Fossil Calibrations for the Arthropod Tree of Life

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Calibrations for the Arthropod Tree of Life bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted March 21, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g., terrestrialisation), genome evolution (e.g., gene family duplication and functional evolution), origins of novel characters and behaviours (e.g., wings and flight, venom, silk), biogeography, rate of diversification (e.g., Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. These are restricted to Palaeozoic and Mesozoic fossils, no deeper than ordinal taxonomic level, nonetheless resulting in 79 fossil calibrations for 101 clades. This work is especially timely owing to the rapid growth of molecular sequence data and the fact that many included fossils have been described within the last five years. This contribution provides a resource for systematists and other biologists interested in deep-time questions in arthropod evolution. KEYWORDS Arthropods; Fossils; Phylogeny; Divergence times ABBREVIATIONS AMNH, American Museum of Natural History; AMS, Australian Museum, Sydney; AUGD, University of Aberdeen; BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Berlin; BMNH, The Natural History Museum, London; CNU, Key Laboratory of Insect Evolutionary & Environmental Change, Capital Normal University, Beijing; DE, Ulster Museum, Belfast; ED, Ibaraki University, Mito, Japan; FMNH, Field Museum of Natural History; GMCB, Geological Museum of China, Beijing; GSC, Geological Survey of Canada; IRNSB, Institut Royal des Sciences Naturelles de Belgique, Brussels; KSU, Kent State University; Ld, Musée Fleury, Lodève, France; LWL, Landschaftsverband Westfalen- Lippe-Museum für Naturkunde, Münster; MACN, Museo Argentino de Ciencias Naturales, Buenos Aires; MB, Humboldt Museum für Naturkunde, Berlin; MBA, Humboldt Museum für Naturkunde, Berlin; MCNA, Museo de Ciencias Naturales de Álava, Vitoria-Gasteiz, Álava, Spain; MCZ, Museum of Comparative Zoology, Harvard University; MGSB, Museo Geologico del Seminario de Barcelona; MN, Museu Nacional, Rio de Janeiro; MNHN, Muséum national d'Histoire naturelle, Paris; NHMUK, The Natural History Museum, London; NIGP, Nanjing Institute of Geology and Palaeontology; NMS, National Museum of Scotland; OUM, Oxford University Museum of Natural History; PBM, Palaöbotanik Münster; PIN, Paleontological Institute, Moscow; PRI, Paleontological Research 1 bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted March 21, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Institution, Ithaca; ROM, Royal Ontario Museum; SM, Sedgwick Museum, University of Cambridge; SMNK, Staatliches Museum für Naturkunde, Karlsruhe; SMNS, Staatliches Museum für Naturkunde, Stuttgart; TsGM, F.N. Chernyshev Central Geologic Prospecting Research Museum, St. Petersburg; UB, University of Bonn; USNM, US National Museum of Natural History, Smithsonian Institution; UWGM, University of Wisconsin Geology Museum; YKLP, Yunnan Key Laboratory for Palaeobiology, Yunnan University; YPM, Yale Peabody Museum; ZPAL, Institute of Paleobiology, Polish Academy of Sciences, Warsaw. 1. Introduction Accurate and precise systematic placement and dating of fossils underpins most efforts to infer a chronology for the Tree of Life. Arthropods, as a whole or in part, have received considerable focus owing to their incredible morphological disparity, species richness, and (relative to much of the Tree of Life) excellent fossil record. A growing number of recent studies have constructed timetrees for arthropods as whole or for major groups therein (e.g., Bellec and Rabet, 2016; Bond et al., 2014; Bracken-Grissom et al., 2014, 2013; Djernæs et al., 2015; Fernández et al., 2015, 2014; Fernández and Giribet, 2015; Garrison et al., 2016; Garwood et al., 2014; Giribet and Edgecombe, 2013; Herrera et al., 2015; Klopfstein et al., 2015; Legendre et al., 2015; Malm et al., 2013; McKenna et al., 2015; Misof et al., 2014; Oakley et al., 2013; Rehm et al., 2011; Schwentner et al., 2013; Song et al., 2015; Sun et al., 2015; Thomas et al., 2013; Tsang et al., 2014; Wahlberg et al., 2013; Wiegmann et al., 2011; Wood et al., 2013; Xu et al., 2015; Zhu et al., 2015). These studies vary in how well they have adhered to best practices for selecting calibration fossils, as many previous calibrations assume that fossil taxonomy accurately reflects phylogeny. Compounding the issue is the expansion of divergence time studies for a variety of comparative questions far beyond systematics and biogeography, including habitat shifts (Letsch et al., 2016; Lins et al., 2012; Rota-Stabelli et al., 2013a; Yang et al., 2013), genome evolution (Cao et al., 2013; Schwarz et al., 2014; Starrett et al., 2013; Wissler et al., 2013; Yuan et al., 2016), origins of novel characters and behaviours (Rainford et al., 2014; Sanggaard et al., 2014; Wheat and Wahlberg, 2013), evolution of parasites and disease (Ibarra-Cerdeña et al., 2014; Palopoli et al., 2014; Rees et al., 2014; Zhou et al., 2014), rate of diversification and its relationship to morphology and ecology (Lee et al., 2013; Wiens et al., 2015), coevolution (Kaltenpoth et al., 2014; Wilson et al., 2013), conservation (Owen et al., 2015), and the use of arthropods as a model for methodological development (O’Reilly et al., 2015; Ronquist et al., 2012; Warnock et al., 2012; Zhang et al., 2015). Recent consensus on best practices for calibration fossil selection requires reference to specific fossil specimen(s), phylogenetic or morphological evidence justifying placement of the fossil, and stratigraphic and/or absolute dating information for the fossil (Parham et al., 2012). The importance of accurate phylogenetic knowledge of calibration fossils is underscored by recent controversies in dating the evolution of insects, where arguments hinge on the classification of particular ‘roachoid’ fossils on the stem lineage of Dictyoptera, with resulting differences on the order of 100 Myr (Kjer et al., 2015; Tong et al., 2015). With the explosion of taxonomic sampling in molecular phylogenies due to improvements in sequencing technology, improving the coverage of fossil calibrations is equally important. Recommendations include, for example, including as many as one fossil per ten extant OTUs for precise ages, with a varied distribution across lineages and clade depth (Bracken-Grissom et al., 2014). As a response, we have compiled an atlas of 79 rigorously scrutinized calibration fossils for 101 key nodes in arthropod phylogeny. These represent four basal ecdysozoan and arthropod clades, 17 chelicerates, 12 myriapods, 30 non-hexapod pancrustaceans, and 38 hexapod clades. Where possible, we favour clade topologies resulting from a phylogenetic analysis of the largest total dataset. If phylogenomic analysis of genomes or transcriptomes has been performed but conflicts 2 bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted March 21, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. with morphology, a strongly supported molecular result is presented (e.g., putative clades such as Oligostraca that do not yet have identified morphological autapomorphies). If, however, molecular phylogenies have been constructed with few genes (e.g., clades such as Peracarida) or with highly conflicting results (e.g., Arachnida), morphological results are given greater weight. Where relevant, we discuss clade names with respect to NCBI’s GenBank taxonomy (as recommended by the Fossil Calibrations Database: Polly et al., 2015), as this review is intended to be used by molecular biologists who are interested in dating the evolution of arthropod groups. As there are >1.2 million species of arthropods, our calibrations are limited to fossils from the Palaeozoic and Mesozoic. Many extant clades have their oldest fossils in Cenozoic ambers such as the Eocene Baltic amber but are predicted to be vastly older based on fossils
Recommended publications
  • On the Barremian - Lower Albian Stratigraphy of Colombia
    On the Barremian - lower Albian stratigraphy of Colombia Philip J. Hoedemaeker Hoedemaeker, Ph.J. 2004. On the Barremian-lower Albian stratigraphy of Colombia. Scripta Geologica, 128: 3-15, 3 figs., Leiden, December 2004. Ph.J. Hoedemaeker, Department of Palaeontology, Nationaal Natuurhistorisch Museum, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Key words – stratigraphy, Barremian, Aptian, depositional sequences, Colombia. The biostratigraphy and sequence stratigraphy of the Barremian deposits, and the biostratigraphy of the Aptian deposits in the Villa de Leyva area in Colombia are briefly described. Contents Introduction ....................................................................................................................................................... 3 Barremian ............................................................................................................................................................ 4 Barremian sequence stratigraphy ............................................................................................................ 6 Aptian ................................................................................................................................................................. 11 Lowermost Albian ........................................................................................................................................ 13 Conclusions ....................................................................................................................................................
    [Show full text]
  • Fossil Record of Stem Groups Employed In
    www.nature.com/scientificreports OPEN Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Received: 07 April 2016 Accepted: 16 November 2016 Hexapoda) Published: 13 December 2016 Yan-hui Wang1,2,*, Michael S. Engel3,*, José A. Rafael4,*, Hao-yang Wu2, Dávid Rédei2, Qiang Xie2, Gang Wang1, Xiao-guang Liu1 & Wen-jun Bu2 Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous. Over half of all described living species are insects, and they dominate all terrestrial ecosystems1.
    [Show full text]
  • Sedimentology, Taphonomy, and Palaeoecology of a Laminated
    Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007) 92–117 www.elsevier.com/locate/palaeo Sedimentology, taphonomy, and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany) ⁎ Franz Theodor Fürsich a, , Winfried Werner b, Simon Schneider b, Matthias Mäuser c a Institut für Paläontologie, Universität Würzburg, Pleicherwall 1, 97070 Würzburg, Germany LMU b Bayerische Staatssammlung für Paläontologie und Geologie and GeoBio-Center , Richard-Wagner-Str. 10, D-80333 München, Germany c Naturkunde-Museum Bamberg, Fleischstr. 2, D-96047 Bamberg, Germany Received 8 February 2006; received in revised form 3 July 2006; accepted 7 July 2006 Abstract At Wattendorf in the northern Franconian Alb, southern Germany, centimetre- to decimetre-thick packages of finely laminated limestones (plattenkalk) occur intercalated between well bedded graded grainstones and rudstones that blanket a relief produced by now dolomitized microbialite-sponge reefs. These beds reach their greatest thickness in depressions between topographic highs and thin towards, and finally disappear on, the crests. The early Late Kimmeridgian graded packstone–bindstone alternations represent the earliest plattenkalk occurrence in southern Germany. The undisturbed lamination of the sediment strongly points to oxygen-free conditions on the seafloor and within the sediment, inimical to higher forms of life. The plattenkalk contains a diverse biota of benthic and nektonic organisms. Excavation of a 13 cm thick plattenkalk unit across an area of 80 m2 produced 3500 fossils, which, with the exception of the bivalve Aulacomyella, exhibit a random stratigraphic distribution. Two-thirds of the individuals had a benthic mode of life attached to hard substrate. This seems to contradict the evidence of oxygen-free conditions on the sea floor, such as undisturbed lamination, presence of articulated skeletons, and preservation of soft parts.
    [Show full text]
  • Functional Morphology and Evolu Tion of Xiphosurids
    Func tional morphol ogy and evolu tion of xiphosurids JAN BERGSTROM Bergstrom, J. 1 975 07 15: Functional morphology and evolution of xiphosurids. Fossils and Strata, No. 4, pp. 291-305, Pl. 1. Oslo. ISSN 0300-9491. ISBN 82-00-04963-9. Aspects of the morphology, evolution and systematics of the Xiphosurida are treated. The ancestrai forms lacked specialization for ploughing, and their chilaria were evidently developed as prosomal walking legs. The cor­ responding tergite (of the pregenital segment) was probably separate from the main prosomal shield in the early xiphosurids as well as in the eurypter­ ids. From this stem two main groups seem to have evolved. One consists of the synziphosurids, large-eyed eurypterid-like hunters with stri king opistho­ somal tagmosis. The other consists of the burrowing and ploughing xipho­ surids, in which the opisthosomal tergites were subject to progressive fusion ending with a single opisthothoracic tergal shield in the Late Palaeo­ zoic. The last prosomal appendages evolved into the chilaria, if this did not happen earlier, and the corresponding free tergite disappeared. Probably in Carboniferous time the limulines came into existence through a sudden displacement of the prosomal/opisthosomal boundary. Jan Bergstram, Department of His torical Geology and Palaeontology, Un iversity of Lund, Solvegatan 13, S-223 62 Lund, 1st August 1973. The Xiphosura may be considered to constitute a subdass or dass of chelicerate arthropods. The delimitation has been diseussed in the past, but no general agreement seems to exist. Generally, the xiphosurids are induded with the aglaspidids and eurypterids in the Merostorna­ ta. However, as generally understood, this taxon probably represents an evolutionary grade rather than a phylogenetic unit.
    [Show full text]
  • Rediscovery of the Type Material of Eryon Cuvieri Desmarest, 1817 (Crustacea, Decapoda, Eryonidae) and Nomenclatural Consequences
    Rediscovery of the type material of Eryon cuvieri Desmarest, 1817 (Crustacea, Decapoda, Eryonidae) and nomenclatural consequences Sylvain CHARBONNIER Muséum national d’Histoire naturelle, Département Histoire de la Terre, UMR 7207 CNRS, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Alessandro GARASSINO Museo di Storia Naturale di Milano, Sezione di Paleontologia, Corso Venezia 55, I-20121 Milano (Italy) [email protected] Jean-Michel PACAUD Muséum national d’Histoire naturelle, Département Histoire de la Terre, UMR 7207 CNRS, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements, case postale 38, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Günter SCHWEIGERT Staatliches Museum für Naturkunde, Rosenstein 1, D-70911 Stuttgart (Germany) [email protected] Charbonnier S., Garassino A., Pacaud J.-M. & Schweigert G. 2012. — Rediscovery of the type material of Eryon cuvieri Desmarest, 1817 (Crustacea, Decapoda, Eryonidae) and nomen- clatural consequences. Geodiversitas 34 (4): 849-855. http://dx.doi.org/10.5252/g2012n4a7 ABSTRACT In 1817, Desmarest erected Eryon cuvieri, a new crustacean from the Late Jurassic of Bavaria (southern Germany). Later, the same taxon was described as Macrourites arctiformis by von Schlotheim (1820). Subsequently, numerous authors, probably KEY WORDS unaware of Desmarest’s first paper, referred to this taxon as Eryon arctiformis (von Crustacea, Schlotheim, 1820). Following the Principle of Priority, the original name must be Decapoda, Eryonidae, used and Macrourites arctiformis von Schlotheim, 1820 is here considered to be a Eryon, more recent, subjective synonym. Moreover, two specimens of the type series of Lectotype, Eryon cuvieri Desmarest, 1817, from Faujas de Saint-Fond’s Cabinet of Natural Jurassic, Germany, History, have recently been traced in the Collection de Géologie of the Muséum Solnhofen.
    [Show full text]
  • Type and Figured Fossils in the Worthen Collection at the Illinois
    s Cq&JI ^XXKUJtJLI 14oGS: CIR 524 c, 2 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY Lois S. Kent GEOLOGICAL ILLINOIS Illinois Department of Energy and Natural Resources, STATE GEOLOGICAL SURVEY DIVISION CIRCULAR 524 1982 COVER: This portrait of Amos Henry Worthen is from a print presented to me by Worthen's great-grandson, Arthur C. Brookley, Jr., at the time he visited the Illinois State Geological Survey in the late 1950s or early 1960s. The picture is the same as that published in connection with the memorial to Worthen in the appendix to Vol. 8 of the Geological Survey of Illinois, 1890. -LSK Kent, Lois S., Type and figured fossils in the Worthen Collection at the Illinois State Geological Survey. — Champaign, III. : Illinois State Geological Survey, 1982. - 65 p. ; 28 cm. (Circular / Illinois State Geological Survey ; 524) 1. Paleontology. 2. Catalogs and collections. 3. Worthen Collection. I. Title. II. Series. Editor: Mary Clockner Cover: Sandra Stecyk Printed by the authority of the State of Illinois/1982/2500 II I IHOI'.MAII '.I 'II Of.ir.AI MIHVI y '> 300 1 00003 5216 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY Lois S. Kent | CIRCULAR 524 1982 ILLINOIS STATE GEOLOGICAL SURVEY Robert E. Bergstrom, Acting Chief Natural Resources Building, 615 East Peabody Drive, Champaign, IL 61820 TYPE AND FIGURED FOSSILS IN THE WORTHEN COLLECTION AT THE ILLINOIS STATE GEOLOGICAL SURVEY CONTENTS Acknowledgments 2 Introduction 2 Organization of the catalog 7 Notes 8 References 8 Fossil catalog 13 ABSTRACT This catalog lists all type and figured specimens of fossils in the part of the "Worthen Collection" now housed at the Illinois State Geological Survey in Champaign, Illinois.
    [Show full text]
  • MYRIAPODS 767 Volume 2 (M-Z), Pp
    In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades.
    [Show full text]
  • New Evidences of Silurian Phyllocarid Crustaceans from SW Sardinia
    Bollettino della Società Paleontologica Italiana, 44 (3), 2005, 255-262. Modena, 30 novembre 2005255 New evidences of Silurian Phyllocarid Crustaceans from SW Sardinia Maurizio GNOLI & Paolo SERVENTI M. Gnoli, Dipartimento del Museo di Paleobiologia e dell’Orto Botanico, Università di Modena e Reggio Emilia, Via Università 4, I- 41100 Modena, Italy; [email protected] P. Serventi, Dipartimento del Museo di Paleobiologia e dell’Orto Botanico, Università di Modena e Reggio Emilia, Via Università 4, I- 41100 Modena, Italy; [email protected] KEY-WORDS - Crustacea, Phyllocarida, Silurian, Abdominal somites, Telson, Mandibles, SW Sardinia, Italy. ABSTRACT - Phyllocarid remains consisting of abdominal somites, caudal parts and secondarily phosphatized mandibles, from Silurian of SW Sardinia are described and illustrated. Some material described and left in open nomenclature by Gnoli & Serpagli (1984) is also reconsidered under Warneticaris cenomanensis (Tromelin, 1874). Other taxa like Ceratiocaris (Bohemicaris) bohemica (Barrande, 1872), C.? (B.) sp. ind. cf. bohemica Barrande, 1872, C. (C.?) cf. cornwallisensis damesi Chlupáè, 1963, and Warneticaris sp. ind. cf. W. cenomanensis (Tromelin, 1874) are also documented. RIASSUNTO - [Nuovi resti di fillocaridi (Crustacea, Artropoda) nel Siluriano della Sardegna sudoccidentale] - Dopo la prima descrizione e illustrazione di resti di fillocaridi provenienti dalla Sardegna sudoccidentale al limite Siluriano/Devoniano, avvenuta nella prima metà degli anni ottanta, ne viene presentata una ulteriore. Tutti gli esemplari esaminati provengono dalla Formazione di Fluminimaggiore e mostrano un eccellente stato di conservazione in quanto si presentano in tre dimensioni. Sulla base dei dati sedimentologici è possibile dedurre un ambiente deposizionale di mare poco profondo, normalmente ossigenato e sottoposto a moto ondoso nelle sue parti più elevate mentre era anossico nelle zone più profonde.
    [Show full text]
  • Barraganfinal.Indd
    Revista Mexicana de Ciencias Geológicas, v.Aptian 22, núm. ammonite 1, 2005, zonation p. 39-47 for northern Mexico 39 Towards a standard ammonite zonation for the Aptian (Lower Cretaceous) of northern Mexico Ricardo Barragán-Manzo* and Ana Laura Méndez-Franco Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D. F., Mexico. * [email protected] ABSTRACT Detailed data on twenty-seven species of ammonites identified in three stratigraphic sections of northern Mexico, allow further refinement of the Aptian ammonite biozonations of previous authors. Four formal ammonite biozones are proposed. Dufrenoyia justinae Taxon-Range-Zone for the uppermost part of the lower Aptian (Bedoulian), Epicheloniceras cf. subnodosocostatum/Acanthohoplites acutecosta Interval Zone representative of the middle Aptian (Gargasian), and Acanthohoplites aschiltaensis and Hypacanthoplites cf. leanzae Taxon-Range-Zones, spanning the upper Aptian (Clansayesian). The ammonite zonation proposed represents the advancements on the development of a standard scheme towards a reliable correlation with the biozonal scheme of England and the ammonite zonal standard of the Mediterranean area. Key words: biostratigraphy, ammonites, Aptian, Mexico. RESUMEN Estudios detallados de veintisiete especies de ammonites provenientes de tres secciones estratigráficas del norte de México, permiten redefinir los esquemas biozonales del Aptiano, establecidos previamente por otros autores para el área, con base en la distribución vertical de estos macrofósiles. En este trabajo se proponen cuatro biozonas formales de ammonites. La Zona de Rango Dufrenoyia justinae para la parte terminal del Aptiano inferior (Bedouliano), la Zona de Intervalo Epicheloniceras cf. subnodosocostatum/Acanthohoplites acutecosta representativa del Aptiano medio (Gargasiano) y las Zonas de Rango Acanthohoplites aschiltaensis e Hypacanthoplites cf.
    [Show full text]
  • Mecoptera: Meropeidae): Simply Dull Or Just Inscrutable?
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-24-2007 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma University of Florida, [email protected] James C. Dunford University of Florida, Gainesville, FL Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Somma, Louis A. and Dunford, James C., "Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable?" (2007). Insecta Mundi. 65. https://digitalcommons.unl.edu/insectamundi/65 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0013 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma Department of Zoology PO Box 118525 University of Florida Gainesville, FL 32611-8525 [email protected] James C. Dunford Department of Entomology and Nematology PO Box 110620, IFAS University of Florida Gainesville, FL 32611-0620 [email protected] Date of Issue: August 24, 2007 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Louis A. Somma and James C. Dunford Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Insecta Mundi 0013: 1-5 Published in 2007 by Center for Systematic Entomology, Inc. P. O. Box 147100 Gainesville, FL 32604-7100 U.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Pseudoscorpions
    Colorado Arachnids of Interest Pseudoscorpions Class: Arachnida Order: Pseudoscorpiones Identification and Descriptive Features: Pseudoscorpions are tiny arachnids (typically Figure 1. Pseudoscorpion ranging from 1.25-4.5 mm body length). They possess pedipalps modified into pincers in a manner similar to scorpions. However, they differ in other features, notably possessing a broad, flattened abdomen that lacks the well developed tail and stinger. Approximately 200 species of pseudoscorpions have been described from North America. A 1961 review of pseudoscorpions within Colorado listed 30 species; however, these arachnids have only rarely been subjects for collection so their occurrence and distribution within Colorado is poorly known. The pseudoscorpion most often found within buildings is Chelifer cancroides, sometimes known as the “house pseudoscorpion”. It is mahogany brown color with a body length of about 3-4 mm and long pedipalps that may spread 8 mm across. Distribution in Colorado: Almost all pseudoscorpions that occur in Colorado are associated with forested areas although a few prairie species do occur. Conifer forests, including scrublands of pinyon and juniper, support several species. Others occur in association with Gambel oak and aspen. The house pseudoscorpion has an unusually broad distribution and is found associated with human dwellings over wide areas of North America and Europe. Life History and Habits: Pseudoscorpions usually occur under rocks, among fallen leaves or needles, under bark or similar moist sites where they hunt mites, springtails and small insects. Typically they wait in ambush within small crevices and grab passing prey with the pincers. In most species, connected to the movable “finger” of the pincer is a venom gland.
    [Show full text]