Ch 6-Propagation in Periodic Media
Total Page:16
File Type:pdf, Size:1020Kb
Bloch waves and Bandgaps Chapter 6 Physics 208, Electro-optics Peter Beyersdorf Document info Ch 6, 1 Bloch Waves There are various classes of boundary conditions for which solutions to the wave equation are not plane waves Planar conductor results in standing waves E(z) = 2E0 sin (kzz) cos (ωt) Waveguide and cavities results in modal structure ikz E(x, y, z) = Enm(x, y)e− Periodic materials result in Bloch waves 2π/Λ iK" "r E! (!r) = E(K! , !r)e− · dK! !0 Ch 6, 2 Class Outline Types of periodic media dispersion relation in layered materials Bragg reflection Coupled mode theory Surface waves Ch 6, 3 Periodic Media Many useful materials and devices may have an inhmogenous index of refraction profile that is periodic Dielectric stack optical coatings Diffraction gratings Holograms Acousto-optic devices Photonic bandgap crystals Ch 6, 4 Periodic Media Many useful materials and devices may have an inhmogenous index of refraction profile that is periodic Dielectric stack optical coatings Diffraction gratings Holograms Acousto-optic devices Photonic bandgap crystals Ch 6, 5 Periodic Media Many useful materials and devices may have an inhmogenous index of refraction profile that is periodic Dielectric stack optical coatings Diffraction gratings Holograms Acousto-optic devices Photonic bandgap crystals Ch 6, 6 Periodic Media Many useful materials and devices may have an inhmogenous index of refraction profile that is periodic Dielectric stack optical coatings Diffraction gratings Holograms Acousto-optic devices Photonic bandgap crystals Ch 6, 7 Periodic Media Many useful materials and devices may have an inhmogenous index of refraction profile that is periodic Dielectric stack optical coatings Diffraction gratings Holograms Acousto-optic devices Photonic bandgap crystals Ch 6, 8 Bloch’s Theorem 2π/Λ Λ iK" "r E! (!r) = E(K! , !r)e− · dK! !0 Wave solutions in a periodic medium (Bloch waves) are different than in a homogenous medium (plane waves) A correction factor E(K,r) accounts for the difference between plane wave solutions and Bloch wave solutions Wave amplitude has a periodicity defined by the underlying medium, Ek(K,r)=Ek(K,r+Λ) E(K,r) are normal modes of propagation Ch 6, 9 Waves in Layered Media For a wave normally incident on an Λ isotropic layered material, we’ll find the “dispersion relationship” (ω vs K curve) for Bloch waves. This will tell us about the behavior of waves in the material. We’ll see the periodic structure reflects certain wavelengths. This is referred to as Bragg reflection. Ch 6,10 Wave Equation in Layered Media Starting with the wave equation ∂2E! ! ! E! + µ" = 0 ∇ × ∇ × ∂t2 ! " we will plug in the dielectric tensor written as a Fourier series with periodicity Λ i 2πl z !(z) = !le− Λ !l and an arbitrary wave i(kz+ωt) E! = E!0(k)e− dk to get ! 2 ikz 2 i 2πl z ikz k E!0(k)e− dk + ω µ #le− Λ E!0(k)e− dk = 0 Ch 6,11 ! "l ! Wave Equation in Layered Media 2πl 2 ! ikz 2 i Λ z ! ikz with k E0(k)e− dk + ω µ #le− E0(k)e− dk = 0 ! "l ! 2πl k! = k + and defining Λ 2 ikz 2 2πl ik!z gives k E! (k)e− dk ω µ # E! (k" )e− dk" = 0 0 − l 0 − Λ ! ! "l or 2 2 2πl ikz k E!0(k) ω µ #lE!0(k ) e− dk = 0 " − − Λ $ ! #l so 2πl k2E! (k) ω2µ # E! (k ) = 0 for all k 0 − l 0 − Λ !l Ch 6,12 Wave Equation in Layered Media for all k Is an infinite set of equations. Consider equations for: kΛ/2π=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 … K=0 coupled K=0.2π/Λ K=0.4π/Λ 2 Let K be the value value of k±2πl/Λ closest to ω με0 in a series of coupled equations, where ε0 is the zeroth order Fourier coefficient of ε(z). The whole series of equations for -∞<k<∞ can be treated instead as a Λ series of coupled equations for 0<K<2π/ . T2heπl solution to each set of k2E! (k) ω2µ # E! (k ) = 0 equations for a value of K0 onl−y containsl 0 te−rmsΛ at k=K±2πl/Λ, thus !l i(kz+ωt) 2π i(K l 2π )z iωt E! (z) = E!0(k)e dk E! (K, z) = E!0(K l )e − Λ − → − Λ Ch 6,13 ! !l Bloch Waves in Layered Media The Bloch waves are normal modes of propagation so 2π/Λ iKz E! (z) = E(K, z)e− dK !0 and each mode is composed of plane wave components of amplitude E(K±2πl/Λ). To find these amplitudes we consider the dispersion relation 2πl Since this rekp2rE!esen(k) tsω2 µan infin# E! (kite se)t= of0 coupled 0 − l 0 − Λ equations, we will exam!inl e this expression and isolate the equations that couple most strongly to E0(K), ignore the rest and solve for E0(k) Ch 6,14 Field Components in Layered Media 2 2 2 2π 2 2π k E!0(k) ω µ#øE!0(k) ω µ#1E!0(k ) ω µ# 1E!0(k + ) . = 0 or − − − Λ − − Λ − Allowing us to express the E0(K-2πl/Λ) amplitudes as 1 2 2π 2 2π E!0(K) = ω µ#1E!0(K ) + ω µ# 1E!0(K + ) . K2 ω2µ# − Λ − Λ − − ø ! " ! 2π 1 2 ! 2π 2 ! E0(K ) = 2 ω µ$1E0(K 2 ) + ω µ$ 1E0(K) . − Λ K 2π ω2µ$ − Λ − − − Λ − ø # $ ! 2 ! " 2 ! 2πl ! 2π k E0(k)1 ω µ #lE20(k ! ) = 02 ! 2π E0(K + ) = 2− ω µ$1E−0(ΛK) + ω µ$ 1E0(K + 2 ) . Λ K + 2π ω2µ$l − Λ − Λ − !ø # $ ! " … Ch 6,15 Resonant Coupling of Waves Momentum of forwards wave k with wavenumber k is ℏk, for -k backwards wave it is -ℏk. kg Grating can be thought of as superposition of forwards and backwards going waves, with momenta ±ℏkg, where kg=2π/Λ. For light to couple between forwards and backwards waves, momentum must be conserved ℏk+mℏkg=-ℏk This is like a collision of a forward photon with m phonons producing a backwards photon Ch 6,16 Field Components in Layered Media 2 ! 1 22π ! 2 2π 2 ! 2π In theE 0c(aKse) = whe2 re 2##K # lω#µ#1#!E0ω#(Kµ##ø i.e). +theω µ #fo1rEwa0(Krd+ wa)ve . K ω µ#ø− Λ − Λ − Λ − momentum canno−t be! co!nve"rted to the backward wave " ! 2π 1 2 ! 2π 2 ! momEen0(Ktum b)y= the addit2ion of a ωkicµk$1 Efr0(oKm the2 )g+raωtinµ$g 1inE 0(theK) . − Λ K 2π ω2µ$ − Λ − − layered material, o−nlyΛ the− l=0ø t#erm is significant and the $ 2 ! 2 ! 2πl dispersion 2rπelatio! n K E"10(K) ω µ 2 #lE0(K 2) = 0 2π E!0(K + ) = − ω µ$1E!0(K−) +Λω µ$ 1E!0(K + 2 ) . Λ 2π 2 2 l − Λ − for any value of KK +is Λuncouωplµe$ød# t!o that for other values of K, $ 2 2 − and gives##K # ω# µ#"ø =# 0 meaning the phase velocity is that due − ! " to the average index of refraction for the medium Ch 6,17 Coupling of Field Components ! 2πl 1 2 ! 2π(l 1) 2 ! 2πl E0(K + ) = 2 ω µ$1E0(K + − ) + ω µ$ 1E0(K + 2 ) . Λ K + 2πl ω2µ$ Λ − Λ − Λ − ø # $ l=0 ! " l=-1 l=+1 ! 1 2 ! 2π 2 ! 2π E0(K) = 2 2 ω µ#1E0(K ) + ω µ# 1E0(K + ) . K ω µ#ø − Λ − Λ − − ! 2 " 2π 2 In the case2π where# K# 1 l# # # ω #µ#ø2 for some n2oπn-ze2ro value of E!0(K ) = − Λ ≈ ω µ$1E!0(K 2 ) + ω µ$ 1E!0(K) . Λ ! 2π 2 " 2 Λ − l=m this −l=m termK is also sigω µn$øificant and f−or the dispersion − − Λ − # $ relation 2 ! 2 ! 2πl 2π ! K E"10(K) ω µ 2 #lE0(K 2) = 0 2π E!0(K + ) = − ω µ$1E!0(K−) +Λω µ$ 1E!0(K + 2 ) . Λ 2π 2 2 l − Λ − K + ω µ$ø ! Λ − # $ ! " Λ we need only consider two values of K, i.e. K and K-2!m/ . Ch 6,18 Dispersion Relation in Layered Media The dispersion relation Considering only terms with E(K) and E(K-2πm/Λ) gives 2πm K2 ω2µ" E# (K) ω2µ" E# (K ) = 0 − ø 0 − m 0 − Λ 2! " 2πm 2 2πm 2 K ω µ"ø E#0 K ω µ" mE#0(K) = 0 − Λ − − Λ − − #$ % & $ % A nontrivial solution to these coupled equations only exists if 2 2 2 K ω µ"ø ω µ"m −2 2−πm 2 2 = 0 2 ω µ" m 2 K Λ 2πωl µ"ø k! E−!0(k) − ω µ #−lE!0(k − ) = 0! ! − − Λ ! Λ ! "l # ! 1 i2πmz/Λ and for ε-m=εm*! in a lossless! medium, since!!m = !(z)e− dz 2 Λ 0 2πm 2! K2 ω2µ" K ω2µ" ω2µ " = 0 − ø − Λ − ø − | m| Ch 6,19 #$ % & ! " ! " Dispersion Relation in Layered Media which can be solved for K, the Bloch wave vector for a wave of frequency ω 2 2 mπ mπ 2 2 2 2πm 2 K = ! + "øµω ( "m µω ) + "øµω Λ ± " Λ ± & | | Λ "$ % ' ( # 2 2πm 2 K2 ω2µ" K ω2µ" ω2µ " = 0 − ø − Λ − ø − | m| Ch 6,20 graph of disp#e$rsion rel%ationsh&ip (figure 6.2) ! " ! " Bandgaps in Layered Media 2 When the Bragg condition is met (K-2πm/Λ=ω ε0 μ) K2 K2 ω2 < ω2 > real solutions exist for# # #µ (#" +# " # ) # and µ (" " ) ø | m| ø − | m| 2 2 mπ mπ 2 2 2 22 2πm 2 K = ! K+ "øµω 2 ( "m µωK) + "øµω SolutionsΛ f±or" Λ <±ω&<| | Λ "$ µ (%!ø + !m ) µ (!ø !m') ( # | | − | | are complex, this region is called the forbidden band.