veterinary Medicines Authority should be cited as the author, publisher and copyright owner. Use of the Coat of Arms The terms under which the Coat of Arms can be used are set out on the Department of the Prime Minister and Cabinet website (see www.dpmc.gov.au/pmc/publication/commonwealth-coat-arms-information-and-guidelines).
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • Abamectin 1495 Biological Activity 1593–1594 Mites and Insects 1488 Mode of Action 1592–1593 Nematicidal Seed Treatment 1593
    1655 Index a abamectin 1495 physico‐chemical biological activity 1593–1594 properties 1273–1274 mites and insects 1488 acetoacetate 328, 686, 1164, 1171 mode of action 1592–1593 acetochlor 274, 375, 431, 468, 469, nematicidal seed treatment 1593 473, 564 abamectin, crop protection 1496 acetogenin 614 abiotic stress 571, 574, 577, 579, 828, acetohydroxyacid synthase (AHAS) 3, 959, 960, 1328, 1330 8, 18, 33–51, 55, 72, 97, 109, 122, abscisic acid (ABA) 305, 351, 573 152 acaricidal 614, 662–664, 706, 718, 734, binding site of 40–45 736, 992, 1092–1095, 1156, 1163, crops engineered resistance 50–51 1171, 1173–1176, 1178, 1181, flavin adenine dinucleotide 1184, 1186, 1204, 1490, 1529 (FAD) 36 carboxamides 1176 herbicides target 39–40 acaricide 627 heterotetramer subunits 36 cross‐resistance 1177–1178 HEThDP 34 in vitro selectivity 1179–1180 inhibitors 18–19 IRAC classification 1180–1181 molecular basis for 45–48 lead compound 1174–1175 subunit structure 37–39 mechanisms 1156 ThDP 34 mode of action 1178–1179 weed resistance 48–50 structure–activity relationship acetolactate 33 (SAR) 1176–1177 acetolactate synthase (ALS) synthesis 1177 Alopecurus myosuroides 13 toxicity 1178 herbicides 331 acaricide pyflubumide 1177 inhibitors 346, 532 accessory proteins 392, 1543 pyrimidinylcarboxylate acequinocyl 1176, 1181–1182, 1189 inhibitors 128 acetamides 9, 11, 359, 398 acetylcholine (ACh) 1229, 1348 acetamiprid 1273–1276 acetylcholine binding proteins chemical classification (AChBPs) 1233, 1240, 1288 of 1273–1274 acetylcholine esterase (AChE) 1242, insecticidal activity 1275 1244–1245, 1591 Modern Crop Protection Compounds, Third Edition. Edited by Peter Jeschke, Matthias Witschel, Wolfgang Krämer, and Ulrich Schirmer. © 2019 Wiley-VCH Verlag GmbH & Co.
    [Show full text]
  • Inhibition of L-Type Amino Acid Transport with Non-Physiological Amino Acids in the Pahenu2 Mouse Model of Phenylketonuria
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2012 Inhibition of L-type amino acid transport with non-physiological amino acids in the Pahenu2 mouse model of phenylketonuria Kara R. Vogel Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Biology Commons Copyright 2012 Kara R. Vogel Recommended Citation Vogel, Kara R., "Inhibition of L-type amino acid transport with non-physiological amino acids in the Pahenu2 mouse model of phenylketonuria", Master's Thesis, Michigan Technological University, 2012. https://doi.org/10.37099/mtu.dc.etds/193 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Biology Commons INHIBITION OF L-TYPE AMINO ACID TRANSPORT WITH NON- PHYSIOLOGICAL AMINO ACIDS IN THE Pahenu2 MOUSE MODEL OF PHENYLKETONURIA By Kara R. Vogel A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Biological Sciences) MICHIGAN TECHNOLOGICAL UNIVERSITY 2012 © 2012 Kara R. Vogel This thesis, “Inhibition of L-Type Amino Acid Transport with Non-Physiological Amino Acids in the Pahenu2 Mouse Model of Phenylketonuria,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN BIOLOGICAL SCIENCES. Department of Biological Sciences Signatures: Thesis Advisor ________________________________ Dr. K. Michael Gibson Committee Member ________________________________ Dr. Thomas Werner Committee Member ________________________________ Dr. Ashutosh Tiwari Department Chair ________________________________ Dr. K. Michael Gibson Date ________________________________ Dedication To my Beautifuls. Table of Contents List of Figures .......................................................................................................vi List of Tables ......................................................................................................
    [Show full text]
  • Mechanism of Resistance to Mesotrione in an Amaranthus Tuberculatus Population from Nebraska, USA
    RESEARCH ARTICLE Mechanism of resistance to mesotrione in an Amaranthus tuberculatus population from Nebraska, USA Shiv S. Kaundun1*, Sarah-Jane Hutchings1, Richard P. Dale1, Anushka Howell1, James A. Morris1, Vance C. Kramer2, Vinod K. Shivrain3, Eddie Mcindoe1 1 Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom, 2 Syngenta, Research Triangle Park, NC, United States of America, 3 Syngenta, Vero Beach Research Center, Vero Beach, FL, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract Amaranthus tuberculatus is a troublesome weed in corn and soybean production systems in Midwestern USA, due in part to its ability to evolve multiple resistance to key herbicides OPEN ACCESS including 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we have investigated the Citation: Kaundun SS, Hutchings S-J, Dale RP, mechanism of resistance to mesotrione, an important chemical for managing broadleaf Howell A, Morris JA, Kramer VC, et al. (2017) weeds in corn, in a multiple herbicide resistant population (NEB) from Nebraska. NEB Mechanism of resistance to mesotrione in an showed a 2.4-fold and 45-fold resistance increase to mesotrione compared to a standard Amaranthus tuberculatus population from sensitive population (SEN) in pre-emergence and post-emergence dose-response pot Nebraska, USA. PLoS ONE 12(6): e0180095. https://doi.org/10.1371/journal.pone.0180095 tests, respectively. Sequencing of the whole HPPD gene from 12 each of sensitive and resistant plants did not detect any target-site mutations that could be associated with post- Editor: Anil Shrestha, California State University Fresno, UNITED STATES emergence resistance to mesotrione in NEB.
    [Show full text]