Insects in Food and Feed Systems in Sub-Saharan Africa: the Untapped Potentials

Total Page:16

File Type:pdf, Size:1020Kb

Insects in Food and Feed Systems in Sub-Saharan Africa: the Untapped Potentials International Journal of Tropical Insect Science https://doi.org/10.1007/s42690-020-00305-6 MINI-REVIEW Insects in food and feed systems in sub-Saharan Africa: the untapped potentials Samuel A. Babarinde1 & Brighton M. Mvumi2 & Grace O. Babarinde3 & Faith A. Manditsera4 & Taiwo O. Akande5 & Adebusola A. Adepoju6 Received: 31 May 2020 /Accepted: 28 September 2020 # African Association of Insect Scientists 2020 Abstract Insects as food and feed have the potential to alleviate food, feed and nutrition insecurity in sub-Saharan Africa (SSA) against a backdrop of climate change. Such use has gained unprecedented attention in the past decade and the trend will probably continue due to the species diversity, new discoveries in the nutritional, neutraceutical and medicinal potentials of edible insect species. In order to meet the increasing demand for insects as food and feed, insect farming should complement sustainable wild insect harvesting. The ecological impact of insect farming, economics, species biological and processing aspects deserve empirical investigation. This is crucial in order to effectively guide potential insect producers and processors. Besides the use of insects in folk medicine, several industrial products including polyunsat- urated and monosaturated fatty acids, peptides, enzymes, and antimicrobial compounds can be obtained from edible insects. With the teaming world population, value addition via product fortification is a practical strategy to enhance the acceptance of edible insects for human food and nutrition security. The future of insects as food and feed will witness the development of international trade and SSA governments should be ready to comply with product standardization and legislation requirements to penetrate external markets. Despite the diversity of edible insects in SSA and some commonalities there-in, not all consumers are well-informed on the inherent risks of allergens, toxicants and antinutritional compounds occurring in some edible species. Further research needs and future strategies to exploit the untapped potential of insects as food and feed in SSA are mapped out. Keywords Entomophagy . Insects as medicine . Edible insects . Insect food and feed safety . Insect farming . Nutritional and anti-nutritional composition Introduction ’ * Samuel A. Babarinde Africa population is projected to double from 1.1 billion to [email protected] 2.2 billion people by 2050 (UNDESA 2017). In 2050, 50% of these 2.2 billion people will be urban-based. To meet food 1 Department of Crop and Environmental Protection, Ladoke Akintola demand then, a 60% increase in the amount of food currently University of Technology, Ogbomoso, Nigeria produced and accessible will be required (Alexandratos and 2 Department of Soil Science and Agricultural Engineering, University Bruinsma 2012). In the long-term (2100), sub-Saharan Africa of Zimbabwe, Harare, Zimbabwe (SSA) is predicted to be one of the world’smostvulnerable 3 Department of Food Science, Ladoke Akintola University of regions to climate change, with consequent rising tempera- Technology, Ogbomoso, Nigeria tures and increasing rainfall variability temparorally and spa- 4 Department of Food Science and Technology, Chinhoyi University tially (Niang et al. 2014) which have severe impacts on con- of Technology, Chinhoyi, Zimbabwe ventional agriculture largely rain-fed. In addition SSA is home 5 Department of Animal Science, Obafemi Awolowo University, to some of the most nutritionally insecure people in the world Ile-Ife, Nigeria where 22.8% of the overall population are undernourished 6 Department of Agricultural Economics, Ladoke Akintola University (FAO 2019). FAO (2015) estimated that commercial feed of Technology, Ogbomoso, Nigeria production will need to increase by 70% by 2050 to meet Int J Trop Insect Sci the growing demand for protein. It is against this background (Musundire et al. 2016a; Fraqueza and Patarata 2017; that insect farming for food and feed are envisaged to contriute Kachapulula et al. 2018). For instance, Anaphe venata has critically towards the alleviation of some of the afore- been associated with ataxic syndrome in Nigeria (Nishimule mentioned challenges experienced today and persisteing into et al. 2000). When insects are harvested from the wild, they the long-term furture. also stand the risk of being contaminated with pesticide resi- Insects have been utilized as food and feed from the pre- dues, especially when they are harvested in a pesticide prone historic time. About 2000 species are consumed all over the ecology (Rumpold and Schlüter 2013). world, with a little less than 500 consumed in Africa alone The SSA consists of four regions (Western Africa, Eastern (Kelemu et al. 2015;Jongema2017). In most African coun- Africa, Southern Africa and Central Africa) that lie south of tries, insects are mainly consumed as complementary food the Sahara desert. According to the United Nations, 46 out of (Paiko et al. 2012; van Huis et al. 2013; Niassy et al. 2016). 54 African countries are included in the sub-Saharan African The factors that influence the use of insects as food and feed continent, excluding Egypt, Algeria, Djibouti, Libya, include culture, knowledge of its usefulness, availability, taste Morroco, Somalia, Sudan and Tunisia. The excluded coun- and affordability, among others. It is assumed that some in- tries are often regarded as Northern Africa (Fig. 1). The four sects that are safe as human food can be safe as animal feed, regions are all tropical, with each country having her peculiar with little or no concerns for toxicity against the animals. That climate with few commonalities. The region is endowed with view has given birth to an increased number of experimental high diversity of edible species partly due to the favourable trials on the use of insects as animal feeds (Amao et al. 2010; climatic conditions. With the influence of climate change, Sanusi et al. 2013; Oyegoke et al. 2014;Maureretal.2015; there is on one hand, the likelihood of edible insects occurring Al-Qazzaz and Ismail 2016; Cullere et al. 2018; Van der Fels- in newer areas while on the other hand, there is also the pos- Klerx et al. 2018; Biasato et al. 2019). Apart from the nutri- sibility of decline or even disappearance of some edible spe- tional values of insects (Ramos-Elorduy 2009; Kinyuru et al. cies in areas they used to be abundant. Similarly, different 2010; van Huis 2015; Niassy and Ekesi 2016;Oibiokpaetal. cultures may adopt the edible species eaten by their neigh- 2017,Manditseraetal.2018; Haber et al. 2019; Kunatsa et al. bours. Although there is comparatively low edible insect di- 2020), some species are believed to be useful in folk medicine versity in the western world (Jongema 2017), the concept of all over the world (Fasoranti 1997;LawalandBanjo2007; entomophagy is beginning to gain acceptance in the region. Ayieko and Oriaro 2008; Dzerefos et al. 2013; Musundire Today, with the on-going global empirical studies that eluci- et al. 2014; Tamesse et al. 2016; Loko et al. 2019). This re- date the potentials of the insects as food and feed, the western veals the neutraceutical potentials of the edible insects. world may overtake the tropical continents which provide the Although some earlier reports on the use of edible insects in natural habitats for the edible species, on the acceptance of the folk medicine lack the scientific basis for the reported effica- edible insects. cies, recent and current studies are designed to elucidate the Recent reviews and surveys on insects for food and feed basis for such acclaimed efficacies, especially when the para- in Africa have focussed on: inventory, diversity and con- medical are involved in the collaborative studies. tribution to food security (Kelemu et al. 2015); gender, Today, edible insects have received more attention from culture, local knowledge and beliefs (Niassy et al. 2016; entomologists, and non-entomologists than other groups of Mmari et al. 2017;Okiaetal.2017); diets and nutrition insects (pollinators, biological control agents, medical/ (Kinyuru et al. 2018); different safety aspects of wild and veterinary pests, agricultural pests etc.) because of the multi- reared edible insects (Mujuru et al. 2014); and processing ple functionalities (DeFoliart 1991; van Huis et al. 2013; methods (Mutungi et al. 2019). The current review is a Sogari et al. 2019). In recent reviews of the subject matter, synthesis of most of the work done so far in SSA to pro- multidisciplinary approach has been the guide in the team vide one resource material for researchers, scholars, prac- selection (Micek et al. 2014; Kinyuru et al. 2018; Raheem titioners, entrepreneurs and policy-makers interested in ed- et al. 2019). This implies that edible insects have become case ible and feed insects. The review was carefully designed to studies for interdisciplinary collaboration. Hence, future re- collate, analyse and synthesise information on: (a) History search is likely to witness more of collaborations of entomol- and perspectives of the usage of insects as food and feed in ogists and non-entomologists such as food scientists/nutrition- SSA (b) Diversity of insect species used as food and feed ists, biochemists, animal nutritionists, and pharmacologists in (c) Proximate and mineral composition of the species con- different combinations. Despite all the earlier works done on sumed in SSA (d) Medicinal values of African insects used edible insects, new reviews of the literature are necessary in as
Recommended publications
  • ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116
    ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116 Journal Homepage: - www.journalijar.com Article DOI: Article DOI: 10.21474/IJAR01/1427 DOI URL: http://dx.doi.org/10.21474/IJAR01/1427 RESEARCH ARTICLE INSECT PESTS OF FORESTRY PLANTS AND THEIR MANAGEMENT. Meeta Sharma Arid Forest Research Institute, Jodhpur (Rajasthan)-342005. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Indian arid zone covers 31.7 million ha hot desert and 0.78 million ha cold desert, which is about 12 percent of the country‟s total Received: 12 June 2016 geographical area. The mean annual rainfall in the region varies from Final Accepted: 19 July 2016 100 mm in the north- western sector of Jaisalmer to 550 mm in eastern Published: August 2016 districts of Rajasthan, Gujarat and Haryana. The rainfall is highly erratic having 65 percent coefficient of variability. The vegetation in Key words:- the Indian arid zone is very sparse , scanty and thorny. However, the Forest, Bruchid, Parasitoid.. forests and trees like many other plants, suffer from attack by insect pests and diseases which cause a lot of damage, resulting in poor tree growth, poor timber quality, and in some cases, complete destruction and reduction of forest cover in Indian arid zone also. Thus, trees and forests need to be protected from these agents of destruction. With the ever increasing human and livestock population, the amount of forest per capita is declining particularly in the less industrialized or developing areas of the world. It is estimated that the land under forest in developing countries is about 2100 million hectares, or more than half of the forested land on earth.
    [Show full text]
  • Journal of Advances in Sports and Physical Education Edible Insects Consumption
    Journal of Advances in Sports and Physical Education Abbreviated key title: J. Adv. Sport. Phys. Edu. ISSN: 2616-8642 (Print) A Publication by “Scholars Middle East Publishers” ISSN: 2617-3905 (Online) Dubai, United Arab Emirates Edible Insects Consumption: A Veritable Option to Ameliorate the Deleterious Health Consequences of Kwashiorkor in Nigeria Adeleke Olasunkanmi R* Human Kinetics and Health Education Department, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria Abstract: All over the world particularly in the developing nations including Nigeria Original Research Article more than half of the population are suffering from a situation in which one problem causes another, this problems include ignorance, poverty, malnutrition, disease and early *Corresponding author death. Approximately, one third of a life is spent as a result of a struggle for food. A Adeleke Olasunkanmi R conservative estimate places the daily toll from kwashiorkor at 10,000. A figure indicates that between 800 million and one billion persons suffer from some degree of Protein- Article History Energy Malnutrition (PEM) alone. The resultant effect of protein deficiency kwashiorkor Received: 12.09.2018 which leads illness, stunted growth, among others. Kwashiorkor and its effect could be Accepted: 26.09.2018 mitigated in West African and Nigeria through insect’s consumption. Insects are the most Published: 30.09.2018 successful, biologically, of all the groups of arthropods, and they abound in great numbers in Nigeria because of the large forest and grass land areas, fresh water and wide coastal regions which supports the existence of insects. Insects supply high quality protein which are requiring in children nutrition and they are abundant, cheap, easy to harvest, and are available throughout the year.
    [Show full text]
  • Orthoptera:Gryllidae) and Their Impact on Classification
    INT. J. BIOL. BIOTECH., 10 (4): 479-482, 2013. SOUND PRODUCING ORGANS OF BRACHYTRYPES PORTENTOSUS (LICHTEINTEN) (ORTHOPTERA:GRYLLIDAE) AND THEIR IMPACT ON CLASSIFICATION Imtiaz Ahmad1 and Nasreen Khan2* 1Department of Agriculture, University of Karachi, Karachi-75270, Pakistan. *2Department of Zoology, Jinnah University for Woman, Karachi, Pakistan. ABSTRACT The specimens of Brachytrypes portentosus (Lichteinten) described on the basis of their sound producing structures i.e. tegmina, plectrum, stridulatory file and teeth for the first time in Pakistan. Specimens were collected from Quetta in Baluchistan was subjected to Scanning technique of Electron Microscopy following the techniques of David et al. (2003) to study these structures The pars stridulum pattern, the stridulatory file and the number of teeth on file appear as important characters to identify males of B. portentosus (Lichteinten) from other related taxa found in Pakistan. Key-words: Brachytrypes portentosus, sound producing organs, tegmina, plectrum, stridulatory file and teeth. INTRODUCTION Previously the Family Gryllidae was identified worldwide by their external morphological characters including those of their external male and female genitalia. Pars stridens is a complex sound producing apparatus in different species of Gryllidae. The morphology of teeth present there in also appear differentiating species. The structures of the tegmina of different species that produce and radiate the acoustic signals, have different structures (Walker and Carlysle, 1975), and later may be used as taxonomic character. Stridulation is a significant character for differentiating different species. Number of stridulatory pegs, length of file, size and distance between teeth of file appeared to be associated with stridulation. (Alexander and Thomas, 1959; Alexander and Bigelow, 1960; Walker, 1962; 1963).
    [Show full text]
  • Biochemical Features of Some Insects Species Potential Preys of Predators 3
    International Journal of Bio-Technology and Research (IJBTR) ISSN(P): 2249-6858; ISSN(E): 2249-796X Vol. 4, Issue 4, Aug 2014, 1-8 © TJPRC Pvt. Ltd. BIOCHEMICAL FEATURES OF SOME INSECTS SPECIES POTENTIAL PREYS OF PREDATORS NADIA YAHIA1 & BELKACEM BAZIZ, SALAHEDDINE DOUMANDJI2 1Agronomic National Upper School El-Harrach, Algiers, Algeria 2Ornithology Laboratory, Agronomic National Upper School EL-Harrach, Algeria ABSTRACT Mower- net is the technical sampling used on the ground relating to study arthropoda in experimental plots, and in gardens of Agronomic National School El Harrach. Insects category dominates with 1.120 individuals (97.1%) and 55% species (94.7%).Orthoptera are highly mentioned with a number of 856 individuals (74.2%). Gastropoda, Crustacea and Myriapoda, together correspond hardly to 2.9% according to total of captured individuals. Three techniques of biochemical analyses are used in laboratory with the aim to determine nutritive values and so energetic contribution of some insects species considered as potential preys of different predators. Used methods in the present work are the Kjeldhal method for dose ot total nitrogen, Soxhlet method for total lipids and Bertrand method relating to sugars. This analysis shows that proteins rates found in different species vary between 3.5 and 28.4%. For sugars rates found, the weaker is 3.4% while the stronger is 25.5%. For lipids, the recorded contents are about 9.8 and 33.3%. The total energetic contribution brought by the three biochemical components which are, proteins,lipids,and total sugars is estimated at 4.56 Kcal by female of Aiolopus thalassinus until 13.77 Kcal by male of Aiolopus strepens.
    [Show full text]
  • Full Text (.PDF)
    Journal of Research in Ecology An International Scientific Research Journal Original Research Does distribution of Acridomorpha is influenced by parasitoid attack? A model with Scelio aegyptiacus (Priesner, 1951) in the experimental farm Authors: ABSTRACT: ElSayed WM Abu ElEla SA and In a survey of the Acridomorpha assemblage in two different sampling Eesa NM localities I and II at an experimental farm, Faculty of Agriculture, Cairo University-ten different species had been recorded. These species were belonging to two subfamilies and representing ten tribes. Family Acrididae was found to exhibit the highest number of tribes (8 tribes and 8 species) whereas, family Pyrgomorphinae was represented by Institution: only two tribes harboring two species. The current research provides an attempt to Department of Entomology, point out the significance of Scelio aegyptiacus (Priesner, 1951) potential Faculty of Science, parasitoidism on natural acridomorphine populations through examining the egg- Cairo University, pods. It was clear that only three acridomorphine species; Aiolopus thalassinus Giza-12613-Egypt. (Fabricius, 1798), Acrotylus patruelis (Herrich-Schäffer, 1838) and Pyrgomorpha conica (Olivier, 1791), were virtually attacked by the hymenopterous S. aegyptiacus (Priesner, 1951). Keywords: Parasitoidism, Acridomorpha, Scelio aegyptiacus, Stenophagous, presence- absence. Corresponding author: Article Citation: El-Sayed WM ElSayed WM,Abu ElEla SA and Eesa NM Does distribution of Acridomorpha is influenced by parasitoid attack? A model
    [Show full text]
  • Chapter 15. Central and Eastern Africa: Overview
    Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent.
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • Senthil Kumar Orthopteran Diversity 1442A
    CATALOGUE ZOOS' PRINT JOURNAL 21(8): 2347-2349 Fauna of Protected Areas - 29: ORTHOPTERAN FAUNA OF THE GIBBON WILDLIFE SANCTUARY, ASSAM N. Senthilkumar, Nizara D. Barthakur and N.J. Borah Rain Forest Research Institute, Jorhat, Assam 785001, India ABSTRACT All the specimens were examined carefully and identified A checklist of 25 species of Orthoptera recorded from the specimens were labeled and preserved in insect boxes. A cotton Gibbon Wildlife Sanctuary is presented here along with a wad immersed in preservative (Phenol, Naphthalene, and Para series of indices such as Simpson's, Hill's, Margalef's, Mehinick's and evenness. The order is comprised of 25 dichlorobenzene in equal ratio) was kept in the corner of the species of 21 genera and 12 families. This preliminary box to restrict ant and fungal attack. The specimens collected study indicates many more species yet to be recorded from were identified using various publications of Kirby (1914), Henry the area. (1932), Chopard (1969), Rentz (1979), Tanton and Shishodia (1972), Ingrisch (1990, 2002), Ingrisch and Shishodia (1997, 1998, KEYWORDS Gibbon Wildlife Sanctuary, northeastern India, Orthoptera 2000), Shishodia (2000a,b), Shishodia and Tandon (1990), Naskrecki (1994, 1996a,b, 2000), Naskrecki and Otte (1999), and Gibbon Wild Life Sanctuary is located in Jorhat district of Senthilkumar et al. (2001, 2002). Assam, India. The Sanctuary covers an area of 19.49km2 of tropical semi evergreen forest on the flat plains of Brahmaputra As a measure of á-diversity (diversity within a habitat), the river. It extends between 26040'-26045'N & 94020'-94025'E. The most popular and widely used Shannon’s diversity index (H') altitudinal range is 100-120m.
    [Show full text]
  • Chapter 13 SOUTHERN AFRICA
    Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?),
    [Show full text]
  • Chapter 20. Northern and Western Africa
    Chapter 20 Chapter 20 NORTH AND WEST AFRICA Overview The region as treated here includes all countries in the bulge of West Africa (on the southern coast from Nigeria westward) and to the east Chad, Sudan, Ethiopia, Somalia and countries north. Insects of at least 25 species are eaten, belonging to at least 21 genera, 13 families and 7 orders (see the Regional Taxonomic Inventory below). Of this group, the specific identity is known for only 21 species, the generic identity for another 4, only the family identity for one and the order identity for one. Nigeria is the best-studied country in the region insofar as its food insect use is concerned, and it is presented first with others following alphabetically. Other countries on the southern coast of West Africa probably have edible insect use similar in variety to that of Nigeria, but less information is available. North of the coastal countries, the variety is greatly reduced, limited mainly to locusts, and primarily the desert locust, Schistocerca gregaria. Regional Taxonomic Inventory Taxa and stages consumed Countries Coleoptera Beetles/beetle larvae Ivory Coast, Liberia, Nigeria, Sierra Leone Cerambycidae (long-horned beetles) Ancylonotus tribulus (Fabr.), larva Senegal Dorysthenes forficalus Fabr., larva Morocco Omacantha gigas Fabr., larva Senegal Curculionidae (weevils, snout beetles) Rhynchophorus phoenicis (Fabr.), larva Southern coastal countries Scarabaeidae (scarab beetles) Ateuches sacar Linn. Egypt Oryctes boas Fabr., larva Nigeria Oryctes owariensis Beauvois, larva, adult?
    [Show full text]
  • A Companion Journal to Forest Ecology and Management and L
    84 Volume 84 November 2017 ISSN 1389-9341 Volume 84 , November 2017 Forest Policy and Economics Policy Forest Vol. CONTENTS Abstracted / indexed in: Biological Abstracts, Biological & Agricultural Index, Current Advances in Ecological Science, Current Awareness in Biological Sciences, Current Contents AB & ES, Ecological Abstracts, EMBiology, Environment Abstracts, Environmental Bibliography, Forestry Abstracts, Geo Abstracts, GEOBASE, Referativnyi Zhurnal. Also covered in the abstract and citation database Scopus®. Full text available on ScienceDirect®. Special Issue: Forest, Food, and Livelihoods Guest Editors: Laura V. Rasmussen, Cristy Watkins and Arun Agrawal Forest contributions to livelihoods in changing Forest ecosystem services derived by smallholder agriculture-forest landscapes farmers in northwestern Madagascar: Storm hazard L.V. Rasmussen , C. Watkins and A. Agrawal (USA) 1 mitigation and participation in forest management An editorial from the handling editor R. Dave , E.L. Tompkins and K. Schreckenberg (UK) 72 S.J. Chang (United States) 9 A methodological approach for assessing cross-site 84 ( Opportunities for making the invisible visible: Towards landscape change: Understanding socio-ecological 2017 an improved understanding of the economic systems ) contributions of NTFPs T. Sunderland (Indonesia, Australia), R. Abdoulaye 1–120 C.B. Wahlén (Uganda) 11 (Indonesia), R. Ahammad (Australia), S. Asaha Measuring forest and wild product contributions to (Cameroon), F. Baudron (Ethiopia), E. Deakin household welfare: Testing a scalable household (New Zealand), J.-Y. Duriaux (Ethiopia), I. Eddy survey instrument in Indonesia (Canada), S. Foli (Indonesia, The Netherlands), R.K. Bakkegaard (Denmark), N.J. Hogarth (Finland), D. Gumbo (Indonesia), K. Khatun (Spain), I.W. Bong (Indonesia), A.S. Bosselmann (Denmark) M. Kondwani (Indonesia), M. Kshatriya (Kenya), and S.
    [Show full text]
  • Downloadable from and Animals and Their Significance
    Volume 31(3): 1–380 METAMORPHOSIS ISSN 1018–6490 (PRINT) ISSN 2307–5031 (ONLINE) LEPIDOPTERISTS’ SOCIETY OF AFRICA An overview of Lepidoptera-host-parasitoid associations for southern Africa, including an illustrated report on 2 370 African Lepidoptera-host and 119 parasitoid-Lepidoptera associations Published online: 3 November 2020 Hermann S. Staude1*, Marion Maclean1, Silvia Mecenero1,2, Rudolph J. Pretorius3, Rolf G. Oberprieler4, Simon van Noort5, Allison Sharp1, Ian Sharp1, Julio Balona1, Suncana Bradley1, Magriet Brink1, Andrew S. Morton1, Magda J. Botha1, Steve C. Collins1,6, Quartus Grobler1, David A. Edge1, Mark C. Williams1 and Pasi Sihvonen7 1Caterpillar Rearing Group (CRG), LepSoc Africa. [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2Centre for Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, South Africa. [email protected] 3Department of Agriculture, Faculty of Health and Environmental Science. Central University of Technology, Free State, Bloemfontein, South Africa. [email protected] 4CSIRO National Insect Collection, G. P. O. Box 1700, Canberra, ACT 2701, Australia. [email protected] 5Research & Exhibitions Department, South African Museum, Iziko Museums of South Africa, Cape Town, South Africa and Department
    [Show full text]