The Power of Ultrasound: Observation of Nearly the Entire Gestation And

Total Page:16

File Type:pdf, Size:1020Kb

The Power of Ultrasound: Observation of Nearly the Entire Gestation And 1 National Marine Fisheries Service Fishery Bulletin First U.S. Commissioner established in 1881 of Fisheries and founder NOAA of Fishery Bulletin Abstract—The aim of this study was to The power of ultrasound: observation of make ultrasound observations of 2 cap- tive reef manta rays (Mobula alfredi), nearly the entire gestation and embryonic thereby collecting the first known data regarding the embryonic devel- developmental process of captive reef manta opment of reef manta rays throughout rays (Mobula alfredi) almost the entire gestation period. The gestation period and water tempera- 1 ture at parturition were ~1 year and Kiyomi Murakumo (contact author) 1,2 ~27°C, both of which are consistent Rui Matsumoto with observations of wild individuals. Taketeru Tomita1,2 On the basis of embryonic features Yousuke Matsumoto1 observed through ultrasound, 3 devel- 2 opmental stages were recognized: early Keiichi Ueda (0–80 d after copulation), middle (80–150 d after copulation), and late Email address for contact author: k- [email protected] (150–360 d after copulation). The mid- dle stage was distinguished from the 1 Okinawa Churaumi Aquarium early stage by the presence of large, Ishikawa 424 wing- shaped pectoral fins, cephalic Motobu, Okinawa 905-0206, Japan lobes, and buccal pumping, whereas 2 the late stage was distinguished from Okinawa Churashima Research Center the middle stage by the overlapping Okinawa Churashima Foundation of the right and left pectoral fins and Ishikawa 888 cessation of motion of the entire body Motobu, Okinawa 905-0206, Japan in utero. These criteria will be useful for determining the gestation stages of wild reef manta rays. Studies on the life history of large of wild reef manta rays and estimated aquatic vertebrates, including the the gestation period for this species, reef manta ray (Mobula alfredi) and on the basis of the duration between 2 the giant manta (M. birostris), are consecutive parturition events for the extremely difficult because such spe- same individual. However, their data cies move fast and have extensive were based on observations of females ranges in vast marine environments in the field, and no internal anatomi- and because technology for studying cal or embryonic developments were free- roaming aquatic animals does not observed. The only documented obser- exist (Castro, 2016). In the aquarium, vation of an embryo of a live reef manta observations are also difficult, because ray can be found in Tomita et al. (2012), of the slow growth of animals, which who conducted ultrasound examina- can take decades to reach maturity, tions of a pregnant manta ray at the and because they are difficult to main- Okinawa Churaumi Aquarium, located tain for such long periods. Life history in Okinawa, Japan, and described traits concerned with female reproduc- its embryonic respiratory behavior. tion, gestation cycle, gestation period, However, this report provided only a Manuscript submitted 21 July 2019. and fecundity are essential for studies “snapshot” of this species’ embryonic Manuscript accepted 18 December 2019. on the conservation and management development during late- term gesta- Fish. Bull. 118: 1–7 (2020). Online publication date: 24 January 2020. of large aquatic vertebrates. tion, and this species’ entire gestation doi: 10.7755/FB.118.1.1 Knowledge of the female reproduc- process, from early to late term, has not tive biology of manta rays (Mobulidae) been reported. The views and opinions expressed or is still limited (Couturier et al., 2012). Long- term captivity and successful implied in this article are those of the Marshall and Bennett (2010) observed breeding of reef manta rays at the Oki- author (or authors) and do not necessarily reflect the position of the National the breeding behavior (e.g., courtship nawa Churaumi Aquarium have pro- Marine Fisheries Service, NOAA. display, copulation, and parturition) vided a unique opportunity to monitor 2 Fishery Bulletin 118(1) the entire gestation process of this species. In 2007, a reef manta ray gave birth in the Kuroshio Tank (which has a volume of 7500 m3). This event was the first captive birth A of this species (Matsumoto and Uchida, 2008), and since us p then, 2 females have given birth to a total of 8 more off- spring at the aquarium. To the best of our knowledge, this report is the first to define almost the entire gestation process and embryonic ex development of the reef manta ray. This study would not have been possible without the recent development of B underwater ultrasound (Tomita et al., 2019). Some pre- vious studies have demonstrated that ultrasound is a powerful technique for observing the embryonic condition of captive, viviparous elasmobranchs (e.g., Carrier et al., 2003; Daly et al., 2007). However, the device used in this study is unique in that it can be used by scuba divers at d water depths of 10 m or more, allowing the observation of pregnant females without handling the specimens and, therefore, minimizing potential stress. ex Materials and methods Experimental animals The 2 female reef manta rays (specimens 1 and 2) examined Figure 1 were originally captured by using a set net off Okina wa Photographs of the water-surface ultrasound device and Island, Japan. Specimen 1 was 205 cm in disc width (DW) technique used to make observations of the gestation and when captured in 1998 and had grown to 387 cm DW by embryonic developmental process of captive reef manta 2013, whereas specimen 2 was 227 cm DW when captured rays (Mobula alfredi) during 2007–2015 at the Okinawa in 2008 and had grown to 368 cm DW by 2015. Specimen 1 Churaumi Aquarium in Japan. (A) The probe (p) of the gave birth 7 times from 2007 through 2013, and specimen 2 ultrasound device (us) was extended with a PVC pipe (ex). gave birth once in 2015. (B) An aquarium staff member persuades the reef manta ray to swim to the surface by serving krill with a long- Ultrasound examinations handled dipper (d), while another staff member obtains ultrasound footage from above. Ultrasound examinations were conducted in the Kuro- shio Tank at the Okinawa Churaumi Aquarium, by using a FAZONE M1 ultrasound device (Fujifilm Global, Tokyo, observations was timed differently for each pregnancy, Japan) and a transducer in a 3.525-MHz linear array and starting from 12 h to 31 d after mating. at depths up to 24 cm. The examinations were conducted Analysis of ultrasound footage was conducted by using by using either 1) water- surface ultrasound (Fig. 1) or software designed to edit images in the DICOM file for- 2) underwater ultrasound (Fig. 2). For water- surface mat (OsiriX, vers. 3.9.2–3.9.4, Pixmeo SARL, Geneva, ultrasound, the ultrasound probe was attached to the Switzerland). Through analysis of footage, we confirmed tip of a PVC pipe that was ~2 m long, and the observer the developmental condition of the embryo, such as the approached the specimens from above during feeding. presence or absence of yolk sac and cephalic lobes and the When the animals swam near the surface, the trans- size of the pectoral fins. In addition, we observed the kine- ducer was placed on the skin of the dorsal surface above matics of the embryo, confirming the presence or absence the uterus. For underwater ultrasound, the device was of buccal movements. housed in a water- and pressure-resistant case (Tomita et al., 2019), and scuba divers collected ultrasound data by placing the transducer on the skin of the dorsal sur- Results face above the uterus. We conducted ultrasound experiments for 93 d, about We tracked a total of 7 pregnancies in 2 female reef manta once every month. The beginning of the ultrasound rays, and 6 of these pregnancies resulted in successful births. Mating events were observed for all pregnancies. 1 Mention of trade names or commercial companies is for identi- The gestation periods, calculated from the 6 pregnancy fication purposes only and does not imply endorsement by the events of the 2 captive females from 2007 through 2015 National Marine Fisheries Service, NOAA. with the assumption that fertilization occurred on the day Murakumo et al.: Ultrasound observation of gestation and embryonic development of captive Mobula alfredi 3 as indicated by the diameter of the internal uterine cav- ity (maximum of ~10 cm; Fig. 3A). The embryo was not A yet visible, and yolk could be observed. Later (~50 d after copulation), the motionless embryo could be observed in utero (Fig. 3B). The amount of uterine fluid was greater during the middle stage than during the early stage, as indicated by the diameter of the internal uterine cavity (maximum of 30 cm). In addition, the pectoral and dorsal fins and cephalic lobes were well developed (Fig. 4B), and the yolk sac was slender, cylindrical, and easily identifiable in ultrasound images (diameter of ~2 cm) (Fig. 4C). Further- more, the tips of the right and left pectoral fins were bent p dorsally or ventrally along the curve of the uterine wall but never overlapped, and the embryo rotated its body B inside the uterine cavity and exhibited buccal pumping (Fig. 4D). During the late stage, the relative amount of uter- ine fluid decreased, as the size of the embryonic body increased, and a conspicuous bulge was observed on the dorsal surface of the maternal body. The uterus was greatly expanded; therefore, the entire uterine image could not be acquired by ultrasound, and uterine diame- ter was no longer available. The yolk sac was still present p but was rarely observed in ultrasound images, possi- bly because of its small size, and the pectoral fins were folded dorsally, with the right and left pectoral fins largely overlapping (Fig.
Recommended publications
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja
    AGE, GROWTH, AND SEXUAL MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA A Thesis Presented to the Faculty of Alaska Pacific University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Environmental Science by Cameron Murray Provost April 2016 Pro Q u est Nu m b er: 10104548 All rig hts reserv e d INF O RM ATI O N T O ALL USERS Th e q u a lity of this re pro d u ctio n is d e p e n d e nt u p o n th e q u a lity of th e c o p y su b mitt e d. In th e unlik e ly e v e nt th a t th e a uth or did n ot se n d a c o m ple t e m a nuscript a n d th ere are missin g p a g es, th ese will b e n ot e d. Also, if m a t eria l h a d to b e re m o v e d, a n ot e will in dic a t e th e d e le tio n. Pro Q u est 10104548 Pu blish e d b y Pro Q u est LL C (2016). C o p yrig ht of th e Dissert a tio n is h e ld b y th e A uth or. All rig hts reserv e d. This w ork is prot e ct e d a g a inst un a uth orize d c o p yin g un d er Title 17, Unit e d St a t es C o d e Microform Editio n © Pro Q u est LL C .
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Sharks and Rays Back in the North Sea!
    SHARKS AND RAYS BACK IN THE NORTH SEA! © Peter Verhoog Juvenile thornback rays ABOUT SHARKS AND RAYS Important for the marine ecosystem Long before we humans walked this earth, beautiful sharks and rays were swimming in the world’s oceans. These apex predators have been at the top of the food chain for 450 million years, where they fulfil a vital role in the ecosystem of the oceans. They ‘maintain’ coral reefs, they ensure the ecological balance between species and they contribute to healthy populations of other animals by eating the weaker individuals. Largescale overfishing of sharks and rays affects the entire food chain and thus the health of the oceans. Low reproductive capacity Sharks and rays are characterized by a low reproductive capacity; many species are only sexually mature after more than 10 years. Most shark species develop their eggs inside the body of the female. Baby sharks are born fully developed. Most sharks have 1 to 20 pups per year. The reproductive biology of sharks is therefore more akin to that of marine mammals than fish. The Dutch North Sea is the habitat of several egg-laying shark species and rays: both the small-spotted catshark and the greater spotted dogfish or nursehound lay 18 to 20 eggs per year. The eggs take 7 to 10 months to hatch. The empty cases often wash up on beaches. Most Dutch bottom-dwelling rays lay eggs, from 20 to 140 eggs per year. Due to their low reproduction cycles, sharks and rays are vulnerable for overfishing, as the recovery of populations is very slow.
    [Show full text]
  • (Chondrichthyes : Rajidae), Okamejei Mengae from the South China Sea
    Korean J. Ichthyol. 19(1), 57~65, 2007 A New Species of Skate (Chondrichthyes : Rajidae), Okamejei mengae from the South China Sea Choong-Hoon Jeong*, Tetsuji Nakabo1 and Han-Ling Wu2 Research Center for Coastal Environments of Yellow Sea, Inha University, Incheon 402-751, Republic of Korea 1The Kyoto University Museum, c/o Division of Applied Biosciences, Kyoto University, Kyoto 606-8501, Japan 2Laboratory of Fishes, Shanghai Fisheries University, 334 Jun Gong Rd., Shanghai, 200090, People’s of Republic of China A new species of the rajid genus Okamejei is described from a single specimen (295 mm TL) from off Shantou, Gwangdong in the South China Sea. The new species differs from all other congeners in the following combination of characters: snout pointed, dorsal head length 6.7 times interorbital width, tail moderately wide and long, its length 48.5% TL, interdorsal distance less than length of first dorsal fin base, postdorsal tail short as 5.8% TL, small evenly distributed dark brownish spots, without ocelli on dorsal surface of disc, pores of ampullae of Lorenzini on ventral surface distributed from snout tip to distal end of metapterygium, scapulocoracoid high, its height about 1.4 times rear corner height, trunk vertebrae 23, predorsal tail vertebrae 50 and pectoral fin radials 96. Key words : New species, Okamejei mengae, Rajidae, South China Sea, Chondri- chthyes size and condition of the anterior margin of the Introduction neurocranial fontanelle. Okamejei was later ele- vated to generic rank by McEachran and Dunn The family Rajidae is cosmopolitan, encompass- (1998). To date, genus Okamejei comprised nine ing about thirty genera and more than 230 nomi- species, three distributed in the Indian Ocean nal species, as well as about 50 undescribed spe- (Stehmann, 1976; Fricke and Al-Hassan, 1995) cies (McEachran and Miyake, 1990a, b; McEach- and six in the western North Pacific (reviewed by ran and Dunn, 1998).
    [Show full text]
  • Florida's Fintastic Sharks and Rays Lesson and Activity Packet
    Florida's Fintastic Sharks and Rays An at-home lesson for grades 3-5 Produced by: This educational workbook was produced through the support of the Indian River Lagoon National Estuary Program. 1 What are sharks and rays? Believe it or not, they’re a type of fish! When you think “fish,” you probably picture a trout or tuna, but fishes come in all shapes and sizes. All fishes share the following key characteristics that classify them into this group: Fishes have the simplest of vertebrate hearts with only two chambers- one atrium and one ventricle. The spine in a fish runs down the middle of its back just like ours, making fish vertebrates. All fishes have skeletons, but not all fish skeletons are made out of bones. Some fishes have skeletons made out of cartilage, just like your nose and ears. Fishes are cold-blooded. Cold-blooded animals use their environment to warm up or cool down. Fins help fish swim. Fins come in pairs, like pectoral and pelvic fins or are singular, like caudal or anal fins. Later in this packet, we will look at the different types of fins that fishes have and some of the unique ways they are used. 2 Placoid Ctenoid Ganoid Cycloid Hard protective scales cover the skin of many fish species. Scales can act as “fingerprints” to help identify some fish species. There are several different scale types found in bony fishes, including cycloid (round), ganoid (rectangular or diamond), and ctenoid (scalloped). Cartilaginous fishes have dermal denticles (Placoid) that resemble tiny teeth on their skin.
    [Show full text]
  • Stock Assessment and Fishery Evaluation of Skate Species (Rajidae)
    16. Gulf of Alaska Skates by Sarah Gaichas1, Nick Sagalkin2, Chris Gburski1, Duane Stevenson1, and Rob Swanson3 1NMFS Alaska Fisheries Science Center, Seattle WA 2ADF&G Commercial Fisheries Division, Kodiak AK 3NMFS Alaska Fisheries Science Center, Kodiak AK Executive Summary Summary of Major Changes Changes in the input data: 1. Total catch weight for GOA skates is updated with 2004 and partial 2005 data. 2. Biomass estimates from the 2005 GOA bottom trawl survey are incorporated. 3. Life history information has been updated with recent research results. 4. Information on the position of skates within the GOA ecosystem and the potential ecosystem effects of skate removals are included. Changes in assessment methodology: There are no changes to the Tier 5 assessment methodology. Changes in assessment results: No directed fishing for skates in the GOA is recommended, due to high incidental catch in groundfish and halibut fisheries. Skate biomass changed between the last NMFS GOA trawl survey in 2003 and the most recent survey in 2005, which changes the Tier 5 assessment results based on survey biomass. The recommendations for 2005 based on the three most recent survey biomass estimates for skates and M=0.10 are: Western Central GOA Eastern GOA GOA (610) (620, 630) (640, 650) Bathyraja skates Gulfwide Big skate ABC 695 2,250 599 ABC 1,617 OFL 927 3,001 798 OFL 2,156 Longnose skate ABC 65 1,969 861 OFL 87 2,625 1,148 Responses to SSC Comments SSC comments specific to the GOA Skates assessment: From the December, 2004 SSC minutes: The SSC is grateful to samplers with ADF&G who collected catch data and biological samples for Kodiak landings.
    [Show full text]
  • Press Release
    press release One of the World’s Rarest Rays Debuts at S.E.A. Aquarium S.E.A. Aquarium is the world’s first wildlife institution to feature the endangered ornate eagle ray Discover new fishy friends, catch Scuba Santa and Elves’ underwater adventures and join Guardians of the S.E.A.A. as part of Merry Fishmas festivities This December, have a Merry Fishmas at S.E.A. Aquarium and discover five new fishy residents, including the endangered ornate eagle ray (left) – the first of its kind to be featured in a wildlife institution. In addition to the new residents, crowd favourites such as Scuba Santa (right) and Elves will make a comeback with their cheeky underwater antics as they dive amongst sharks, manta rays and hundreds of schooling fish to provide treats for the animals. PHOTO CREDITS: RESORTS WORLD SENTOSA. SINGAPORE, 23 November 2017 – This holiday season, one of the world’s rarest rays – the ornate eagle ray – will make its debut at S.E.A. Aquarium in Resorts World Sentosa. The endangered species is the first of its kind to be featured in zoos and aquariums worldwide, and guests can look forward to learning more about this strikingly beautiful but elusive animal at S.E.A. Aquarium’s annual Merry Fishmas celebrations. From 1 December 2017 to 1 January 2018, S.E.A. Aquarium transforms into a water wonderland with sparkling displays, interactive activities, Scuba Santa and Elves’ underwater adventures and more. In addition to the educational and fun festivities for the whole family, guests can embark on a trail to spot five of the aquarium’s latest additions: the ornate eagle ray, Argentine humphead, Mauritius triggerfish, honeycomb cowfish and bat ray.
    [Show full text]
  • Batoid Abundances, Spatial Distribution, and Life History Traits
    animals Article Batoid Abundances, Spatial Distribution, and Life History Traits in the Strait of Sicily (Central Mediterranean Sea): Bridging a Knowledge Gap through Three Decades of Survey Michele Luca Geraci 1,2 , Sergio Ragonese 2,*, Danilo Scannella 2, Fabio Falsone 2, Vita Gancitano 2 , Jurgen Mifsud 3, Miriam Gambin 3, Alicia Said 3 and Sergio Vitale 2 1 Geological and Environmental Sciences (BiGeA)–Marine Biology and Fisheries Laboratory, Department of Biological, University of Bologna, Viale Adriatico 1/n, 61032 Fano, PU, Italy; [email protected] 2 Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council–CNR, Via Luigi Vaccara, 61, 91026 Mazara del Vallo, TP, Italy; [email protected] (D.S.); [email protected] (F.F.); [email protected] (V.G.); [email protected] (S.V.) 3 Department of Fisheries and Aquaculture, Ministry for Agriculture, Fisheries and Animal Rights (MAFA), Ghammieri Government Farm, Triq l-Ingiered, Malta; [email protected] (J.M.); [email protected] (M.G.); [email protected] (A.S.) * Correspondence: [email protected] Simple Summary: Batoid species are cartilaginous fish commonly known as rays, but they also Citation: Geraci, M.L.; Ragonese, S.; include stingrays, electric rays, guitarfish, skates, and sawfish. These species are very sensitive Scannella, D.; Falsone, F.; Gancitano, to fishing, mainly because of their slow growth rate and late maturity; therefore, they need to be V.; Mifsud, J.; Gambin, M.; Said, A.; adequately managed. Regrettably, information on life history traits (e.g., length at first maturity, Vitale, S. Batoid Abundances, Spatial sex ratio, and growth) and abundance are still scarce, particularly in the Mediterranean Sea.
    [Show full text]
  • Review of Migratory Chondrichthyan Fishes
    Convention on the Conservation of Migratory Species of Wild Animals Secretariat provided by the United Nations Environment Programme 14 TH MEETING OF THE CMS SCIENTIFIC COUNCIL Bonn, Germany, 14-17 March 2007 CMS/ScC14/Doc.14 Agenda item 4 and 6 REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES (Prepared by the Shark Specialist Group of the IUCN Species Survival Commission on behalf of the CMS Secretariat and Defra (UK)) For reasons of economy, documents are printed in a limited number, and will not be distributed at the meeting. Delegates are kindly requested to bring their copy to the meeting and not to request additional copies. REVIEW OF MIGRATORY CHONDRICHTHYAN FISHES IUCN Species Survival Commission’s Shark Specialist Group March 2007 Taxonomic Review Migratory Chondrichthyan Fishes Contents Acknowledgements.........................................................................................................................iii 1 Introduction ............................................................................................................................... 1 1.1 Background ...................................................................................................................... 1 1.2 Objectives......................................................................................................................... 1 2 Methods, definitions and datasets ............................................................................................. 2 2.1 Methodology....................................................................................................................
    [Show full text]