Modulation of Thrombospondin-1 in the Lung Microenvironment: Implications for Targeting Metastasis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1. -
Characterization of a Mutation in a Family with Saposin B Deficiency
Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 2541-2544, April 1990 Genetics Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect (sphingolipid activator protein/SAP-1/metachromatic leukodystrophy/arylsulfatase A) KEITH A. KRETZ*, GEOFFREY S. CARSON*, SATOSHI MORIMOTO*t, YASUO KISHIMOTO*, ARVAN L. FLUHARTYt, AND JOHN S. O'BPUEN*§ *Department of Neurosciences and Center for Molecular Genetics, University of California, San Diego, School of Medicine, M-034J, La Jolla, CA 92093; and tUniversity of California, Los Angeles, Mental Retardation Research Center Group at Lanterman Developmental Center, Pomona, CA 91766 Communicated by Dan L. Lindsley, January 19, 1990 ABSTRACT Saposins are small, heat-stable glycoproteins these four saposin proteins has now been isolated and their required for the hydrolysis of sphingolipids by specific lyso- activating properties have been determined (3-14). somal hydrolases. Saposins A, B, C, and D are derived by Saposins A and C specifically activate hydrolysis of glu- proteolytic processing from a single precursor protein named cocerebroside byB-glucosylceramidase (D-glucosyl-N-acyl- prosaposin. Saposin B, previously known as SAP-1 and sul- sphingosine glucohydrolase; EC 3.2.1.45) and ofgalactocere- fatide activator, stimulates the hydrolysis of a wide variety of broside by galactosylceramidase (D-galactosyl-N-acyl- substrates including cerebroside sulfate, GM1 ganglioside, and sphingosine galactohydrolase; EC 3.2.1.46) (3, 4). Saposin D globotriaosylceramide by arylsulfatase A, acid 8-galacto- specifically activates the hydrolysis of sphingomyelin by sidase, and a-galactosidase, respectively. Human saposin B sphingomyelin phosphodiesterase (sphingomyelin choline- deficiency, transmitted as an autosomal recessive trait, results phosphohydrolase; EC 3.1.4.12) (5). -
A Diverse Host Thrombospondin-Type-1
RESEARCH ARTICLE A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis Emilie-Fleur Neubauer1, Angela Z Poole2,3, Philipp Neubauer4, Olivier Detournay5, Kenneth Tan3, Simon K Davy1*, Virginia M Weis3* 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; 2Department of Biology, Western Oregon University, Monmouth, United States; 3Department of Integrative Biology, Oregon State University, Corvallis, United States; 4Dragonfly Data Science, Wellington, New Zealand; 5Planktovie sas, Allauch, France Abstract The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous *For correspondence: Simon. TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest [email protected] (SKD); weisv@ at early time-points during symbiosis establishment. Our work characterizes the diversity of oregonstate.edu (VMW) cnidarian TSR proteins and provides evidence that these proteins play an important role in the Competing interests: The establishment of cnidarian-dinoflagellate symbiosis. authors declare that no DOI: 10.7554/eLife.24494.001 competing interests exist. -
Thrombospondin-1, Human (ECM002)
Thrombospondin-1, human recombinant, expressed in HEK 293 cells suitable for cell culture Catalog Number ECM002 Storage Temperature –20 C Synonyms: THBS1, THBS, TSP1, TSP This product is supplied as a powder, lyophilized from phosphate buffered saline. It is aseptically filled. Product Description Thrombospondin-1 (TSP1) is believed to play a role in The biological activity of recombinant human cell migration and proliferation, during embryogenesis thrombospondin-1 was tested in culture by measuring and wound repair.1-2 TSP1 expression is highly the ability of immobilized DTT-treated regulated by different hormones and cytokines, and is thrombospondin-1 to support adhesion of SVEC4-10 developmentally controlled. TSP1 stimulates the growth cells. of vascular smooth muscle cells and human foreskin fibroblasts. A combination of interferon and tumor Uniprot: P07996 necrosis factor inhibits TSP1 production in these cells.3 In endothelial cells, it controls adhesion and Purity: 95% (SDS-PAGE) migration as well as proliferation. It also exhibits antiangiogenic properties and regulates immune Endotoxin level: 1.0 EU/g FN (LAL) processes.4-5 TSP1 binds to various cell surface receptors, such as integrins and integrin-associated Precautions and Disclaimer protein CD47.1 It also plays a crucial role in This product is for R&D use only, not for drug, inflammatory processes and post-inflammatory tissue household, or other uses. Please consult the Safety dynamics.6 TSP1 has been used as a potential Data Sheet for information regarding hazards and safe regulator of tumor growth and metastasis.5 It is handling practices. upregulated in rheumatoid synovial tissues and might be associated with rheumatoid arthritis.7 Variants of this Preparation Instructions gene might be linked with increased risk of autism.8 Briefly centrifuge the vial before opening. -
A Saposin Deficiency Model in Drosophila: Lysosomal Storage, Progressive Neurodegeneration and Sensory Physiological Decline
This is a repository copy of A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/109579/ Version: Published Version Article: Elliott, Christopher John Hazell orcid.org/0000-0002-5805-3645 and Sweeney, Sean orcid.org/0000-0003-2673-9578 (2017) A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiology of disease. pp. 77-87. ISSN 1095-953X https://doi.org/10.1016/j.nbd.2016.11.012 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Neurobiology of Disease 98 (2017) 77–87 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Asaposindeficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline Samantha J. Hindle a,1, Sarita Hebbar b,2,DominikSchwudkeb,3, Christopher J.H. Elliott a, Sean T. Sweeney a,⁎ a Department of Biology, University of York, York YO10 5DD, UK b National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India article info abstract Article history: Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature Received 1 September 2016 death within three months of life. -
Structure of Saposin a Lipoprotein Discs
Structure of saposin A lipoprotein discs Konstantin Popovica, John Holyoakeb,c, Régis Pomèsb,d, and Gilbert G. Privéa,c,d,1 aDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9; bMolecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; cOntario Cancer Institute, Campbell Family Institute for Cancer Research, Toronto, ON, Canada M5G 1L7; and dDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8 Edited by Donald Engelman, Yale University, New Haven, CT, and approved December 17, 2011 (received for review September 23, 2011) The saposins are small, membrane-active proteins that exist in both functions to activate the sphingolipid hydrolysis reaction. How- soluble and lipid-bound states. Saposin A has roles in sphingolipid ever, structural flexibility is a crucial feature for the membrane catabolism and transport and is required for the breakdown of surface binding and lipid-solubilizing abilities of the saposin pro- galactosylceramide by β-galactosylceramidase. In the absence of teins (3, 18, 19). lipid, saposin A adopts a closed monomeric apo conformation Here, we characterize the interactions of saposin A with var- typical of this family. To study a lipid-bound state of this protein, ious amphiphiles. Saposin A undergoes a conformational change we determined the crystal structure of saposin A in the presence of in the presence of lipids and detergents and forms small lipo- detergent to 1.9 Å resolution. The structure reveals two chains of protein particles with a wide range of lipids. The 1.9 Å crystal saposin A in an open conformation encapsulating 40 internally structure of saposin A in complex with zwitterionic detergent bound detergent molecules organized in a highly ordered bilayer- lauryldimethylamine-N-oxide (LDAO) reveals two saposin chains like hydrophobic core. -
Matrix Mechanotransduction Mediated by Thrombospondin-1/Integrin/YAP in the Vascular Remodeling
Matrix mechanotransduction mediated by thrombospondin-1/integrin/YAP in the vascular remodeling Yoshito Yamashiroa,1, Bui Quoc Thangb, Karina Ramireza,c, Seung Jae Shina,d, Tomohiro Kohatae, Shigeaki Ohataf, Tram Anh Vu Nguyena,c, Sumio Ohtsukie, Kazuaki Nagayamaf, and Hiromi Yanagisawaa,g,1 aLife Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan; bDepartment of Cardiovascular Surgery, University of Tsukuba, Ibaraki 305-8575, Japan; cPh.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki 305-8577, Japan; dGraduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan; eFaculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; fGraduate School of Mechanical Systems Engineering, Ibaraki University, Ibaraki 316-8511, Japan; and gDivision of Biomedical Science, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8577, Japan Edited by Kun-Liang Guan, University of California San Diego, La Jolla, CA, and accepted by Editorial Board Member Christine E. Seidman March 15, 2020 (received for review November 9, 2019) The extracellular matrix (ECM) initiates mechanical cues that highly context dependent, and extracellular regulators are not activate intracellular signaling through matrix–cell interactions. fully understood (6, 9). In blood vessels, additional mechanical cues derived from the pul- Thrombospondin-1 (Thbs1) is a homotrimeric glycoprotein satile blood flow and pressure play a pivotal role in homeostasis with a complex multidomain structure capable of interacting with and disease development. Currently, the nature of the cues from a variety of receptors such as integrins, cluster of differentiation the ECM and their interaction with the mechanical microenviron- (CD) 36, and CD47 (10). -
Impaired Prosaposin Lysosomal Trafficking in Frontotemporal Lobar
ARTICLE Received 30 Sep 2016 | Accepted 15 Mar 2017 | Published 25 May 2017 DOI: 10.1038/ncomms15277 OPEN Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations Xiaolai Zhou1, Lirong Sun1,2, Oliver Bracko3, Ji Whae Choi1, Yan Jia1, Alissa L. Nana4, Owen Adam Brady1, Jean C. Cruz Hernandez3, Nozomi Nishimura3, William W. Seeley4,5 & Fenghua Hu1 Haploinsufficiency of progranulin (PGRN) due to mutations in the granulin (GRN) gene causes frontotemporal lobar degeneration (FTLD), and complete loss of PGRN leads to a lysosomal storage disorder, neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests that PGRN is essential for proper lysosomal function, but the precise mechanisms involved are not known. Here, we show that PGRN facilitates neuronal uptake and lysosomal delivery of prosaposin (PSAP), the precursor of saposin peptides that are essential for lysosomal glycosphingolipid degradation. We found reduced levels of PSAP in neurons both in mice deficient in PGRN and in human samples from FTLD patients due to GRN mutations. Furthermore, mice with reduced PSAP expression demonstrated FTLD-like pathology and behavioural changes. Thus, our data demonstrate a role of PGRN in PSAP lysosomal trafficking and suggest that impaired lysosomal trafficking of PSAP is an underlying disease mechanism for NCL and FTLD due to GRN mutations. 1 Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA. 2 Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China. 3 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA. -
Impaired Β-Glucocerebrosidase Activity and Processing in Frontotemporal Dementia Due to Progranulin Mutations Andrew E
Arrant et al. Acta Neuropathologica Communications (2019) 7:218 https://doi.org/10.1186/s40478-019-0872-6 RESEARCH Open Access Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations Andrew E. Arrant1,2*, Jonathan R. Roth1, Nicholas R. Boyle1, Shreya N. Kashyap1, Madelyn Q. Hoffmann1, Charles F. Murchison1,3, Eliana Marisa Ramos4, Alissa L. Nana5, Salvatore Spina5, Lea T. Grinberg5,6, Bruce L. Miller5, William W. Seeley5,6 and Erik D. Roberson1,7* Abstract Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid- metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β- glucocerebrosidase in FTD-GRN patients. -
The Parkinson's-Disease-Associated Receptor GPR37 Undergoes
© 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1366-1377 doi:10.1242/jcs.176115 RESEARCH ARTICLE The Parkinson’s-disease-associated receptor GPR37 undergoes metalloproteinase-mediated N-terminal cleavage and ectodomain shedding S. Orvokki Mattila, Jussi T. Tuusa* and Ulla E. Petäjä-Repo‡ ABSTRACT like receptor [Pael receptor (Imai et al., 2001)]. Mutations in the PARK2 The G-protein-coupled receptor 37 ( GPR37) has been implicated in gene leading to the loss of the ubiquitin ligase activity of the juvenile form of Parkinson’s disease, in dopamine signalling and parkin are the most common causes of AR-JP (Kitada et al., 1998). in the survival of dopaminergic cells in animal models. The structure An insoluble form of GPR37 has been reported to accumulate in the and function of the receptor, however, have remained enigmatic. brains of AR-JP patients (Imai et al., 2001) and also in the core of ’ Here, we demonstrate that although GPR37 matures and is exported Lewy bodies of Parkinson s disease patients in general (Murakami from the endoplasmic reticulum in a normal manner upon et al., 2004). Thus, the intracellular aggregation and impaired heterologous expression in HEK293 and SH-SY5Y cells, its long ubiquitylation of unfolded GPR37 by parkin have been proposed to extracellular N-terminus is subject to metalloproteinase-mediated be linked with the death of dopaminergic neurons characteristic of ’ limited proteolysis between E167 and Q168. The proteolytic Parkinson s disease (Imai et al., 2001; Kitao et al., 2007). Based on processing is a rapid and efficient process that occurs constitutively. -
Cell Surface-Localized Matrix Metalloproteinase-9 Proteolytically Activates TGF- and Promotes Tumor Invasion and Angiogenesis
Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF- and promotes tumor invasion and angiogenesis Qin Yu and Ivan Stamenkovic1 Molecular Pathology Unit, Massachusetts General Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129 USA We have uncovered a novel functional relationship between the hyaluronan receptor CD44, the matrix metalloproteinase-9 (MMP-9) and the multifunctional cytokine TGF- in the control of tumor-associated tissue remodeling. CD44 provides a cell surface docking receptor for proteolytically active MMP-9 and we show here that localization of MMP-9 to cell surface is required for its ability to promote tumor invasion and angiogenesis. Our observations also indicate that MMP-9, as well as MMP-2, proteolytically cleaves latent TGF-, providing a novel and potentially important mechanism for TGF- activation. In addition, we show that MMP-9 localization to the surface of normal keratinocytes is CD44 dependent and can activate latent TGF-. These observations suggest that coordinated CD44, MMP-9, and TGF- function may provide a physiological mechanism of tissue remodeling that can be adopted by malignant cells to promote tumor growth and invasion. [Key Words: MMP-9; CD44; TGF-; tumor angiogenesis; tumor invasion] Received September 10, 1999; revised version accepted December 7, 1999. The ability of tumor cells to establish a functional rela- nals transduced by integrins following engagement by tionship with their host tissue microenvironment and to ligands may provide tumor cells with critical survival utilize the local resources to their advantage are key fac- signals within the host tissue microenvironment (Frisch tors in determining tumor cell survival, local tumor de- and Ruoslahti 1997). -
Prosaposin Precursor Protein: Functions and Medical Applications
SCRIPTA MEDICA (BRNO) – 77 (3): 127–134, June 2004 PROSAPOSIN PRECURSOR PROTEIN: FUNCTIONS AND MEDICAL APPLICATIONS. REVIEW HAM D. Department of Preventive Medicine, Faculty of Medicine, Masaryk University, Brno Received after revision May 2004 A b s t r a c t Prosaposin is a precursor of four saposins, termed saposin A, B, C, and D, which activate gly- cosphingolipid hydrolysis. Inherited deficiency of saposins leads to several forms of lysosomal storage disease. Besides the lysosomal function, a secreted form of prosaposin displays several other proper- ties. This precursor was shown in rodents to maintain the nervous system associated with oxidative stress signalling. The sequences of prosaposin were also applied in order to increase the binding of bull sperm to the egg membrane, thereby improving fertilization. Estrogen elevated levels of prosaposin in vitro and in vivo and prosaposin activated the MAPK/Akt signalling cascade, while prosaposin-deficient mice showed involution of the prostate gland. These results led to a hypothesis that this protein may play a role in the pathological alterations of the prostate. Involvement of saposins in lipid presentation to T cells allowed the consideration that these proteins may form links between lipid metabolism and immunological control. Thus, the properties of the multifunctional protein prosaposin summarized in this review could open new avenues for the future pharmaceutical interventions. K e y w o r d s Cancer, Lysosomes, Prosaposin, Saposin, Prostate Abbreviations GSLs, glycosphingolipids; MAPK, mitogen activated protein kinase BIOLOGY OF PROSAPOSIN, THE PRECURSOR OF FOUR SAPOSINS Several acid hydrolases involved in the degradation of glycosphingolipids (GSLs) require the assistance of small glycoprotein activator proteins called saposins (sa- posin A, B, C, or D) (1).