Structure of Saposin a Lipoprotein Discs

Total Page:16

File Type:pdf, Size:1020Kb

Structure of Saposin a Lipoprotein Discs Structure of saposin A lipoprotein discs Konstantin Popovica, John Holyoakeb,c, Régis Pomèsb,d, and Gilbert G. Privéa,c,d,1 aDepartment of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 2M9; bMolecular Structure and Function, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8; cOntario Cancer Institute, Campbell Family Institute for Cancer Research, Toronto, ON, Canada M5G 1L7; and dDepartment of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8 Edited by Donald Engelman, Yale University, New Haven, CT, and approved December 17, 2011 (received for review September 23, 2011) The saposins are small, membrane-active proteins that exist in both functions to activate the sphingolipid hydrolysis reaction. How- soluble and lipid-bound states. Saposin A has roles in sphingolipid ever, structural flexibility is a crucial feature for the membrane catabolism and transport and is required for the breakdown of surface binding and lipid-solubilizing abilities of the saposin pro- galactosylceramide by β-galactosylceramidase. In the absence of teins (3, 18, 19). lipid, saposin A adopts a closed monomeric apo conformation Here, we characterize the interactions of saposin A with var- typical of this family. To study a lipid-bound state of this protein, ious amphiphiles. Saposin A undergoes a conformational change we determined the crystal structure of saposin A in the presence of in the presence of lipids and detergents and forms small lipo- detergent to 1.9 Å resolution. The structure reveals two chains of protein particles with a wide range of lipids. The 1.9 Å crystal saposin A in an open conformation encapsulating 40 internally structure of saposin A in complex with zwitterionic detergent bound detergent molecules organized in a highly ordered bilayer- lauryldimethylamine-N-oxide (LDAO) reveals two saposin chains like hydrophobic core. The complex provides a high-resolution in an open state forming an amphipathic protein belt surrounding view of a discoidal lipoprotein particle in which all of the interna- 40 ordered detergent molecules. The structure of the saposin A lized acyl chains are resolved. Saposin A lipoprotein discs exhibit lipoprotein discs is further supported by coarse-grained molecu- limited selectivity with respect to the incorporated lipid, and can lar dynamics simulations. Overall, we find that saposin A/lipid solubilize phospholipids, sphingolipids, and cholesterol into dis- assemblies form unusual lipoprotein complexes that share some crete, monodisperse particles with mass of approximately 27 kDa. similarities with discoidal high density lipoprotein particles, but These discs may be the smallest possible lipoprotein structures that are significantly smaller. are stabilized by lipid self-assembly. BIOPHYSICS AND Results and Discussion COMPUTATIONAL BIOLOGY protein-lipid complex ∣ X-ray crystallography ∣ molecular dynamics ∣ Characterization of Saposin A with Amphiphiles. To describe the Krabbe disease lipid-induced conformational changes in the structure of human saposin A, we used intrinsic tryptophan fluorescence spectro- phingolipid activator proteins (SAPs) are nonenzymatic pro- scopy and monitored amphiphile-induced spectral shifts. All Steins that are required for the lysosomal breakdown of certain solution experiments were conducted at pH 4.8, reflective of the sphingolipids by hydrolase enzymes (1). In general, the SAPs are pH within lysosomes. Saposin A contains a single tryptophan, thought to act by modifying the physical states of the target lipids W37, which is solvent exposed in the closed monomeric form. so that the substrates become accessible to the active sites of the Incubation of saposin A with liposomes resulted in an increase in enzymes. The details of how this effect is achieved are not clear, the intensity of the tryptophan emission spectrum and a 6–8nm but it is likely that different SAPs use different mechanisms in blue shift, indicative of a reduction in the solvent accessibility of activating one or more specific lipid/enzyme reactions (2–4). the residue and a shift to a less polar environment (Fig. 1A). This Human lysosomes contain five SAPs: the GM2 activator and the effect was seen with liposomes made from a wide variety of lipids saposins A, B, C, and D. The four homologous saposins are small and lipid mixtures. We also found that several nondenaturing cysteine-rich α-helical glycoproteins that are derived from the detergents, including LDAO, induced similar spectral shifts. The prosaposin precursor protein (5, 6). Saposin A activates the characteristic changes occurred at concentrations above the cri- hydrolysis of galactosylceramide by β-galactosylceramidase to tical micelle concentration of the detergent. produce ceramide and galactose (7, 8). Loss of functional saposin Saposin A interacts with liposomes and immobilized lipids A results in a variant form of Krabbe disease, which is character- (20) but does not remain bound to liposomes (21), suggesting that ized by demyelination, loss of oligodendrocytes, and infiltration the protein can form soluble lipid complexes. We incubated lipo- of globoid cells (9–12). Saposin A is also important for the load- somes of varying composition with saposin A and analyzed the ing of lipid antigens onto CD1d molecules (13, 14). solutions by size exclusion chromatography (SEC). We consis- We previously reported the crystal structure of the soluble tently observed a single sharp peak in the 35–45 kDa range of the form of saposin A in the absence of bound lipids (15). In this column, corresponding to hydrodynamic radii ranging from 3.07– structure, the small 81 residue protein adopts the compact, mono- 3.45 nm (Fig. 1B, Fig. S1, TableS1). Collectively, we refer to these meric four α-helix closed form of the fold seen in other saposins species as 3.2-nm particles. An additional absorbance peak at and saposin-like proteins (15–18). Helices 1 and 4 are disulfide the void volume of the column was occasionally detected but did linked in a stem structure, whereas helices 2 and 3 are disulfide not contain significant amounts of protein and was due to light linked to each other and form a helical hairpin. In the closed scattering from large lipid vesicles (Fig. S1). The exact size of form, the stem and hairpin segments collapse onto themselves, burying the hydrophobic surfaces of the four amphipathic helices Author contributions: K.P., J.H., R.P., and G.G.P. designed research; K.P. and J.H. performed via bends at the short turns at the α1∕α2 and α3∕α4 junctions. research; K.P., J.H., R.P., and G.G.P. analyzed data; and K.P., J.H., R.P., and G.G.P. wrote Notably, the closed form of the saposin fold buries the majority the paper. of the hydrophobic surfaces into a small hydrophobic core and The authors declare no conflict of interest. does not form a cavity that can accommodate lipids. In addition, This article is a PNAS Direct Submission. the external surface of the closed conformation of saposin A is Data deposition: Crystallography, atomic coordinates, and structure factors have been polar and does not have any extended nonpolar regions that deposited in the Protein Data Bank, www.pdb.org (PDB ID code 4DDJ). would suggest a membrane-active protein. Overall, the lipid-free 1To whom correspondence should be addressed. E-mail: [email protected]. structure of saposin A provides only limited insight into the lipid This article contains supporting information online at www.pnas.org/lookup/suppl/ interaction properties of saposin A and does not explain how it doi:10.1073/pnas.1115743109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1115743109 PNAS Early Edition ∣ 1of5 Downloaded by guest on September 24, 2021 higher energy X-rays. Data collection and refinement statistics are 5.2 nm 232 kDa 43 kDa 6.5 kDa Vo 3.1 nm 1.35 nm given in Ta b l e S 2 . A saposin A B + lipid mix 4 The crystal structure revealed an open saposin fold in which + PC 0.5 + LDAO the stem and hairpin segments of the protein are opened in a 3 0.4 jackknife fashion relative to the closed form of the protein 0.3 2 (Fig. 2). A comparison of the lipid-free closed form of saposin 0.2 A (15) and LDAO-bound open form reveal that the main struc- 1 tural rearrangements in the protein involve residues 19–23 and 0.1 A280 nm (mAU) – 0.0 0 62 69. These two regions form the hinges that allow the stem and Relative fluorescence 320 340 360 380 400 0 5 10 15 20 25 hairpin segments of saposin A to open up into a V shape, result- Wavelength (nm) mL ing in an opening of approximately 115° between the two halves of 30 the protein. Residues 62–67 are in a coil conformation in the C D 3 6 α 25 closed form, but extend the C-terminal end of helix 3 in the open form. There are only minor conformational changes near residue 20 2 4 Y54, which is an important hinge residue in saposins B and C (3, 15 18, 19). Structures of saposin C have been observed in two open 1 % Intensity 10 2 states: as a dimeric homodimer with no associated lipid (18) and A280 nm (mAU) 5 A490 nm (mAU) in association with SDS micelles by NMR (19). In the latter 0 0 0 study, no information about the structure of the bound detergent 0.1 1 10 100 1,000 10,000 0 510152025 or the overall assembly of the saposin C/SDS complex could be mL Rh (nm) determined. Fig. 1. Solution characterization of saposin A in the presence of lipids and The open state of the protein exposes a concave hydrophobic detergent. (A) Emission spectra of saposin A in the absence of lipid or deter- inner face, and this surface is covered by LDAO acyl chains in the gent (blue), in the presence of a lipid mix designed to mimic lysosomal lipids crystal structure (Fig.
Recommended publications
  • Sphingolipid Metabolism Diseases ⁎ Thomas Kolter, Konrad Sandhoff
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1758 (2006) 2057–2079 www.elsevier.com/locate/bbamem Review Sphingolipid metabolism diseases ⁎ Thomas Kolter, Konrad Sandhoff Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany Received 23 December 2005; received in revised form 26 April 2006; accepted 23 May 2006 Available online 14 June 2006 Abstract Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated “cross correction”, gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT. © 2006 Elsevier B.V. All rights reserved. Keywords: Ceramide; Lysosomal storage disease; Saposin; Sphingolipidose Contents 1. Sphingolipid structure, function and biosynthesis ..........................................2058 1.1.
    [Show full text]
  • Characterization of a Mutation in a Family with Saposin B Deficiency
    Proc. Nadl. Acad. Sci. USA Vol. 87, pp. 2541-2544, April 1990 Genetics Characterization of a mutation in a family with saposin B deficiency: A glycosylation site defect (sphingolipid activator protein/SAP-1/metachromatic leukodystrophy/arylsulfatase A) KEITH A. KRETZ*, GEOFFREY S. CARSON*, SATOSHI MORIMOTO*t, YASUO KISHIMOTO*, ARVAN L. FLUHARTYt, AND JOHN S. O'BPUEN*§ *Department of Neurosciences and Center for Molecular Genetics, University of California, San Diego, School of Medicine, M-034J, La Jolla, CA 92093; and tUniversity of California, Los Angeles, Mental Retardation Research Center Group at Lanterman Developmental Center, Pomona, CA 91766 Communicated by Dan L. Lindsley, January 19, 1990 ABSTRACT Saposins are small, heat-stable glycoproteins these four saposin proteins has now been isolated and their required for the hydrolysis of sphingolipids by specific lyso- activating properties have been determined (3-14). somal hydrolases. Saposins A, B, C, and D are derived by Saposins A and C specifically activate hydrolysis of glu- proteolytic processing from a single precursor protein named cocerebroside byB-glucosylceramidase (D-glucosyl-N-acyl- prosaposin. Saposin B, previously known as SAP-1 and sul- sphingosine glucohydrolase; EC 3.2.1.45) and ofgalactocere- fatide activator, stimulates the hydrolysis of a wide variety of broside by galactosylceramidase (D-galactosyl-N-acyl- substrates including cerebroside sulfate, GM1 ganglioside, and sphingosine galactohydrolase; EC 3.2.1.46) (3, 4). Saposin D globotriaosylceramide by arylsulfatase A, acid 8-galacto- specifically activates the hydrolysis of sphingomyelin by sidase, and a-galactosidase, respectively. Human saposin B sphingomyelin phosphodiesterase (sphingomyelin choline- deficiency, transmitted as an autosomal recessive trait, results phosphohydrolase; EC 3.1.4.12) (5).
    [Show full text]
  • A Saposin Deficiency Model in Drosophila: Lysosomal Storage, Progressive Neurodegeneration and Sensory Physiological Decline
    This is a repository copy of A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/109579/ Version: Published Version Article: Elliott, Christopher John Hazell orcid.org/0000-0002-5805-3645 and Sweeney, Sean orcid.org/0000-0003-2673-9578 (2017) A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline. Neurobiology of disease. pp. 77-87. ISSN 1095-953X https://doi.org/10.1016/j.nbd.2016.11.012 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Neurobiology of Disease 98 (2017) 77–87 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Asaposindeficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline Samantha J. Hindle a,1, Sarita Hebbar b,2,DominikSchwudkeb,3, Christopher J.H. Elliott a, Sean T. Sweeney a,⁎ a Department of Biology, University of York, York YO10 5DD, UK b National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka 560065, India article info abstract Article history: Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature Received 1 September 2016 death within three months of life.
    [Show full text]
  • Impaired Prosaposin Lysosomal Trafficking in Frontotemporal Lobar
    ARTICLE Received 30 Sep 2016 | Accepted 15 Mar 2017 | Published 25 May 2017 DOI: 10.1038/ncomms15277 OPEN Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations Xiaolai Zhou1, Lirong Sun1,2, Oliver Bracko3, Ji Whae Choi1, Yan Jia1, Alissa L. Nana4, Owen Adam Brady1, Jean C. Cruz Hernandez3, Nozomi Nishimura3, William W. Seeley4,5 & Fenghua Hu1 Haploinsufficiency of progranulin (PGRN) due to mutations in the granulin (GRN) gene causes frontotemporal lobar degeneration (FTLD), and complete loss of PGRN leads to a lysosomal storage disorder, neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests that PGRN is essential for proper lysosomal function, but the precise mechanisms involved are not known. Here, we show that PGRN facilitates neuronal uptake and lysosomal delivery of prosaposin (PSAP), the precursor of saposin peptides that are essential for lysosomal glycosphingolipid degradation. We found reduced levels of PSAP in neurons both in mice deficient in PGRN and in human samples from FTLD patients due to GRN mutations. Furthermore, mice with reduced PSAP expression demonstrated FTLD-like pathology and behavioural changes. Thus, our data demonstrate a role of PGRN in PSAP lysosomal trafficking and suggest that impaired lysosomal trafficking of PSAP is an underlying disease mechanism for NCL and FTLD due to GRN mutations. 1 Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA. 2 Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China. 3 Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA.
    [Show full text]
  • Impaired Β-Glucocerebrosidase Activity and Processing in Frontotemporal Dementia Due to Progranulin Mutations Andrew E
    Arrant et al. Acta Neuropathologica Communications (2019) 7:218 https://doi.org/10.1186/s40478-019-0872-6 RESEARCH Open Access Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations Andrew E. Arrant1,2*, Jonathan R. Roth1, Nicholas R. Boyle1, Shreya N. Kashyap1, Madelyn Q. Hoffmann1, Charles F. Murchison1,3, Eliana Marisa Ramos4, Alissa L. Nana5, Salvatore Spina5, Lea T. Grinberg5,6, Bruce L. Miller5, William W. Seeley5,6 and Erik D. Roberson1,7* Abstract Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia. Most pathogenic GRN mutations result in progranulin haploinsufficiency, which is thought to cause frontotemporal dementia in GRN mutation carriers. Progranulin haploinsufficiency may drive frontotemporal dementia pathogenesis by disrupting lysosomal function, as patients with GRN mutations on both alleles develop the lysosomal storage disorder neuronal ceroid lipofuscinosis, and frontotemporal dementia patients with GRN mutations (FTD-GRN) also accumulate lipofuscin. The specific lysosomal deficits caused by progranulin insufficiency remain unclear, but emerging data indicate that progranulin insufficiency may impair lysosomal sphingolipid- metabolizing enzymes. We investigated the effects of progranulin insufficiency on sphingolipid-metabolizing enzymes in the inferior frontal gyrus of FTD-GRN patients using fluorogenic activity assays, biochemical profiling of enzyme levels and posttranslational modifications, and quantitative neuropathology. Of the enzymes studied, only β-glucocerebrosidase exhibited impairment in FTD-GRN patients. Brains from FTD-GRN patients had lower activity than controls, which was associated with lower levels of mature β-glucocerebrosidase protein and accumulation of insoluble, incompletely glycosylated β-glucocerebrosidase. Immunostaining revealed loss of neuronal β- glucocerebrosidase in FTD-GRN patients.
    [Show full text]
  • The Parkinson's-Disease-Associated Receptor GPR37 Undergoes
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 1366-1377 doi:10.1242/jcs.176115 RESEARCH ARTICLE The Parkinson’s-disease-associated receptor GPR37 undergoes metalloproteinase-mediated N-terminal cleavage and ectodomain shedding S. Orvokki Mattila, Jussi T. Tuusa* and Ulla E. Petäjä-Repo‡ ABSTRACT like receptor [Pael receptor (Imai et al., 2001)]. Mutations in the PARK2 The G-protein-coupled receptor 37 ( GPR37) has been implicated in gene leading to the loss of the ubiquitin ligase activity of the juvenile form of Parkinson’s disease, in dopamine signalling and parkin are the most common causes of AR-JP (Kitada et al., 1998). in the survival of dopaminergic cells in animal models. The structure An insoluble form of GPR37 has been reported to accumulate in the and function of the receptor, however, have remained enigmatic. brains of AR-JP patients (Imai et al., 2001) and also in the core of ’ Here, we demonstrate that although GPR37 matures and is exported Lewy bodies of Parkinson s disease patients in general (Murakami from the endoplasmic reticulum in a normal manner upon et al., 2004). Thus, the intracellular aggregation and impaired heterologous expression in HEK293 and SH-SY5Y cells, its long ubiquitylation of unfolded GPR37 by parkin have been proposed to extracellular N-terminus is subject to metalloproteinase-mediated be linked with the death of dopaminergic neurons characteristic of ’ limited proteolysis between E167 and Q168. The proteolytic Parkinson s disease (Imai et al., 2001; Kitao et al., 2007). Based on processing is a rapid and efficient process that occurs constitutively.
    [Show full text]
  • Prosaposin Precursor Protein: Functions and Medical Applications
    SCRIPTA MEDICA (BRNO) – 77 (3): 127–134, June 2004 PROSAPOSIN PRECURSOR PROTEIN: FUNCTIONS AND MEDICAL APPLICATIONS. REVIEW HAM D. Department of Preventive Medicine, Faculty of Medicine, Masaryk University, Brno Received after revision May 2004 A b s t r a c t Prosaposin is a precursor of four saposins, termed saposin A, B, C, and D, which activate gly- cosphingolipid hydrolysis. Inherited deficiency of saposins leads to several forms of lysosomal storage disease. Besides the lysosomal function, a secreted form of prosaposin displays several other proper- ties. This precursor was shown in rodents to maintain the nervous system associated with oxidative stress signalling. The sequences of prosaposin were also applied in order to increase the binding of bull sperm to the egg membrane, thereby improving fertilization. Estrogen elevated levels of prosaposin in vitro and in vivo and prosaposin activated the MAPK/Akt signalling cascade, while prosaposin-deficient mice showed involution of the prostate gland. These results led to a hypothesis that this protein may play a role in the pathological alterations of the prostate. Involvement of saposins in lipid presentation to T cells allowed the consideration that these proteins may form links between lipid metabolism and immunological control. Thus, the properties of the multifunctional protein prosaposin summarized in this review could open new avenues for the future pharmaceutical interventions. K e y w o r d s Cancer, Lysosomes, Prosaposin, Saposin, Prostate Abbreviations GSLs, glycosphingolipids; MAPK, mitogen activated protein kinase BIOLOGY OF PROSAPOSIN, THE PRECURSOR OF FOUR SAPOSINS Several acid hydrolases involved in the degradation of glycosphingolipids (GSLs) require the assistance of small glycoprotein activator proteins called saposins (sa- posin A, B, C, or D) (1).
    [Show full text]
  • Glucocerebrosidase: Functions in and Beyond the Lysosome
    Journal of Clinical Medicine Review Glucocerebrosidase: Functions in and Beyond the Lysosome Daphne E.C. Boer 1, Jeroen van Smeden 2,3, Joke A. Bouwstra 2 and Johannes M.F.G Aerts 1,* 1 Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] 2 Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Faculty of Science, 2333 CC Leiden, The Netherlands; [email protected] (J.v.S.); [email protected] (J.A.B.) 3 Centre for Human Drug Research, 2333 CL Leiden, The Netherlands * Correspondence: [email protected] Received: 29 January 2020; Accepted: 4 March 2020; Published: 9 March 2020 Abstract: Glucocerebrosidase (GCase) is a retaining β-glucosidase with acid pH optimum metabolizing the glycosphingolipid glucosylceramide (GlcCer) to ceramide and glucose. Inherited deficiency of GCase causes the lysosomal storage disorder named Gaucher disease (GD). In GCase-deficient GD patients the accumulation of GlcCer in lysosomes of tissue macrophages is prominent. Based on the above, the key function of GCase as lysosomal hydrolase is well recognized, however it has become apparent that GCase fulfills in the human body at least one other key function beyond lysosomes. Crucially, GCase generates ceramides from GlcCer molecules in the outer part of the skin, a process essential for optimal skin barrier property and survival. This review covers the functions of GCase in and beyond lysosomes and also pays attention to the increasing insight in hitherto unexpected catalytic versatility of the enzyme. Keywords: glucocerebrosidase; lysosome; glucosylceramide; skin; Gaucher disease 1.
    [Show full text]
  • The Evolutionary History of Prosaposin: Two Successive Tandem-Duplication Events Gave Rise to the Four Saposin Domains in Vertebrates
    J Mol Evol (2002) 54:30–34 DOI: 10.1007/s00239-001-0014-0 © Springer-Verlag New York Inc. 2002 The Evolutionary History of Prosaposin: Two Successive Tandem-Duplication Events Gave Rise to the Four Saposin Domains in Vertebrates Einat Hazkani-Covo,1 Neta Altman,2 Mia Horowitz,2 Dan Graur1 1 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel 2 Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel Received: 8 February 2001 / Accepted: 29 June 2001 Abstract. Prosaposin is a multifunctional protein en- C, and D) occurring as tandem repeats connected by coded by a single-copy gene. It contains four saposin linker sequences. The four functional saposins are gen- domains (A, B, C, and D) occurring as tandem repeats erated by postranslational processing of the prosaposin connected by linker sequences. Because the saposin do- precursor in the lysosome. Each saposin is relatively spe- mains are similar to one another, it is deduced that they cific with respect to substrate, i.e., it activates a specific were created by sequential duplications of an ancestral glycosphingolipid hydrolase in the lysosome, but some domain. There are two types of evolutionary scenarios overlapping specificities are known (Sandhoff et al. that may explain the creation of the four-domain gene: 1995). In addition to serving as a precursor of four sa- (1) two rounds of tandem internal gene duplication and posins, intact prosaposin has an in vitro nerve- (2) three rounds of duplications.
    [Show full text]
  • GPR37 and GPR37L1 Are Receptors for the Neuroprotective and Glioprotective Factors Prosaptide and Prosaposin
    GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin Rebecca C. Meyer, Michelle M. Giddens, Stacy A. Schaefer, and Randy A. Hall1 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322 Edited by Roger D. Cone, Vanderbilt University School of Medicine, Nashville, TN, and approved April 16, 2013 (received for review October 31, 2012) GPR37 (also known as Pael-R) and GPR37L1 are orphan G protein- glial physiology beyond simply modulating dopaminergic neu- coupled receptors that are almost exclusively expressed in the rotransmission. nervous system. We screened these receptors for potential activation Because GPR37 and GPR37L1 exhibit their strongest sequence by various orphan neuropeptides, and these screens yielded a single similarity to the endothelin receptors and other GPCRs activated positive hit: prosaptide, which promoted the endocytosis of GPR37 by peptides, it has been viewed as likely that these receptors must and GPR37L1, bound to both receptors and activated signaling in be peptide-activated. Indeed, it has been reported that GPR37 can a GPR37- and GPR37L1-dependent manner. Prosaptide stimulation of bind to a neuropeptide known as “head activator” (HA) (17, 18), cells transfected with GPR37 or GPR37L1 induced the phosphor- which is derived from the invertebrate Hydra. However, following ylation of ERK in a pertussis toxin-sensitive manner, stimulated a handful of reports three decades ago about the potential exis- 35S-GTPγS binding, and promoted the inhibition of forskolin-stim- tence of an HA ortholog in mammalian brains (19, 20), no further ulated cAMP production. Because prosaptide is the active fragment evidence for an HA ortholog in vertebrates has come to light.
    [Show full text]
  • Is Modulation of Glucocerebrosidase a Viable New Treatment for Parkinson's Disease?
    DEPARTMENT OF CLINICAL NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden IS MODULATION OF GLUCOCEREBROSIDASE A VIABLE NEW TREATMENT FOR PARKINSON'S DISEASE? Mark Zurbruegg Stockholm 2019 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Printed by Eprint AB 2019 © Mark Zurbruegg, 2019 ISBN 978-91-7831-580-2 IS MODULATION OF GLUCOCEREBROSIDASE A VIABLE NEW TREATMENT FOR PARKINSON'S DISEASE? THESIS FOR LICENTIATE DEGREE By Mark Zurbruegg Principal Supervisor: Examination Board: Professor Per Svenningsson, Professor Anna Erlandsson, Karolinska Institutet Uppsala University, Department of Clinical Neuroscience Department of Public Health and Caring Sciences, Geriatrics; Co-supervisor(s): Assistant professor Xiaoqun Zhang, Professor Lars Tjernberg, Karolinska Institutet, Karolinska Instituet, Department of Clinical Neuroscience Department of Neurobiology Lina Leinartaite, Professor Henrietta Nielsen, Karolinska Institutet, Stockholm University, Department of Clinical Neuroscience Department of neurochemistry and neurobiology Professor Karima Chergui, Karolinska Instituet, Department of Physiology and Pharmacology Expression of gratitude Primarily I would like to thank Per Svenningsson for helping organize, fund and guide my research, as well as providing valuable input into shaping the project and encouraging comments about the work. Without him this thesis would not have been possible. I would also like to thank all members of the Svenningsson lab that have supported my research and helped me perform experiments. I would like to specially thank, Wojciech Paslawski who has been very helpful in teaching me various aspects of α-synuclein biochemistry. Personally, I would like to thank Margaret von Lerber my grandmother who developed Parkinson’s disease. Her kindness and compassion will always be remembered.
    [Show full text]
  • The Roles of Progranulin and Tmem106b in Lysosomal
    THE ROLES OF PROGRANULIN AND TMEM106B IN LYSOSOMAL PHYSIOLOGY AND NEURODEGENERATIVE DISEASE A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Daniel Harris Paushter May 2018 © 2018 Daniel Harris Paushter THE ROLES OF PROGRANULIN AND TMEM106B IN LYSOSOMAL PHYSIOLOGY AND NEURODEGENERATIVE DISEASE Daniel Harris Paushter, Ph.D. Cornell University 2018 Frontotemporal lobar degeneration (FTLD) is a devastating, clinically heterogeneous neurodegenerative disease that results in the progressive atrophy of the frontal and temporal lobes of the brain. Most often presenting with drastic alterations in personality and behavior, as well as a gradual decline in language capabilities, FTLD is the second leading cause of early-onset dementia only after Alzheimer’s disease. One of the major causes of familial FTLD is haploinsufficiency of the protein, progranulin (PGRN), resulting from mutation in the granulin (GRN) gene. Interestingly, PGRN shows a dosage-dependent disease correlation, and GRN mutation resulting in complete loss of PGRN causes the lysosomal storage disease (LSD), neuronal ceroid lipofuscinosis (NCL). In this text, my co-workers and I demonstrate that PGRN is proteolytically processed in the lysosome into discrete granulin peptides, which may possess distinct functions. We have independently found interactions between PGRN or granulin peptides and three lysosomal hydrolases: Cathepsin D (CTSD), glucocerebrosidase (GBA), and ɑ-N-acetylgalactosaminidase (NAGA). The activity of each of these enzymes was found to be reduced in Grn-/- mice, indicating that a potential mechanism of PGRN-related disease may be dysfunction of multiple lysosomal hydrolases. In addition to possessing an indeterminate lysosomal function, PGRN has also been shown to be a neurotrophic factor.
    [Show full text]