Supplemental Tables Supplemental Table 1. Variety of Mushroom Species That Were Found to Have Beneficial Effects in Neuronal

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Tables Supplemental Table 1. Variety of Mushroom Species That Were Found to Have Beneficial Effects in Neuronal Supplemental Tables Supplemental Table 1. Variety of mushroom species that were found to have beneficial effects in neuronal diseases Mushroom Common name Taxonomy Description Bioactivity References Class Order Family Hericium erinaceus Lion’s mane, Agaricomycetes Russulales Hericiaceae Large, white to Neurite Mori et al .(2011) (Bull.: Fr.) Pers. monkey’s head, creamy, irregular outgrowth Mori et al . (2009) hedgehog fruiting body with activity; Wong et al. (2007) mushroom, satyr’s icicle-like projections. Inhibition of β- Kawagishi and beard, pom pom, amyloid; Zhuang' (2008) bearded tooth, and Neuroprotection Yamabushitake Ganoderma lucidum Lingzhi, reishi Agaricomycetes Polyporales Ganodermataceae Corky, flat, red- Neurite Lai et al. (2008) (Fr) P. Karst varnished, kidney- outgrowth Cheung et al . shaped cap activity; (2000) Inhibition of β- Chen et al . (2007) amyloid; Neuroprotection ; Lignosus rhinocerus Tiger’s milk Agaricomycetes Polyporales Polyporaceae Posses underground Neurite Eik et al. (2012) (Cooke) Ryvarden mushroom tuber-like sclerotium, outgrowth solitary fruiting body activity Grifola frondosa Hen of the woods, Agaricomycetes Polyporales Fomitopsidaceae Manifold curled or Neurite Nishina et al. (Dicks.: Fr.) S.F. dancing mushroom, spoon-shaped, outgrowth (2006) Gray Maitake grayish-brown caps, activity has tuber-like sclerotium Mycoleptodonoides Breech oyster Agaricomycetes Polyporales Mycoleptodonoides Edible mushroom Neurite Okuyama et al . aitchisonii (Berk.) mushroom mainly found in the outgrowth (2004a, 2004b) Maas Geest. Kashmir region in activity; Okuyama et al. India and in Japan. Neuroprotection (2012) White to yellow cap Kokubo et al. with a smooth (2011) surface, and short Choi et al. (2009) stem. Savoury taste. Antrodia Niuchangchih Agaricomycetes Polyporales Fomitopsidaceae A unique Taiwan Inhibition of β- Lu et al . (2006) camphorata (M. mushroom, grows amyloid; Wang et al . (2012) Zang & C.H. Su) only on the inner Neuroprotection Sheng H. Wu, cavity of the endemic Ryvarden & T.T. tree species, Chang Cinnamomum kanehirai Cordyceps militaris Caterpillar fungi, Sordariomycetes Hypocreales Clavicipitaceae Parasitic to larvae and Neurite Lee et al. (2011) (L.:Fr.) Link Dongchongxiacao, pupae of moths and outgrowth winter worm butterflies, club-sized activity summer grass fruiting body Phellinus linteus Songgen (Chinese), Agaricomycetes Hymenochaetales Hymenochaetaceae Grows on mulberry Inhibition of Dai et al . (2010) (Berk. & M.A. meshimakobu trees, brown to yellow BACE1 Park et al. (2004a, Curtis) Teng (Japanese), Sang cap 2004b) Hwang (Korean) Sheean et al. (2012) Inonotus obliquus Chaga mushroom Agaricomycetes Hymenochaetales Hymenochaetaceae Parasitic on birch tree, Neuroprotection Jung et al. (2008) (Ach. ex Pers.) Pilát melanin-rich, black Kim (2011) Giridharan et al. (2011) Nakajima et al. (2009) Chen et al . (2010) Sarcodon cyrneus Bitter tooth Agaricomycetes Thelephorales Bankeraceae Distinctly bitter Neurite Marcotullio et al. Maas Geest. flavour; "cyrneus" for outgrowth (2007) its Mediterranean activity Obara et al. (2007) habitat Marcotullio et al. (2006) Sarcodon Bitter tooth Agaricomycetes Thelephorales Bankeraceae Brown cap with Neurite Ohta et al . (1998) scabrosus (Fr.) P. scales, bitter taste outgrowth Kita et al . (1998); Karst activity Waters et al. (2005) Obara et al. (2001) Shi et al . (2011) Obara et al. (1999) Leccinum Far-eastern Scaber Agaricomycetes Boletales Boletaceae Red brown areolate Neuroprotection Choi et al. (2011) extremiorientale stalk cap (Lar. N. Vassiljeva) Singer Pleurotus giganteus Zhudugu, cow’s Agaricomycetes Agaricales Agaricale Large, thick, and Neurite Phan et al. (2012) (Berk.) stomach mushroom, convex cap outgrowth Karunarathna & morning glory activity K.D. Hyde mushroom et al. Tremella fuciformis Yin er, white jelly Tremellomycetes Tremellales Tremellaceae White, frond-like, Neurite Kim (2007) Berk fungus, silver Ear gelatinous fruiting outgrowth Park et al . (2012) mushroom, snow body activity mushroom Stropharia Wine cap, burgundy Agaricomycetes Agaricales Strophariaceae Red, brown to tan Neuroprotection Wu et al . (2011) rugosoannulata cap, wine cap cap; bell-shaped when Wu et al . (2012) Farlow stropharia young but flat when old Armillaria mellea Honey mushroom Agaricomycetes Agaricales Physalacriaceae Pathogenic to plant, Neuroprotection Watanabe et al. (Vahl) P. Kumm. fruiting bodies found (1990) in clumps, sticky, Gao et al . (2009) yellow to brown cap Muszy ńska et al. (2011) Cortinarius infractus Bitter webcap Agaricomycetes Agaricales Cortinariaceae Greyish brown cap, Inhibition of Brondz et al. (Pers.) Fr. bitter taste AChe activity (2007) Geissler et al. (2010) Dictyophora “Queen of the Agaricomycetes Phallales Phallaceae Also called Phallus Neurite Kawagishi et al. indusiata (Vent.) mushrooms’’, indusiata , conical to outgrowth (1997) Desv. bamboo mushroom, bell-shaped cap activity Kinugasatake covered with a (Japanese) greenish-brown spore and slime Daldinia King Alfred's Sordariomycetes Xylariales Xylariaceae Ball-shaped, coal- Neuroprotection Quang et al. concentrica (Bolton) cake, cramp balls, black fruiting body (2002) Ces. & De Not. coal fungus Tricholoma sp. (Fr.) Matsutake Agaricomycetes Agaricales Tricholomataceae Mycorrhizal, gilled Neurite Tel et al . (2011) Staude (Japanese) cap, fleshy stems outgrowth Tsukamoto et al. activity; (2003) Inhibition of AChe activity Termitomyces Jizong (Chinese) Agaricomycetes Agaricales Lyophyllaceae Long stem, edible. Neurite Shi et al. (2012) albuminosus (Berk.) Emerge from termite outgrowth R. Heim nest. activity Termitomyces - Agaricomycetes Agaricales Lyophyllaceae Cap diameter of up Neuroprotection Choi et al. (2010) to1m; the largest titanicus Pegler & Piearce edible mushroom in the world according to Guinness Book of Records. Supplemental Figures Supplemental Figure 1. Infractopicrin (1) and 10-hydroxy-infractopicrin (2) isolated from Cortinarius infractus; and Hispidin (3) from Phellinus linteus. Supplemental Figure 2. Neurite formation of NG108-15 cells induced by aqueous extracts of H. erinaceus fruiting body. Arrows indicate neurite extension. Supplemental Figure 3. (a) A complete crush of peroneal nerve is confirmed by presence of a translucent band (as indicated by an arrow) across the nerve. (b) Walking track apparatus. (c) Walking tracks of footprints after 4 days of peroneal nerve crush injury. Arrows indicate footprints of the operated limb. Foot prints in H. erinaceus aqueous extract group demonstrated toe-spreading and clear footprints of the operated limbs on the walking tracks. Supplemental Figure 4. Dictyophorines A (43) and B (44) , isolated from Dictyophora indusiata . Tricholomalides A-C (45-47) isolated from Tricholoma sp.; and Termitomycesphin A-H (48-55) isolated from Termitomyces albuminosus . Supplemental Figure 5. 3-hydroxyhericenone F (64) isolated from Hericium erinaceum; strophasterol (65) from Stropharia rugosoannulata; Leccinine A (66) from Leccinum extremiorientale ; termitomycamides A – E (67-71) from Termitomyces titanicus ; and compounds 72-75 from Mycoleptodonoides aitchisonii . Supplemental Figure 6. 3,4-dihydroxybenzalacetone (76) and caffeic acid (77) from Inonotus obliquus. N6-(5-hydroxy-2-pyridyl)-methyl-adenosine (78) from the mycelia of A. mellea ; 1-(3,4,5-trimethoxyphenyl) ethanol (79) and caruilignan C (80) from Daldinia concentric. Neuroprotective diterpenes (81-85) and adenosine (86) from Antrodia camphorate. .
Recommended publications
  • Rijksherbarium, Leiden Text-Figures) Mycoleptodonoides (Berk
    PERSOONIA Published by the Rijksherbarium, Leiden Volume Part I, 4, pp. 409-413 (1961) A Hydnum from Kashmir R.A. Maas+Geesteranus Rijksherbarium, Leiden (With ten Text-figures) Nikol. is aitchisonii Mycoleptodonoides compared with other genera, Hydnum Berk, is redescribed, and for it the new combination Mycoleptodonoides aitchisonii (Berk.) Maas G. is proposed. Among the type specimens of Hydnum borrowed from the Kew Herbarium, a report on the greater part of which was included in an earlier paper (Maas Geesteranus, that of aitchisonii. This found several characters i960), was Hydnum was to possess that agreed with those of Mycoleptodonoides vassiljevae which had been described by led the Nikolajeva as the type species of a new genus. The striking resemblance to conclusion that if the Hydnum aitchisonii, not conspecific, belonged to same genus Since Nikolajeva's generic description contains but little information and, what is more, since her genus comprises two wholly unrelated species, Mycoleptodonoides is here redescribed. MYCOLEPTODONOIDES Nikol. Acad. Sci. Mycoleptodonoides Nikol. in Bot. Mater. (Not. syst. Sect, cryptog. Inst. bot. 8: — I.e. U.S.S.R.) 117. 1952. Type species Mycoleptodonoides vassiljevae Nikol., 117. Carpophore arboricolous (?), consisting of pileus and stipe, fleshy. Pileus com- plicated, consisting of imbricated fan-shaped lobes, azonate, glabrous. Stipe (probably) more or less eccentric, glabrous. Hymenium covering spines on underside of pileus. Spines discrete, subulate. Context monomitic, homogeneous, not zonate. Basidia tetrasporous. Spores ellipsoid, tapering towards the base, somewhat curved, smooth, colourless, with oblique apiculus, non-amyloid. Cystidia and gloeocystidia lacking. In the original description of Hydnum aitchisonii the habitat was not stated, but of micaceous dust what and of bark attached particles on is left of the stipe, pieces other of the material that the collected from to fragments type suggest fungus was a log lying on the ground.
    [Show full text]
  • Conservation of Ectomycorrhizal Fungi: Exploring the Linkages Between Functional and Taxonomic Responses to Anthropogenic N Deposition
    fungal ecology 4 (2011) 174e183 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition E.A. LILLESKOVa,*, E.A. HOBBIEb, T.R. HORTONc aUSDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI 49931, USA bComplex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA cState University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA article info abstract Article history: Anthropogenic nitrogen (N) deposition alters ectomycorrhizal fungal communities, but the Received 12 April 2010 effect on functional diversity is not clear. In this review we explore whether fungi that Revision received 9 August 2010 respond differently to N deposition also differ in functional traits, including organic N use, Accepted 22 September 2010 hydrophobicity and exploration type (extent and pattern of extraradical hyphae). Corti- Available online 14 January 2011 narius, Tricholoma, Piloderma, and Suillus had the strongest evidence of consistent negative Corresponding editor: Anne Pringle effects of N deposition. Cortinarius, Tricholoma and Piloderma display consistent protein use and produce medium-distance fringe exploration types with hydrophobic mycorrhizas and Keywords: rhizomorphs. Genera that produce long-distance exploration types (mostly Boletales) and Conservation biology contact short-distance exploration types (e.g., Russulaceae, Thelephoraceae, some athe- Ectomycorrhizal fungi lioid genera) vary in sensitivity to N deposition. Members of Bankeraceae have declined in Exploration types Europe but their enzymatic activity and belowground occurrence are largely unknown.
    [Show full text]
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Blood Mushroom
    Bleeding-Tooth Fungus Hydnellum Peckii Genus: Hydnellum Family: Bankeraceae Also known as: Strawberries and Cream Fungus, Bleeding Hydnellum, Red-Juice Tooth, or Devil’s Tooth. If you occasionally enjoy an unusual or weird sight in nature, we have one for you. Bleeding-Tooth Fungus fits this description with its strange colors and textures. This fungus is not toxic, but it is considered inedible because of its extremely bitter taste. Hydnoid species of fungus produce their spores on spines or “teeth”; these are reproductive structures. This fungus “bleeds” bright red droplets down the spines, so that it looks a little like blood against the whitish fungus. This liquid actually has an anticoagulant property similar to the medicine heparin; it keeps human or animal blood from clotting. This fungus turns brown with age. Bloody-Tooth Fungus establishes a relationship with the roots of certain trees, so you will find it lower down on the tree’s trunk. The fungus exchanges the minerals and amino acids it has extracted from the soil with its enzymes, for oxygen and carbon within the host tree that allow the fungus to flourish. It’s a great partnership that benefits both, called symbiosis. The picture above was taken at Kings Corner at the pine trees on the west side of the property. It was taken in early to mid-autumn. This part of the woods is moist enough to grow some really beautiful mushrooms and fungi. Come and see—but don’t touch or destroy. Fungi should be respected for the role they play in the woods ecology.
    [Show full text]
  • Phylogenetic Classification of Trametes
    TAXON 60 (6) • December 2011: 1567–1583 Justo & Hibbett • Phylogenetic classification of Trametes SYSTEMATICS AND PHYLOGENY Phylogenetic classification of Trametes (Basidiomycota, Polyporales) based on a five-marker dataset Alfredo Justo & David S. Hibbett Clark University, Biology Department, 950 Main St., Worcester, Massachusetts 01610, U.S.A. Author for correspondence: Alfredo Justo, [email protected] Abstract: The phylogeny of Trametes and related genera was studied using molecular data from ribosomal markers (nLSU, ITS) and protein-coding genes (RPB1, RPB2, TEF1-alpha) and consequences for the taxonomy and nomenclature of this group were considered. Separate datasets with rDNA data only, single datasets for each of the protein-coding genes, and a combined five-marker dataset were analyzed. Molecular analyses recover a strongly supported trametoid clade that includes most of Trametes species (including the type T. suaveolens, the T. versicolor group, and mainly tropical species such as T. maxima and T. cubensis) together with species of Lenzites and Pycnoporus and Coriolopsis polyzona. Our data confirm the positions of Trametes cervina (= Trametopsis cervina) in the phlebioid clade and of Trametes trogii (= Coriolopsis trogii) outside the trametoid clade, closely related to Coriolopsis gallica. The genus Coriolopsis, as currently defined, is polyphyletic, with the type species as part of the trametoid clade and at least two additional lineages occurring in the core polyporoid clade. In view of these results the use of a single generic name (Trametes) for the trametoid clade is considered to be the best taxonomic and nomenclatural option as the morphological concept of Trametes would remain almost unchanged, few new nomenclatural combinations would be necessary, and the classification of additional species (i.e., not yet described and/or sampled for mo- lecular data) in Trametes based on morphological characters alone will still be possible.
    [Show full text]
  • Lignosus Rhinocerus) Enhance Stress Resistance and Extend Lifespan in Caenorhabditis Elegans Via the DAF-16/Foxo Signaling Pathway
    pharmaceuticals Article Extracts of the Tiger Milk Mushroom (Lignosus rhinocerus) Enhance Stress Resistance and Extend Lifespan in Caenorhabditis elegans via the DAF-16/FoxO Signaling Pathway Parinee Kittimongkolsuk 1,2, Mariana Roxo 2, Hanmei Li 2, Siriporn Chuchawankul 3,4 , Michael Wink 2,* and Tewin Tencomnao 3,5,* 1 Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Im Neuenheimer Feld 364, Heidelberg University, 69120 Heidelberg, Germany; [email protected] (M.R.); [email protected] (H.L.) 3 Immunomodulation of Natural Products Research Group, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 4 Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand 5 Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand * Correspondence: [email protected] (M.W.); [email protected] (T.T.); Tel.: +66-2-218-1533 (T.T.) Abstract: The tiger milk mushroom, Lignosus rhinocerus (LR), exhibits antioxidant properties, as shown in a few in vitro experiments. The aim of this research was to study whether three LR extracts Citation: Kittimongkolsuk, P.; Roxo, exhibit antioxidant activities in Caenorhabditis elegans. In wild-type N2 nematodes, we determined the M.; Li, H.; Chuchawankul, S.; Wink, survival rate under oxidative stress caused by increased intracellular ROS concentrations. Transgenic M.; Tencomnao, T. Extracts of the strains, including TJ356, TJ375, CF1553, CL2166, and LD1, were used to detect the expression of DAF- Tiger Milk Mushroom (Lignosus 16, HSP-16.2, SOD-3, GST-4, and SKN-1, respectively.
    [Show full text]
  • Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
    Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • The Bioactivity of Tiger Milk Mushroom: Malaysia's Prized Medicinal Mushroom
    The Bioactivity of Tiger Milk Mushroom: Malaysia’s Prized Medicinal Mushroom 5 Shin-Yee Fung and Chon-Seng Tan Abstract The tiger milk mushroom has long been extolled for its medicinal properties and has been used for the treatment of asthma, cough, fever, cancer, liver-related ill- nesses, and joint pains and as a tonic. The history of usage for tiger milk mush- room dated back to almost 400 years ago, but there were no records of scientific studies done due to unavailability of sufficient samples. Even when there were samples collected from the wild, the supply and quality were inconsistent. With the advent of cultivation success of one of the most utilized species of tiger milk mushroom (Lignosus rhinocerotis) in 2009, scientific investigation was done to validate its traditional use and to investigate its safety for consumption and bio- chemical and biopharmacological properties. Among the properties that have been investigated to date are antiproliferative, anti-inflammatory, antioxidative, nutritional, immunomodulatory, and neuritogenesis activities of the Lignosus rhinocerotis. The scientific findings have so far verified some of its traditional applications and revealed interesting data which shows potential for it to be fur- ther developed into possible nutraceutical. More scientific investigations are much needed to validate the medicinal properties of tiger milk mushroom across its species and to unveil potential biomolecules that may form a valuable founda- tion in pharmaceutical and industrial applications. S.-Y. Fung (*) Medicinal Mushroom Research Group, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia e-mail: [email protected]; [email protected] C.-S.
    [Show full text]
  • Sarcodon in the Neotropics I. New Species From
    Mycologia, 107(3), 2015, pp. 591–606. DOI: 10.3852/14-185 # 2015 by The Mycological Society of America, Lawrence, KS 66044-8897 Sarcodon in the Neotropics I: new species from Guyana, Puerto Rico and Belize Arthur C. Grupe II pakaraimensis, S. portoricensis, S. quercophilus and S. Anthony D. Baker umbilicatus and, along with morphological differ- Department of Biological Sciences, Humboldt State ences, supported their recognition as distinct species. University, Arcata, California 95521 Macromorphological, micromorphological, habitat Jessie K. Uehling and DNA sequence data from the nuc rDNA internal University Program in Genetics & Genomics, Duke transcribed spacer region (ITS) are provided for each University, Durham, North Carolina 27708 of the new species. A key to Neotropical Sarcodon species and similar extralimital taxa is provided. Matthew E. Smith Key words: Bankeraceae, Caribbean, Central Department of Plant Pathology, University of Florida, Gainesville, Florida 32611 America, ectomycorrhizal fungi, Guiana Shield, The- lephorales, tooth fungi Timothy J. Baroni Department of Biological Sciences, State University of New York—College at Cortland, New York 13045 INTRODUCTION D. Jean Lodge Sarcodon Que´l. ex P. Karst. (Bankeraceae, Thelephor- Center for Forest Mycology Research, USDA-Forest ales) is an ectomycorrhizal (ECM) basidiomycete Service, Forest Products Laboratory, PO Box 1377, genus characterized by stipitate, pileate basidiomata Luquillo, Puerto Rico 00773 with determinate development, fleshy, non-zonate context, dentate
    [Show full text]
  • Drivers of Macrofungal Composition and Distribution in Yulong Snow Mountain, Southwest China
    Mycosphere 7 (6):727–740 (2016) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/7/6/3 Copyright © Guizhou Academy of Agricultural Sciences Drivers of macrofungal composition and distribution in Yulong Snow Mountain, southwest China Luo X1,2,3,4,6, Karunarathna SC1,2,5, Luo YH5, Xu K7, Xu JC1,2,5, Chamyuang S3 and Mortimer PE1,2,5* 1Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China 2 World Agroforestry Centre, East and Central Asia Office, 132 Lanhei Road, Kunming 650201, China 3School of science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Center of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, 57100, Chiang Rai, Thailand 5Key laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China 6School of Biology and Food Engineering, Chuzhou University, Chuzhou, 239000, China 7Lijiang Alpine Botanic Garden, Lijiang, 674100, China Luo X, Karunarathna SC, Luo YH, Xu K, Xu JC, Chamyuang S, Mortimer PE 2016 – Drivers of macrofungal composition and distribution in Yulong Snow Mountain, southwest China. Mycosphere 7(6), 727–740, Doi 10.5943/mycosphere/7/6/3 Abstract Although environmental factors strongly affect the distribution of macrofungi, few studies have so far addressed this issue. Therefore, to further our understanding of how macrofungi respond to changes in the environment, we investigated the diversityand community composition of fungi based on the presence of fruiting bodies in different environments along an elevation gradient in a subalpine Pine forest at Yulong Snow Mountain in southwest China.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]