Northwest Atlantic Fisheries Organization (NAFO) Elasmobranch Conservation NAFO Progress & Priorities GCFM

Total Page:16

File Type:pdf, Size:1020Kb

Northwest Atlantic Fisheries Organization (NAFO) Elasmobranch Conservation NAFO Progress & Priorities GCFM OCEANIC WHITETIP BIGEYE THRESHER SILKY SHARK HAMMERHEAD SHARK SHARK (Carcharhinus SHARK (Carcharhinus longimanus) (Alopias superciliosus) falciformis) (Sphyrna mokarran) 17 22 22 42 YEARS YEARS YEARS YEARS Juvenile years Mature years GREENLAND SHARK (Somniosus microcephalus) 400 YEARS 20 15 MSY 10 F:F 5 0 0 0.5 1.0 1.5 2.0 B:BMSY COFI 2018 Northwest Atlantic Fisheries Organization (NAFO) Elasmobranch Conservation NAFO Progress & Priorities GCFM Sharks, skates, and rays standard for shark finning ban Despite this progress, several Northwest (elasmobranchs) deserve special enforcement (2016) Atlantic elasmobranch populations conservation focus because low ¡ Amendments that modernize the under NAFO purview are in a precarious reproductive capacity leaves most NAFO Convention entered into state and in need of domestic and species exceptionally vulnerable to force (2017), underscoring Parties’ international safeguards. NAFO’s total overexploitation. commitments to: allowable catch (TAC) limit for skates ICCAT has consistently been set higher than The Shark League has been o Preventing overfishing and levels advised by scientists. Excessive working towards the following for ensuring long-term sustainability catch limits leave room for serious elasmobranchs under NAFO: o Heeding the best scientific advice overfishing, particularly for Thorny ¡ available Measures to improve catch Skates. There is also need to examine reporting and minimize incidental o Applying the precautionary the sustainability of exceptionally mortality approach vulnerable deep sea shark species that ¡ Fishing limits based on science and o Minimizing incidental catch are taken incidentally in NAFO fisheries, the precautionary approach, and and harmful impacts on marine particularly the Greenland Shark. ¡ Protections for especially ecosystems vulnerable species. o Preserving biological diversity, and Progress since 2016 o Collecting and sharing sound fishing data in a timely manner. The following steps taken over GFCM ¡ the last two years can improve the NAFO scientists completed a Area of outlook for elasmobranchs: groundbreaking review of the Application ¡ NAFO adopted a ban on at-sea status and conservation needs of NAFO Convention removal of shark fins, the gold Greenland Sharks (2018). Area ICCAT Convention Area Iceland Norway Russian © SAUL GONOR/SEAPICS.COM France, European Federation Canada St Pierre Union et Miquelon Albania United UK-OT, States Bermuda Algeria Tunisia St Vincent & the Egypt Curacao Grenadines Belize Cabo Mauritiana Ghana Guatemala Verde Senegal Nigeria El Salvador Equatorial Gabon Guinea Honduras Guinea Brazil Sierra Nicaragua Leone Angola Panama Namibia Liberia Venezuela Côte South d'Ivoire Africa Trinidad and Tobago Sao Tomé and Principe Spotlight on Greenland Sharks Spotlight on Thorny Skates Adherence to scientific advice is a (Somniosus microcephalus) (Amblyraja radiata) key element of the amended NAFO Convention and to the national policies The Greenland Shark, the second largest Thorny Skates are widely distributed of many NAFO Parties. Yet, the NAFO carnivorous shark, is considered the across a variety of substrates down to Skate TAC has been significantly higher world’s longest living vertebrate. In 2016, to 1,400m on both sides of the Atlantic. than the level advised by the Scientific scientists estimated that Greenland Females mature at around age 11 and Council since the limit was first agreed Sharks don’t reach sexual maturity until produce only about 15 viable hatchlings in 2004. The current TAC exceeds ~150 years of age and can live more than each year after incubation that can last scientific advice by more than 2,000t. 400 years. This finding and inferences three years. Thorny Skates have been More detailed catch data are needed about the species’ vulnerability to severely depleted in the southern part for scientists to develop a robust overfishing led to widespread concern of their distribution, declining by as Thorny Skate assessment and predict and review by NAFO’s Scientific Council. much as 95% since the 1970s in some the rebuilding progress expected at US waters. various TAC levels. Bigeye Thresher shark The NAFO Scientific Council has The Scientific Council is now finalizing Oceanic Whitetip shark demonstrated that: its advice on NAFO skate catch limits ¡ for consideration by NAFO Parties Hammerhead Skates have low resilience to fishing shark pressure due to low population at the annual meeting in September. Silky shark growth rates Efforts by major skate fishing Parties ¡ (EU, Canada, Russia) to agree the The Division 3LNO Thorny Skate Greenland allocation of skate quota cuts ahead of shark population is low, and the annual meeting are needed to avoid 0 50 100 150 200 250 300 350 400 ¡ 450 NAFO management has resulted in a stalemate and facilitate long overdue age at maturity (in years) estimated longevity (in years) little stock rebuilding. alignment with scientific advice. Greenland Sharks are associated with 60 the high latitudes of the North Atlantic Thorny Skate biomass in Divisions 3LMOPs. and Arctic waters at depths up to 3,000 50 Source: NAFO Scientific Council metres. Growing to more than 6m (21 feet), they were heavily fished in 40 the first half of the 20th century for liver 30 oil. Today, Greenland Sharks are taken primarily as incidental catch in a variety 20 of fisheries, and also targeted for meat Biomass index by vessels from Greenland and Iceland. 10 Blim NAFO scientists have highlighted the 0 extreme longevity and low fecundity 1983 1986 1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 of Greenland Sharks, and noted other Regional Fishery Management Organization decisions to prohibit Call To Action coverage and the level of detail retention of inherently vulnerable shark reported on catches (length, species. The Scientific Council’s final The Shark League urges NAFO location, etc.), particularly for Greenland Shark advice will be ready in Parties to take the following Thorny Skates time for consideration at the 2018 NAFO ¡ priority actions for elasmobranchs Direct the NAFO Scientific annual meeting in September. ¡ Prohibit retention and reduce Council to expand on the next incidental mortality of steps for: Greenland Sharks o minimizing mortality of ¡ Agree a NAFO Skate TAC that deep sea sharks, and does not exceed the Scientific o establishing reference Council advice points for a Thorny Skate ¡ Significantly increase observer rebuilding plan. www.sharkleague.org - [email protected] © TOBEY CURTIS Funded by the Shark Conservation Fund SHARK ADVOCATES INTERNATIONAL sharkadvocates.org sharktrust.org projectaware.org ecologyaction.ca Sonja Fordham Ali Hood Dominique Albert Shannon Arnold President Director of Conservation Associate Director Global Communications Marine Policy Coordinator [email protected] [email protected] [email protected] [email protected].
Recommended publications
  • Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja
    AGE, GROWTH, AND SEXUAL MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA A Thesis Presented to the Faculty of Alaska Pacific University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Environmental Science by Cameron Murray Provost April 2016 Pro Q u est Nu m b er: 10104548 All rig hts reserv e d INF O RM ATI O N T O ALL USERS Th e q u a lity of this re pro d u ctio n is d e p e n d e nt u p o n th e q u a lity of th e c o p y su b mitt e d. In th e unlik e ly e v e nt th a t th e a uth or did n ot se n d a c o m ple t e m a nuscript a n d th ere are missin g p a g es, th ese will b e n ot e d. Also, if m a t eria l h a d to b e re m o v e d, a n ot e will in dic a t e th e d e le tio n. Pro Q u est 10104548 Pu blish e d b y Pro Q u est LL C (2016). C o p yrig ht of th e Dissert a tio n is h e ld b y th e A uth or. All rig hts reserv e d. This w ork is prot e ct e d a g a inst un a uth orize d c o p yin g un d er Title 17, Unit e d St a t es C o d e Microform Editio n © Pro Q u est LL C .
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Sharks and Rays Back in the North Sea!
    SHARKS AND RAYS BACK IN THE NORTH SEA! © Peter Verhoog Juvenile thornback rays ABOUT SHARKS AND RAYS Important for the marine ecosystem Long before we humans walked this earth, beautiful sharks and rays were swimming in the world’s oceans. These apex predators have been at the top of the food chain for 450 million years, where they fulfil a vital role in the ecosystem of the oceans. They ‘maintain’ coral reefs, they ensure the ecological balance between species and they contribute to healthy populations of other animals by eating the weaker individuals. Largescale overfishing of sharks and rays affects the entire food chain and thus the health of the oceans. Low reproductive capacity Sharks and rays are characterized by a low reproductive capacity; many species are only sexually mature after more than 10 years. Most shark species develop their eggs inside the body of the female. Baby sharks are born fully developed. Most sharks have 1 to 20 pups per year. The reproductive biology of sharks is therefore more akin to that of marine mammals than fish. The Dutch North Sea is the habitat of several egg-laying shark species and rays: both the small-spotted catshark and the greater spotted dogfish or nursehound lay 18 to 20 eggs per year. The eggs take 7 to 10 months to hatch. The empty cases often wash up on beaches. Most Dutch bottom-dwelling rays lay eggs, from 20 to 140 eggs per year. Due to their low reproduction cycles, sharks and rays are vulnerable for overfishing, as the recovery of populations is very slow.
    [Show full text]
  • (Chondrichthyes : Rajidae), Okamejei Mengae from the South China Sea
    Korean J. Ichthyol. 19(1), 57~65, 2007 A New Species of Skate (Chondrichthyes : Rajidae), Okamejei mengae from the South China Sea Choong-Hoon Jeong*, Tetsuji Nakabo1 and Han-Ling Wu2 Research Center for Coastal Environments of Yellow Sea, Inha University, Incheon 402-751, Republic of Korea 1The Kyoto University Museum, c/o Division of Applied Biosciences, Kyoto University, Kyoto 606-8501, Japan 2Laboratory of Fishes, Shanghai Fisheries University, 334 Jun Gong Rd., Shanghai, 200090, People’s of Republic of China A new species of the rajid genus Okamejei is described from a single specimen (295 mm TL) from off Shantou, Gwangdong in the South China Sea. The new species differs from all other congeners in the following combination of characters: snout pointed, dorsal head length 6.7 times interorbital width, tail moderately wide and long, its length 48.5% TL, interdorsal distance less than length of first dorsal fin base, postdorsal tail short as 5.8% TL, small evenly distributed dark brownish spots, without ocelli on dorsal surface of disc, pores of ampullae of Lorenzini on ventral surface distributed from snout tip to distal end of metapterygium, scapulocoracoid high, its height about 1.4 times rear corner height, trunk vertebrae 23, predorsal tail vertebrae 50 and pectoral fin radials 96. Key words : New species, Okamejei mengae, Rajidae, South China Sea, Chondri- chthyes size and condition of the anterior margin of the Introduction neurocranial fontanelle. Okamejei was later ele- vated to generic rank by McEachran and Dunn The family Rajidae is cosmopolitan, encompass- (1998). To date, genus Okamejei comprised nine ing about thirty genera and more than 230 nomi- species, three distributed in the Indian Ocean nal species, as well as about 50 undescribed spe- (Stehmann, 1976; Fricke and Al-Hassan, 1995) cies (McEachran and Miyake, 1990a, b; McEach- and six in the western North Pacific (reviewed by ran and Dunn, 1998).
    [Show full text]
  • Florida's Fintastic Sharks and Rays Lesson and Activity Packet
    Florida's Fintastic Sharks and Rays An at-home lesson for grades 3-5 Produced by: This educational workbook was produced through the support of the Indian River Lagoon National Estuary Program. 1 What are sharks and rays? Believe it or not, they’re a type of fish! When you think “fish,” you probably picture a trout or tuna, but fishes come in all shapes and sizes. All fishes share the following key characteristics that classify them into this group: Fishes have the simplest of vertebrate hearts with only two chambers- one atrium and one ventricle. The spine in a fish runs down the middle of its back just like ours, making fish vertebrates. All fishes have skeletons, but not all fish skeletons are made out of bones. Some fishes have skeletons made out of cartilage, just like your nose and ears. Fishes are cold-blooded. Cold-blooded animals use their environment to warm up or cool down. Fins help fish swim. Fins come in pairs, like pectoral and pelvic fins or are singular, like caudal or anal fins. Later in this packet, we will look at the different types of fins that fishes have and some of the unique ways they are used. 2 Placoid Ctenoid Ganoid Cycloid Hard protective scales cover the skin of many fish species. Scales can act as “fingerprints” to help identify some fish species. There are several different scale types found in bony fishes, including cycloid (round), ganoid (rectangular or diamond), and ctenoid (scalloped). Cartilaginous fishes have dermal denticles (Placoid) that resemble tiny teeth on their skin.
    [Show full text]
  • Stock Assessment and Fishery Evaluation of Skate Species (Rajidae)
    16. Gulf of Alaska Skates by Sarah Gaichas1, Nick Sagalkin2, Chris Gburski1, Duane Stevenson1, and Rob Swanson3 1NMFS Alaska Fisheries Science Center, Seattle WA 2ADF&G Commercial Fisheries Division, Kodiak AK 3NMFS Alaska Fisheries Science Center, Kodiak AK Executive Summary Summary of Major Changes Changes in the input data: 1. Total catch weight for GOA skates is updated with 2004 and partial 2005 data. 2. Biomass estimates from the 2005 GOA bottom trawl survey are incorporated. 3. Life history information has been updated with recent research results. 4. Information on the position of skates within the GOA ecosystem and the potential ecosystem effects of skate removals are included. Changes in assessment methodology: There are no changes to the Tier 5 assessment methodology. Changes in assessment results: No directed fishing for skates in the GOA is recommended, due to high incidental catch in groundfish and halibut fisheries. Skate biomass changed between the last NMFS GOA trawl survey in 2003 and the most recent survey in 2005, which changes the Tier 5 assessment results based on survey biomass. The recommendations for 2005 based on the three most recent survey biomass estimates for skates and M=0.10 are: Western Central GOA Eastern GOA GOA (610) (620, 630) (640, 650) Bathyraja skates Gulfwide Big skate ABC 695 2,250 599 ABC 1,617 OFL 927 3,001 798 OFL 2,156 Longnose skate ABC 65 1,969 861 OFL 87 2,625 1,148 Responses to SSC Comments SSC comments specific to the GOA Skates assessment: From the December, 2004 SSC minutes: The SSC is grateful to samplers with ADF&G who collected catch data and biological samples for Kodiak landings.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Rays and Skates (Batoidea) Conservation Profile Synopsis
    Rays and Skates (Batoidea) Conservation Profile Synopsis Status of Ray and Skate Populations IUCN Red List Total Species CR EN VU NT LC DD State of the Batoidea Superorder 539 14 28 65 62 114 256 Rays and skates belong to the Batoidea Superorder and consist of stingrays CR, Critically Endangered; EN, Endangered; VU, and related species (Order Myliobatiforme, 223 species), electric rays (Order Vulnerable; NT, Near Threatened; LC, Least Torpediniforme, 69 species), skates and related species (Order Rajiforme, Concern; DD, Data Deficient. 270 species), and sawfish (Order Pristiforme, 5-7 species). Most batoid species live on the sea floor and are found in a variety of ecosystems across CITES the planet: coastal, deep water (3,000 m), tropical, subtropical, temperate, Appendix 1:7 species cold-water, estuarine, marine, freshwater, and open seas. As opportunistic foragers in complex trophic webs, batoids can impact and alter ecosystems if Appendix II: 1 species 1,2 other top-predators are removed . AZA Subpopulation Several batoids are listed as endangered in US-waters for which smalltooth Marine Fishes Taxon Advisory Group sawfish have a designated critical habitat and recovery plan as of 2009. There Chair Beth Firchau is a high degree of uncertainty with respect to the status of ray and skate populations at the global level even though they are some of the world’s most vulnerable marine fishes3. Many populations are extinct, and many more are critically endangered particularly in coastal ecosystems. Primary Threats to the Species Batoids face extinction risks due to a variety of threats that include capture in nets from targeted and accidental catch.
    [Show full text]
  • Conclusions GRS 1 3 5 6 8 9 10 12 16 18 20 21 31 35 36 38 40 42 45 GREENLAND SEA
    a a b c d e a) b) c) d) e) Lynghammar University of Tromsø, Norway, A., Christiansen University of Washington,, J. USAS., Gallucci Murmansk Marine, V. BiologicalF., Karamushko Institute, Russia California, O. V., AcademyMecklenburg of Sciences, USA, C. Natural W. History& Møller Museum ,of P. Denmark R. Contact: [email protected] introduction The sea ice cover decreases and human activity increases in Arctic waters. Fisheries (by-catch issues), shipping and petroleum exploita- tion (pollution issues) make it imperative to establish biological base- OCCURRENCE OF lines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). As a first step towards credible conservation actions for the Arctic marine fish faunae, we examine the species-richness of chondrich- thyan fishes (class Chondrichthyes) pertaining to 16 regions within the AOAS: chimaeras, sharks and skates. CHONDRICHTHYAN materials and methods • Voucher specimens from Natural History Collections IN THE ARCTIC OCEAN • Annotated checklists (see selected references) • The CAFF Database on Arctic marine fishes (Christiansen et al., in AND ADJACENT SEAS progress) FISHES Only presence and absence data are considered, as reliable abundance data lack for most species. Occurrences known only from floating or beach-cast carcasses, such as Pacific sleeper shark (no. 17) and Alaska skate (no. 29) in the Chukchi Sea, are not considered conclusive evidence of presence and are not included. CHIMAERIFORMES HEXANCHIFORMES RAJIFORMES Chimaeridae - ratfishes Chlamydoselachidae
    [Show full text]
  • A Review of Longnose Skates Zearaja Chilensisand Dipturus Trachyderma (Rajiformes: Rajidae)
    Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity. There has been a marked increase in the number of published studies for both species since 2000, and especially after 2005, although some research topics remain poorly understood. Considering the external morphological similarities of longnose skates, especially when juvenile, and the potential niche overlap in both, depth and latitude it is recommended that reproductive seasonality, connectivity and population structure be assessed to ensure their long-term sustainability. Keywords: conservation biology; fishery; roughskin skate; South America; yellownose skate Introduction Edited by Juan Carlos Salcedo-Reyes & Andrés Felipe Navia Global threats to sharks, skates and rays have been 1.
    [Show full text]
  • Metabolic Rate of Embryonic Little Skate, Raja Erinacea (Chondrichthyes: Batoidea): the Cost of Active Pumping 1 2 3,4 JILL B.K
    JOURNAL OF EXPERIMENTAL ZOOLOGY 283:13–18 (1999) Metabolic Rate of Embryonic Little Skate, Raja erinacea (Chondrichthyes: Batoidea): The Cost of Active Pumping 1 2 3,4 JILL B.K. LEONARD, ADAM P. SUMMERS, * AND THOMAS J. KOOB 1S.O. Conte Anadromous Fish Research Center, Biological Resources Division, U.S. Geological Service, Turners Falls, Massachusetts 01376 2Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts 01003 3Skeletal Biology Section, Shriners Hospital for Children, Tampa, Florida 33612 4Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672 ABSTRACT Near-hatching embryonic little skates, Raja erinacea, are highly active within their egg capsules, displaying a characteristic tail beating, which pumps water through the cap- sule. We measured the metabolic rate of late-stage embryos to determine whether oxygen suffi- cient for the embryo’s needs will diffuse through the egg capsule, and to assess the energetic cost of tail beating. Metabolic rate was inferred from oxygen consumption rates while embryos were in the capsules, unencapsulated, and anesthetized and unencapsulated. Anesthesia inhibited volun- tary movements, including tail wagging, allowing an estimate of the standard metabolic rate (SMR). –1 –1 Averaged over five embryos, the SMR was 0.032 ± 0.004 ml O2 g hr . There was no significant –1 –1 difference in metabolic rate between encapsulated (0.058 ± 0.009 ml O2 g hr ) and unencapsu- –1 –1 lated (0.049 ± 0.009 ml O2 g hr ) skates. Tail beating was found to be energetically expensive, requiring a 53%–81% increase over the SMR. From literature values for the oxygen permeability of the egg capsule we conclude that tail beating is required to supply sufficient oxygen to the embryonic skate.
    [Show full text]