784 Research Article Extracellular matrix retention of thrombospondin 1 is controlled by its conserved C-terminal region Josephine C. Adams1,2,*, Amber A. Bentley1, Marc Kvansakul3,‡, Deborah Hatherley4 and Erhard Hohenester3 1Department of Cell Biology, Lerner Research Institute, and 2Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA 3Division of Cell and Molecular Biology, Imperial College London, Biophysics Section, Blackett Laboratory, London, SW7 2AZ, UK 4Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK *Author for correspondence (e-mail:
[email protected]) ‡Present address: Structural Biology Division, The Walter and Eliza Hall Institute, 3050 Parkville, Victoria, Australia Accepted 3 December 2007 J. Cell Sci. 121, 784-795 Published by The Company of Biologists 2008 doi:10.1242/jcs.021006 Summary Thrombospondins (TSPs) are an evolutionarily ancient family domain or type 1 repeats. Using a novel mRFP-tagged TSP1 of extracellular calcium-binding glycoproteins. The five C-terminal trimer, we demonstrate that ECM retention involves mammalian TSPs collectively have important roles in the RGD site and a novel site in the L-lectin domain with angiogenesis and vascular biology, synaptogenesis, wound repair structural similarity to the ligand-binding site of cargo transport and connective tissue organisation. Their complex functions proteins. CD47 and 1 integrins are dispensable for ECM relate to the multiple postsecretion fates of TSPs that can involve retention, but 1 integrins enhance activity. These novel data endocytic uptake, proteolysis or retention within the advance concepts of the molecular processes that lead to ECM extracellular matrix (ECM).