Rediscovery of the Type Material of Eryon Cuvieri Desmarest, 1817 (Crustacea, Decapoda, Eryonidae) and Nomenclatural Consequences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sedimentology, Taphonomy, and Palaeoecology of a Laminated
Palaeogeography, Palaeoclimatology, Palaeoecology 243 (2007) 92–117 www.elsevier.com/locate/palaeo Sedimentology, taphonomy, and palaeoecology of a laminated plattenkalk from the Kimmeridgian of the northern Franconian Alb (southern Germany) ⁎ Franz Theodor Fürsich a, , Winfried Werner b, Simon Schneider b, Matthias Mäuser c a Institut für Paläontologie, Universität Würzburg, Pleicherwall 1, 97070 Würzburg, Germany LMU b Bayerische Staatssammlung für Paläontologie und Geologie and GeoBio-Center , Richard-Wagner-Str. 10, D-80333 München, Germany c Naturkunde-Museum Bamberg, Fleischstr. 2, D-96047 Bamberg, Germany Received 8 February 2006; received in revised form 3 July 2006; accepted 7 July 2006 Abstract At Wattendorf in the northern Franconian Alb, southern Germany, centimetre- to decimetre-thick packages of finely laminated limestones (plattenkalk) occur intercalated between well bedded graded grainstones and rudstones that blanket a relief produced by now dolomitized microbialite-sponge reefs. These beds reach their greatest thickness in depressions between topographic highs and thin towards, and finally disappear on, the crests. The early Late Kimmeridgian graded packstone–bindstone alternations represent the earliest plattenkalk occurrence in southern Germany. The undisturbed lamination of the sediment strongly points to oxygen-free conditions on the seafloor and within the sediment, inimical to higher forms of life. The plattenkalk contains a diverse biota of benthic and nektonic organisms. Excavation of a 13 cm thick plattenkalk unit across an area of 80 m2 produced 3500 fossils, which, with the exception of the bivalve Aulacomyella, exhibit a random stratigraphic distribution. Two-thirds of the individuals had a benthic mode of life attached to hard substrate. This seems to contradict the evidence of oxygen-free conditions on the sea floor, such as undisturbed lamination, presence of articulated skeletons, and preservation of soft parts. -
New Studies of Decapod Crustaceans from the Upper Jurassic Lithographic Limestones of Southern Germany
Contributions to Zoology, 72 (2-3) 173-179 (2003) SPB Academic Publishing bv, The Hague New studies of decapod crustaceans from the Upper Jurassic lithographic limestones of southern Germany Günter Schweigert¹ & Alessandro Garassino² 2 1 Staatliches Museum fiir Naturkunde, Rosenstein I, D-70I91 Stuttgart, Germany; Museo civico di Storia naturale, Corso Venezia 55, 1-20121 Milano, Italy Keywords:: Crustacea, Decapoda, lithographic limestones, Upper Jurassic, Solnhofen, fossil record, diversity Abstract Introduction The Upper Jurassic lithographic limestones ofsouthern Germany TheUpper Jurassic lithographic limestones in south- have long been known for their exceptional preservation of ern Germany outcrop at numerous localities are of decapod crustaceans (Glaessner, 1965), similar to the Upper and differentage setting and span an area of sev- Cretaceous of Lebanon (Hakel, Hadjoula) and the still poorly eral hundreds of kilometers (Fig. 1, Table 1) with known Callovian strataat La Voulte-sur-Rhône (France). In these localities in the Frankische Alb often summarized non-bioturbatedlimestones, the decay of decapod skeletons is that mineralized and reduced, so besides the heavily chelae as ‘Solnhofen Lithographic Limestones’. Many fos- often even delicate structures such as pleopods and carapace sils, both in old and new collections (fossil traders), antennae are preserved. Recently, new decapod material has which is are labeled ‘Solnhofen’, highly mislead- been obtained from both scientific and commercial excavations, ing and precludes recognition of evolutionary trends in part in reopened lithographic limestone quarries. I. Fossiliferous lithographic limestones in southern Germany. Downloaded from Brill.com09/24/2021 08:25:23AM via free access 174 G. Schweigert & A. Garassino - New studies of Jurassic limestones from Germany Table I. -
On Unreported Historical Specimens of Marine Arthropods from The
On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris Giliane P. Odin, Sylvain Charbonnier, Julien Devillez, Günter Schweigert To cite this version: Giliane P. Odin, Sylvain Charbonnier, Julien Devillez, Günter Schweigert. On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris. Geodiversitas, Museum National d’Histoire Naturelle Paris, 2019, 41 (1), pp.643. 10.5252/geodiversitas2019v41a17. hal- 02332523 HAL Id: hal-02332523 https://hal.archives-ouvertes.fr/hal-02332523 Submitted on 24 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On unreported historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris Sur des spécimens historiques inédits d’arthropodes marins des Calcaires Lithographiques de Solnhofen et Nusplingen (Jurassique supérieur, Allemagne) conservés au Muséum national d’Histoire naturelle, Paris Unreported specimens of marine arthropods from Solnhofen Giliane P. ODIN Centre de Recherche en Paléontologie – Paris (CR2P, UMR 7207), Sorbonne Université, MNHN, CNRS, Muséum national d'Histoire naturelle, Département Origines & Evolution (CP38), 8 rue Buffon, 75005 Paris (France). -
First Record of a Polychelid Lobster (Crustacea: Decapoda: Coleiidae) from the Pliensbachian (Early Jurassic) of Germany
First record of a polychelid lobster from the Pliensbachian of Germany 219 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA VOLUMEN 65, NÚM. 2, 2013, P. 219-223 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s First record of a polychelid lobster (Crustacea: Decapoda: Coleiidae) from the Pliensbachian (Early Jurassic) of Germany Günter Schweigert1,*, Frank A. Wittler2 1 Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany. 2 Staatliches Museum für Naturkunde, Erbprinzenstraße 13, 76133 Karlsruhe, Germany. * [email protected] Abstract A single specimen of Coleia brodiei (Woodward, 1866) preserved in a limestone concretion is recorded from the early Pliensba- chian Davoei Zone of north-western Germany. It represents the first record of polychelid lobsters from the Pliensbachian of Central Europe and expands the still poorly known palaebiogeographic distribution of this species, previously recorded only from England. This species inhabited littoral, soft-bottom environments in the Sub-boreal Jurassic Sea. Keywords: Crustacea, palaeobiogeography, preservation, Jurassic, Germany, England. Resumen Se registra un ejemplar de Coleia brodiei (Woodward, 1866), preservado en una concreción de caliza de la Zona Davoei del Pliensbaquiano temprano del noroeste de Alemania. El ejemplar representa el primer registro de langostas poliquélidas del Pliensbachiano de Europa Central y extiende la aún poco conocida distribución paleogeográfica de esta especie, registrada previamente solo en Inglaterra. Esta especie habitó ambientes litorales de sedimento suave en el Mar Sub-boreal Jurásico. Palabras Clave: Crustacea, paleobiografía, conservación, Jurásico, Alemania, Inglaterra. 1. Introduction (Pinna, 1968; Teruzzi, 1990; Garassino and Gironi, 2006). -
Addition of Fossil Evidence to a Robust Morphological Cladistic Data Set
Bulletin of the Mizunami Fossil Museum, no. 31 (2004), p. 1-19, 7 figs., 1 table. c 2004, Mizunami Fossil Museum Decapod phylogeny: addition of fossil evidence to a robust morphological cladistic data set Frederick R. Schram 1 and Christopher J. Dixon 2 1 Zoological Museum, University of Amsterdam, Mauritskade 57, NL-1092 AD Amsterdam, The Netherlands <[email protected]> 2 Institut für Botanik, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Abstract Incorporating fossils into schemes for the phylogenetic relationships of decapod crustaceans has been difficult because of the generally incomplete nature of the fossil record. Now a fairly robust data matrix of characters and taxa relevant to the phylogeny of decapods has been derived from consideration of living forms. We chose several taxa from the fossil record to test whether the robustness of the matrix can withstand insertion of fossils with various degrees of incomplete information. The essential structure of the original tree survives, and reasonable hypotheses about the affinities of selected fossils emerge. Sometimes we detected singular positions on our trees that indicate a high certainty about where certain taxa fit, while under other conditions there are alternative positions to choose from. Definitive answers are not to be expected. Rather, what is important is the demonstration of the usefulness of a method that can entertain and specifically document multiple alternative hypotheses. Key words: Decapoda, phylogeny, cladistics clades, viz., groups they termed Fractosternalia [Astacida Introduction + Thalassinida + Anomala + Brachyura], and Meiura [Anomala + Brachyura]. Schram (2001) later computerized Taxonomies of Decapoda have typically been constructed their analysis, allowing a more objective view of similar either with almost no regard to the fossil record, or, in a data. -
Fossil Calibrations for the Arthropod Tree of Life
bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration. -
Late Cretaceous Stomatopods (Crustacea, Malacostraca) from Israel And
Contributions to Zoology, 67 (4) 257-266 (1998) SPB Academic Publishing bv, Amsterdam Late Cretaceous stomatopods (Crustacea, Malacostraca) from Israel and Jordan Cees+H.J. Hof Institute for Systematics and Population Biology, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands Keywords: Stomatopoda, Mesozoic, Cretaceous, fossils, taphonomy, taxonomy, Squilloidea, new family Ursquillidae, new genus Ursquilla Abstract fossils from Jordan and Israel, confirms Glaessner’s suggestion. The fossils, originating from three dif- The eryonid decapod Eryon yehoachi Remy & Avnimelech, allow ferent localities (Fig. 1), a detailed recon- the is 1955, from Late Cretaceous of Israel, redescribed as a struction of the telson, the sixth abdominal tergite, fossil stomatopod species within the new genus Ursquilla. This and parts of the uropods. Although this analysis is redescription is based on the original type specimen and two based on fossil the telson of additional records from Israel and Jordan. The material allows incomplete material, a detailed reconstruction of the telson, the sixth abdominal this Cretaceous stomatopod carries enough informa- tergite, and part of the uropods. The distinct telson ornamen- tion to recognize a new genus within a new family. tation ofthese the erection of stomatopods justifies a new family The newly recognized stomatopod sheds a fresh within the superfamily Squilloidea. light on the evolution of these remarkable crusta- ceans. Introduction Abbreviations of depositories In 1955, Remy & Avnimelech described Eryon a new of the extinct yehoachi, species decapod BMNH, The Natural History Museum, London GSI, family Eryonidae. Their description was based on Geological Survey of Israel, Jerusalem MNHN, Museum National d’Histoire Naturelle, Paris a single specimen from the Upper Cretaceous (Cam- panian) of the Ouadi Seiyal Valley in eastern Israel. -
The Decapod Crustaceans of the Upper Jurassic Solnhofen Limestones: a Historical Review and Some Recent Discoveries
N. Jb. Geol. Palaont. Abh. 260/2,131-140 Article published online March 2011 The decapod crustaceans of the Upper Jurassic Solnhofen Limestones: A historical review and some recent discoveries Gunter Schweigert With 8 figures SCHWEIGERT,G. (2011): The decapod crustaceans of the Upper Jurassic Solnhofen Limestones: A historical review and some recent discoveries. - N. Jb. Geol. Paliiont. Abh., 260: 131-140; Stuttgart. Abstract: The Solnhofen Limestones represent one of the most important sources for crustacean diversity in the Jurassic and even for their fossil record in the Mesozoic. A brief overview of the history of science since the beginning of 18th century and the circumstances of the fossil recoveries are provided. The fossils come from various localities of slightly different ages (late Kimmeridgian - early Tithonian). Most specimens did not live at their later places of burial, but were swept in as exuviae from more or less distant neighboring environments. These reasons are responsible for the great diversity of genera and species described so far. Three species of caridean shrimps from the Solnhofen Limestones of Eichstiitt and Zandt are newly introduced: Hefriga rogerfrattigianii, He- friga norhertwinkleri, and Harthofia polzi. Key words: Solnhofen Limestones, history of science, Decapoda, Crustacea, Jurassic, Caridea. 1. Introduction V. MEYER 1836; MONSTER1839). ALBERTOPPELrevised all previously established species in a monograph and Decapod crustaceans from the Solnhofen Limestones added several more genera and species (OPPEL 1861, were described already in the 18th century, but not 1862). WOODWARD(1866) soon after added a very rare named (BAIER1708; KNORR& WALCH1755-1773; Fig. 1). taxon based on a single specimen purchased by the Since the intensive eXploitation of these limestones for British Museum together with other Solnhofen fossils lithography (from 1800 onwards), many new quarries including the first Archaeopteryx skeleton. -
A Taxonomic Review of British Decapod Crustacea
Bulletin of the Mizunami Fossil Museum, no. 29 (2002), p. 81-92. A taxonomic review of British decapod Crustacea Joe S. H. Collins 8 Shaw's Cottages, Perry Rise, London, SE23 2QN, U. K. & Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U. K. Abstract Recent changes in the taxonomic position of a number of British decapod crustaceans are brought together from their respective publications. A new crab genus, Stintonius, is described to contain Portunites subovata Quayle & Collins, 1981, Panopeus kempi Ouayle & Collins, 1981, is also transferred to a new genus, Sereneopeus, and a subspecies, Dromilites lamarckii humerosus Quayle & Collins, 1981, is raised to specific status. Key words: Crustacea, Decapoda, Mesozoic, Cenozoic, England Introduction Coeloma sp., from Boxstones, in Suffolk requires verification, while A. Bell (1921) himself, cast doubt on Accounts of the fossil crabs of the British succession are the identification of Calappa sp. that he first recorded in widely distributed in the scientific literature and there is 1897. Cancer deshayesii is considered herein; Maja no recent review that considers their taxonomic diversity. veruccosa, recorded from an almost entire carapace from Continuing research and refinement of diagnoses, often as the Coralline Crag of Butley, presently occurs in the not reflecting the constant differences of opinion between Mediterranean (Zariquiey Alvarez, 1946). The Monograph the 'splitters' and the 'lumpers', latterly largely attendant of the Crustacea of the London Clay by Thomas Bell upon the revision of the Treatise on Invertebrate (1858) remains the only collective work concerning the Palaeontology (Decapoda, Part R) (Feldmann, R. M. & Eocene species. -
The Early Polychelidan Lobster Tetrachela Raiblana and Its Impact on the Homology of Carapace Grooves in Decapod Crustaceans
Contributions to Zoology, 87 (1) 41-57 (2018) The early polychelidan lobster Tetrachela raiblana and its impact on the homology of carapace grooves in decapod crustaceans Denis Audo1,5, Matúš Hyžný2, 3, Sylvain Charbonnier4 1 UMR CNRS 6118 Géosciences, Université de Rennes I, Campus de Beaulieu, avenue du général Leclerc, 35042 Rennes cedex, France 2 Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia 3 Geological-Palaeontological Department, Natural History Museum Vienna, Vienna, Austria 4 Muséum national d’Histoire naturelle, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris, France 5 E-mail: [email protected] Keywords: Austria, Crustacea, Decapoda, Depth, Homology, Italy, Lagerstätte, Palaeoenvironment, Palaeoecology, Triassic Abstract Taphonomy ......................................................... 52 Palaeoenvironment ............................................... 52 Polychelidan lobsters, as the sister group of Eureptantia Palaeoecology ..................................................... 53 (other lobsters and crabs), have a key-position within decapod Conclusion .............................................................. 53 crustaceans. Their evolutionary history is still poorly understood, Acknowledgements .................................................. 54 although it has been proposed that their Mesozoic representatives References ............................................................. -
Decapod Crustacean Phylogenetics
CRUSTACEAN ISSUES ] 3 II %. m Decapod Crustacean Phylogenetics edited by Joel W. Martin, Keith A. Crandall, and Darryl L. Felder £\ CRC Press J Taylor & Francis Group Decapod Crustacean Phylogenetics Edited by Joel W. Martin Natural History Museum of L. A. County Los Angeles, California, U.S.A. KeithA.Crandall Brigham Young University Provo,Utah,U.S.A. Darryl L. Felder University of Louisiana Lafayette, Louisiana, U. S. A. CRC Press is an imprint of the Taylor & Francis Croup, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, Fl. 33487 2742 <r) 2009 by Taylor & Francis Group, I.I.G CRC Press is an imprint of 'Taylor & Francis Group, an In forma business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 109 8765 43 21 International Standard Book Number-13: 978-1-4200-9258-5 (Hardcover) Ibis book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Faw, no part of this book maybe reprinted, reproduced, transmitted, or uti lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. -
Muscles and Muscle Scars in Fossil Malacostracan Crustaceans T ⁎ Adiël A
Earth-Science Reviews 194 (2019) 306–326 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Muscles and muscle scars in fossil malacostracan crustaceans T ⁎ Adiël A. Klompmakera,b,c, , Matúš Hyžnýd,e, Roger W. Portellb, Clément Jauvionf,g, Sylvain Charbonnierf, Shane S. Fussellc, Aaron T. Klierh, Raymond Tejerac, Sten L. Jakobseni a Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA b Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA c Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL 32611, USA d Department of Geology and Paleontology, Faculty of Natural Sciences, Comenius University, Mlynská dolina G1, Ilkovičova 6, SVK-842 15 Bratislava, Slovakia e Geological-Paleontological Department, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria f Muséum national d'Histoire naturelle, Centre de Recherche en Paléontologie - Paris (CR2P, UMR 7207), CNRS, Sorbonne Université, 57 rue Cuvier, F-75005 Paris, France g Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Sorbonne Université, Muséum national d'Histoire naturelle, IRD UMR 206, 61 rue Buffon, F-75005 Paris, France h Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL 32611, USA i Geomuseum Faxe, Østervej 2, DK-4640 Faxe, Denmark ARTICLE INFO ABSTRACT Keywords: Exceptionally preserved specimens yield critical information about the soft-part anatomy and the evolution of Crustacea organisms through time. We compiled the first global dataset of exceptionally preserved muscles in malacos- Decapoda tracans consisting of 47 occurrences, including 18 new records, predominantly preserved in Mesozoic Konservat- Exceptional preservation Lagerstätten (> 70% of occurrences).