Social Construction and the British Computer Industry in the Post-World War II Period

Total Page:16

File Type:pdf, Size:1020Kb

Social Construction and the British Computer Industry in the Post-World War II Period The rhetoric of Americanisation: Social construction and the British computer industry in the Post-World War II period By Robert James Kirkwood Reid Submitted to the University of Glasgow for the degree of Doctor of Philosophy in Economic History Department of Economic and Social History September 2007 1 Abstract This research seeks to understand the process of technological development in the UK and the specific role of a ‘rhetoric of Americanisation’ in that process. The concept of a ‘rhetoric of Americanisation’ will be developed throughout the thesis through a study into the computer industry in the UK in the post-war period . Specifically, the thesis discusses the threat of America, or how actors in the network of innovation within the British computer industry perceived it as a threat and the effect that this perception had on actors operating in the networks of construction in the British computer industry. However, the reaction to this threat was not a simple one. Rather this story is marked by sectional interests and technopolitical machination attempting to capture this rhetoric of ‘threat’ and ‘falling behind’. In this thesis the concept of ‘threat’ and ‘falling behind’, or more simply the ‘rhetoric of Americanisation’, will be explored in detail and the effect this had on the development of the British computer industry. What form did the process of capture and modification by sectional interests within government and industry take and what impact did this have on the British computer industry? In answering these questions, the thesis will first develop a concept of a British culture of computing which acts as the surface of emergence for various ideologies of innovation within the social networks that made up the computer industry in the UK. In developing this understanding of a culture of computing, the fundamental distinction between the US and UK culture of computing will be explored. This in turn allows us to develop a concept of how Americanisation emerged as rhetorical construct. With the influence of a ‘rhetoric of Americanisation’, the culture of computing in the UK began to change and the process through which government and industry interacted in the development of computing technologies also began to change. In this second half of the thesis a more nuanced and complete view of the nature of innovation in computing in the UK in the sixties will be developed. This will be achieved through an understanding of the networks of interaction between government and industry and how these networks were reconfigured through a ‘rhetoric of Americanisation’. As a result of this, the thesis will arrive at a more complete view of change and development within the British computer industry and how interaction with government influences that change. 2 Acknowledgements Thanks to the following for their help in the research and writing of this thesis. Raymond Stokes, Neil Rollings, James Sumner, Brian Randell, Barry White, Malcolm Nicolson, Jim Tomlinson, the Staff of the National Archives, Niall Mackenzie, Duncan Connors, Iain McTavish, John Reid, Helen Reid & Lorna Geddes. My Thanks 3 Contents Abstract ..................................................................................................................... 2 List of Figures and Table ........................................................................................ 5 Introduction .............................................................................................................. 6 Chapter 1 ................................................................................................................ 21 The British Culture of Computing: Memory and Patents Chapter 2 ................................................................................................................ 55 Self-Sufficiency in Independent Commercial Computing in the Early 1950s Chapter 3 ................................................................................................................ 80 The Users' Prison, the Users' Playpen: British Computer development and Utilisation in the Commercial Context Chapter 4 .............................................................................................................. 117 Reconfiguration in a changing market: The Atlas & Stretch Chapter 5 .............................................................................................................. 153 Changing Government: Industry Interaction: Commercial Computing and Merger Chapter 6 .............................................................................................................. 192 Technopolitical Regimes of Rationalisation 1964-1968 Chapter 7 .............................................................................................................. 225 Technopolitical Regimes of European Integration Conclusion ............................................................................................................ 254 Bibliography 263 4 List of Figures and Tables Figure 1: Annual sales by BTM of punched card equipment ........................................ 180 Figure 2: Combined annual sales of computers by BTM/ICT & Ferranti ..................... 181 Table 1 Breakdown of Usage of Atlas............................................................................ 130 Table 2 Cost of Various Computer Systems................................................................... 132 Table 3: Market Shares of US Computer Companies..................................................... 148 Table 4: Department of Defence Computer Usage (March 31 st 1965)........................... 149 Table 5 Shareholders in ICL........................................................................................... 220 5 Introduction In 1967 Servan-Schreiber wrote Le Défi Américain or The American Challenge. In that book he spoke of a war between Europe and the United States. 1 That war was an economic and technological one. The US had ‘invaded’ Europe through investment in European industries and by establishing European subsidiaries which competed aggressively with their local counterparts. This was particularly noticeable in knowledge based industries. Servan-Schreiber noted that the frontline of the ‘war’ against the American economy would be the computer industry: “The war is industrial, and its major battle is in the field of computing. The battle is very much in doubt, but it has not yet been lost.” 2 In many respects the computer industry, more than any other, represented a battleground of ideas, strategy and ideology. This was no more so the case than in post- war Britain. As a result, the choice of to study the British computer industry in this thesis is no accident This thesis seeks to re-evaluate the story of the development of the computer industry in the UK from the end of the Second World War up to the late 1960s. There are two key themes which, taken together, distinguish this account from previous ones. In the first instance one cannot view computer development as a process determined by technological factors alone. Indeed, it is vital to understand the role of social group in the development of the industry and the technology. Secondly, central to our understanding of the developmental process are the ideological and rhetorical factors which influenced these social groups. In this thesis, specific attention will be paid to the concept of a “rhetoric of Americanisation” and its influence upon the various actors in the constructive process. In this introduction I will present my understanding of these two factors, detail the interface between these two theoretical concepts and discuss how they inform the content of the thesis. 1 Servan-Schreiber, JJ, The American Challenge (Harmondsworth: Penguin; 1968) 2 Servan-Schreiber, JJ, The American Challenge (Harmondsworth: Penguin; 1968) p.111 6 Histories of the computer industry have focused primarily on the technical aspects of the history with little reference to the social groups and process mediating these technical changes. For example, Martin Campbell-Kelly’s history of ICL is hampered by a lack of discussion on the interaction between society and technology that is evident from the battleground of ideas that the computer industry represents. 3 To an extent, some histories have focused on the role of social groups in configuring computer development. Jon Agar’s history of the development of the computer points out that in the context of the UK, social groups can be seen to impact greatly on the progress of computerisation. 4 In his account the computer becomes viewed as a bureaucratic tool towards the establishment of a modern society, promoted by an ‘expert movement’ from within the Treasury with the singular identity of the ‘Organisation and Methods movement’. A number of other studies make an attempt to develop a theory of interaction between social groups in government and industry. 5 While this focus on governmental departments and computerisation is useful in suggesting that such social groups are significant in their contribution to computerisation in society, what remains less clear is the specific linkages between social groups, particularly within government and the developmental process of the British computer industry generally. To an extent John Hendry in his discussion of the computer industry as it related to the NRDC (National Research and Development Corporation) develops a picture of the impact of interaction between government and the computer industry. 6 However, the
Recommended publications
  • VOLUME V INFORMATIQUE NON AMERICAINE Première Partie Par L' Ingénieur Général De L'armement BOUCHER Henri TABLE
    VOLUME V INFORMATIQUE NON AMERICAINE Première partie par l' Ingénieur Général de l'Armement BOUCHER Henri TABLE DES MATIERES INFORMATIQUE NON AMERICAINE Première partie 731 Informatique européenne (statistiques, exemples) 122 700 Histoire de l'Informatique allemande 1 701 Petits constructeurs 5 702 Les facturières de Kienzle Data System 16 703 Les minis de gestion de Nixdorf 18 704 Siemens & Halske AG 23 705 Systèmes informatiques d'origine allemande 38 706 Histoire de l'informatique britannique 40 707 Industriels anglais de l'informatique 42 708 Travaux des Laboratoires d' Etat 60 709 Travaux universitaires 63 710 Les coeurs synthétisables d' ARM 68 711 Computer Technology 70 712 Elliott Brothers et Elliott Automation 71 713 Les machines d' English Electric Company 74 714 Les calculateurs de Ferranti 76 715 Les études de General Electric Company 83 716 La patiente construction de ICL 85 Catalogue informatique – Volume E - Ingénieur Général de l'Armement Henri Boucher Page : 1/333 717 La série 29 d' ICL 89 718 Autres produits d' ICL, et fin 94 719 Marconi Company 101 720 Plessey 103 721 Systèmes en Grande-Bretagne 105 722 Histoire de l'informatique australienne 107 723 Informatique en Autriche 109 724 Informatique belge 110 725 Informatique canadienne 111 726 Informatique chinoise 116 727 Informatique en Corée du Sud 118 728 Informatique à Cuba 119 729 Informatique danoise 119 730 Informatique espagnole 121 732 Informatique finlandaise 128 733 Histoire de l'informatique française 130 734 La période héroïque : la SEA 140 735 La Compagnie
    [Show full text]
  • Technical Details of the Elliott 152 and 153
    Appendix 1 Technical Details of the Elliott 152 and 153 Introduction The Elliott 152 computer was part of the Admiralty’s MRS5 (medium range system 5) naval gunnery project, described in Chap. 2. The Elliott 153 computer, also known as the D/F (direction-finding) computer, was built for GCHQ and the Admiralty as described in Chap. 3. The information in this appendix is intended to supplement the overall descriptions of the machines as given in Chaps. 2 and 3. A1.1 The Elliott 152 Work on the MRS5 contract at Borehamwood began in October 1946 and was essen- tially finished in 1950. Novel target-tracking radar was at the heart of the project, the radar being synchronized to the computer’s clock. In his enthusiasm for perfecting the radar technology, John Coales seems to have spent little time on what we would now call an overall systems design. When Harry Carpenter joined the staff of the Computing Division at Borehamwood on 1 January 1949, he recalls that nobody had yet defined the way in which the control program, running on the 152 computer, would interface with guns and radar. Furthermore, nobody yet appeared to be working on the computational algorithms necessary for three-dimensional trajectory predic- tion. As for the guns that the MRS5 system was intended to control, not even the basic ballistics parameters seemed to be known with any accuracy at Borehamwood [1, 2]. A1.1.1 Communication and Data-Rate The physical separation, between radar in the Borehamwood car park and digital computer in the laboratory, necessitated an interconnecting cable of about 150 m in length.
    [Show full text]
  • 1992 Cern School of Computing
    ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 1992 CERN SCHOOL OF COMPUTING Scuola Superiore G. Reiss Romoli, L'Aquila, Italy 30 August-12 September 1992 PROCEEDINGS Editor: C. Verkerk GENEVA 1993 © Copyright CERN, Genève, 1993 Propriété littéraire et scientifique réservée Literary and scientific copyrights reserved in pour tous les paya < 11» inonde. Ce document ne all countries of the world. This report, or peut être reproduit ou traduit en tout ou en any part of it. may not be reprinted or trans­ partie sans l'autorisation écrite du Directeur lated without written permission ol the copy­ général du CERN, titulaire du droit d'auteur. right holder, the Director-General of CERN. Dans les cas appropriés, et s'il s'agit d'utiliser However, permission will be freely granted for le document à des fins non commerciales, cette appropriate non-commercial use. autorisation sera volontiers accordée. If any patentable invention or registrable Le CERN ne revendique pas la propriété des design is described in the report. CERN makes inventions brevetables et dessins ou modèles no claim to property rights in it but offers i( susceptibles de dépôt qui pourraient être for the free use of research institutions, man­ décrits dans le présent document ; ceux-ci peu­ ufacturers and others. CERN, however, may vent être librement utilisés par les instituts de oppose any attempt by a user to claim any recherche, les industriels et autres intéressés. proprietary or patent rights in such inventions Cependant, le CERN se réserve le droit de or designs as may be described in the present s'opposer à toute revendication qu'un usager document.
    [Show full text]
  • Unix and Linux System Administration and Shell Programming
    Unix and Linux System Administration and Shell Programming Unix and Linux System Administration and Shell Programming version 56 of August 12, 2014 Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013, 2014 Milo This book includes material from the http://www.osdata.com/ website and the text book on computer programming. Distributed on the honor system. Print and read free for personal, non-profit, and/or educational purposes. If you like the book, you are encouraged to send a donation (U.S dollars) to Milo, PO Box 5237, Balboa Island, California, USA 92662. This is a work in progress. For the most up to date version, visit the website http://www.osdata.com/ and http://www.osdata.com/programming/shell/unixbook.pdf — Please add links from your website or Facebook page. Professors and Teachers: Feel free to take a copy of this PDF and make it available to your class (possibly through your academic website). This way everyone in your class will have the same copy (with the same page numbers) despite my continual updates. Please try to avoid posting it to the public internet (to avoid old copies confusing things) and take it down when the class ends. You can post the same or a newer version for each succeeding class. Please remove old copies after the class ends to prevent confusing the search engines. You can contact me with a specific version number and class end date and I will put it on my website. version 56 page 1 Unix and Linux System Administration and Shell Programming Unix and Linux Administration and Shell Programming chapter 0 This book looks at Unix (and Linux) shell programming and system administration.
    [Show full text]
  • Who Did What? Engineers Vs Mathematicians Title Page America Vs Europe Ideas Vs Implementations Babbage Lovelace Turing
    Who did what? Engineers vs Mathematicians Title Page America vs Europe Ideas vs Implementations Babbage Lovelace Turing Flowers Atanasoff Berry Zuse Chandler Broadhurst Mauchley & Von Neumann Wilkes Eckert Williams Kilburn SlideSlide 1 1 SlideSlide 2 2 A decade of real progress What remained to be done? A number of different pioneers had during the 1930s and 40s Memory! begun to make significant progress in developing automatic calculators (computers). Thanks (almost entirely) to A.M. Turing there was a complete theoretical understanding of the elements necessary to produce a Atanasoff had pioneered the use of electronics in calculation stored program computer – or Universal Turing Machine. Zuse had mad a number of theoretical breakthroughs Not for the first time, ideas had outstripped technology. Eckert and Mauchley (with JvN) had produced ENIAC and No-one had, by the end of the war, developed a practical store or produced the EDVAC report – spreading the word memory. Newman and Flowers had developed the Colossus It should be noted that not too many people were even working on the problem. SlideSlide 3 3 SlideSlide 4 4 The players Controversy USA: Eckert, Mauchley & von Neumann – EDVAC Fall out over the EDVAC report UK: Maurice Wilkes – EDSAC Takeover of the SSEM project by Williams (Kilburn) UK: Newman – SSEM (what was the role of Colossus?) Discord on the ACE project and the departure of Turing UK: Turing - ACE EDSAC alone was harmonious We will concentrate for a little while on the SSEM – the winner! SlideSlide 5 5 SlideSlide 6 6 1 Newman & technology transfer: Secret Technology Transfer? the claim Donald Michie : Cryptanalyst An enormous amount was transferred in an extremely seminal way to the post war developments of computers in Britain.
    [Show full text]
  • The Machine and the Cloud
    the machine and the cloud Peter Harrington london n3 Frieze Masters Gloucester Green, Regent’s Park, London Thu 4 Oct Preview 12–8pm; Private View 5–8pm Fri 5 Oct 11am–7pm Sat 6 Oct 11am–7pm Sun 7 Oct 11am–6pm https://friezemasters.seetickets.com/tour/frieze-masters mayfair chelsea Peter Harrington Peter Harrington 43 dover street 100 FulHam road london w1s 4FF london sw3 6Hs uk 020 3763 3220 uk 020 7591 0220 eu 00 44 20 3763 3220 eu 00 44 20 7591 0220 usa 011 44 20 3763 3220 www.peterharrington.co.uk usa 011 44 20 7591 0220 Front & back cover: details from Marcel Duchamp’s The Bride Stripped Bare by Her Bachelors, Even, page 28. Peter Harrington london the machine and the cloud an exHibition disPlayed at Frieze Masters regent’s Park, london 4–7 october 2018 2 the machine and the cloud In his 1962 book The Gutenberg Galaxy: The Making of Typographical Man, Marshall McLuhan argued that the printing press wrought a profound change in human consciousness, especially as it occurred at about the same time as the emergence of perspective in art. Some of the unexpected consequences of this decisive moment, according to McLuhan, were the creation of nationalism, dualism, the dominance of rationalism, a drive towards homogeneity and repeatability in culture, and alienation of individuals. These are large claims, but we do not have to accept them in their entirety to agree with McLuhan’s general point that the invention of the printing press was one of the most significant technological advances ever to affect human consciousness.
    [Show full text]
  • The Early History of Music Programming and Digital Synthesis, Session 20
    Chapter 20. Meeting 20, Languages: The Early History of Music Programming and Digital Synthesis 20.1. Announcements • Music Technology Case Study Final Draft due Tuesday, 24 November 20.2. Quiz • 10 Minutes 20.3. The Early Computer: History • 1942 to 1946: Atanasoff-Berry Computer, the Colossus, the Harvard Mark I, and the Electrical Numerical Integrator And Calculator (ENIAC) • 1942: Atanasoff-Berry Computer 467 Courtesy of University Archives, Library, Iowa State University of Science and Technology. Used with permission. • 1946: ENIAC unveiled at University of Pennsylvania 468 Source: US Army • Diverse and incomplete computers © Wikimedia Foundation. License CC BY-SA. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 20.4. The Early Computer: Interface • Punchcards • 1960s: card printed for Bell Labs, for the GE 600 469 Courtesy of Douglas W. Jones. Used with permission. • Fortran cards Courtesy of Douglas W. Jones. Used with permission. 20.5. The Jacquard Loom • 1801: Joseph Jacquard invents a way of storing and recalling loom operations 470 Photo courtesy of Douglas W. Jones at the University of Iowa. 471 Photo by George H. Williams, from Wikipedia (public domain). • Multiple cards could be strung together • Based on technologies of numerous inventors from the 1700s, including the automata of Jacques Vaucanson (Riskin 2003) 20.6. Computer Languages: Then and Now • Low-level languages are closer to machine representation; high-level languages are closer to human abstractions • Low Level • Machine code: direct binary instruction • Assembly: mnemonics to machine codes • High-Level: FORTRAN • 1954: John Backus at IBM design FORmula TRANslator System • 1958: Fortran II 472 • 1977: ANSI Fortran • High-Level: C • 1972: Dennis Ritchie at Bell Laboratories • Based on B • Very High-Level: Lisp, Perl, Python, Ruby • 1958: Lisp by John McCarthy • 1987: Perl by Larry Wall • 1990: Python by Guido van Rossum • 1995: Ruby by Yukihiro “Matz” Matsumoto 20.7.
    [Show full text]
  • Competitive Exams History of Computers- Examrace
    9/27/2021 Competitive Exams History of Computers- Examrace Examrace Competitive Exams History of Computers Get top class preparation for competitive exams right from your home: get questions, notes, tests, video lectures and more- for all subjects of your exam. First Generation (1939 − 1954) -Vacuum Tube 1937-John V. Atanasoff designed the first digital electronic computer 1939-Atanasoff and Clifford Berry demonstrate in Nov. The ABC prototype 1941-Konrad Zuse in Germany developed in secret the Z3 1943-In Britain, the Colossus was designed in secret at Bletchley Park to decode German messages 1944-Howard Aiken developed the Harvard Mark I mechanical computer for the Navy 1945-John W. Mauchly and J Presper Eckert built ENIAC at U of PA for the US Army 1946-Mauchly and Eckert start Electronic Control Co. received grant from National Bureau of Standards to build a ENIAC-type computer with magnetic tape input/output, renamed UNIVAC in 1947 but run out of money, formed in Dec. 1947 the new company Eckert-Mauchly Computer Corporation (EMCC) . 1948-Howard Aiken developed the Harvard Mark III electronic computer with 5000 tubes 1948 − U of Manchester in Britain developed the SSEM Baby electronic computer with CRT memory 1949-Mauchly and Eckert in March successfully tested the BINAC stored-program computer for Northrop Aircraft, with mercury delay line memory and a primitive magentic tape drive; Remington Rand bought EMCC Feb. 1950 and provided funds to finish UNIVAC 1950-Commander William C. Norris led Engineering Research Associates to develop
    [Show full text]
  • A Glider Pilot Bold... Wally Kahn a Glider Pilot Bold
    A Glider Pilot Bold.. f ttom % fRfltng liBttattg of A Glider Pilot Bold... Wally Kahn A Glider Pilot Bold... Wally Kahn First edition published by Jardine Publishers 1998 Second edition published by Airplan Flight Equipment Ltd Copyright ©2008 Third edition published by Walter Kahn 2011 Copyright ©WALTER KAHN (1998 & 2008) and Airplan Flight Equipment (2008) WALTER KAHN 2011 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a newspaper, magazine, or radio or television broadcast. Every effort has been made by the author and the publishers to trace owners of copyright material. The events described have been cross-checked wherever possible and the author apologises for any errors or omissions which may have arisen. Cover photograph courtesy Neil Lawson. White Planes Co A Glider Pilot Bold... 1st Edition original cover Contents Another bite of the cherry .................................................................................9 Chapter 1 The early days and Oerlinghausen ..........................................15 Chapter 2 More Oerlinghausen.................................................................19 Chapter 3 Mindeheide and Scharfholdendorf ...........................................29 Chapter 4 Dunstable and Redhill
    [Show full text]
  • ATLAS@50 Then and Now
    ATLAS@50 Then and now Science & Technology Facilities Council The origins of Atlas In the years following the Second World War, there was huge interest in nuclear physics technologies both for civilian nuclear energy research and for military nuclear weapons. These technologies required ever-increasing amounts of computer power to analyse data and, more importantly, to perform simulations far more safely than would be possible in a laboratory. By 1958, 75% of Britain’s R&D computer power was provided by the Atomic Energy Authority (UKAEA) at Aldermaston (using an American IBM 704), Risley, Winfrith and Harwell (each using a British Ferranti Mercury). These were however what we would now call The advisory panel for the super-computer single-user systems, capable of running only included Freddy Williams (a pioneer in radar and Foreword one program at a time, so were essentially very computer technology) from Victoria University large desktop calculators. Indeed, the name of Manchester, Maurice Wilkes (designer of It is now known as Rutherford Appleton Laboratory buildings R26 and R27, but over “computer” referred to the human operator; EDSAC, the Electronic Delay Storage Automatic its 50+ year history, the Atlas Computer Laboratory in the parish of Chilton has been the machinery itself was known as an Calculator) from Cambridge, Albert Uttley of the “automatic calculating machine.” RRE (Royal Radar Establishment), and Ted Cooke- part of many seminal moments in computing history. Yarborough (designer of the Dekatron and CADET British manufacturers of automatic calculating computers) from AERE Harwell; Christopher Over its 50+ year history it has also housed It was cleaned and restored as far as we could, machines were doing well until IBM announced Strachey (a pioneer in programming language many mainframe and super-computers including and took pride of place at an event held to that their first transistorised computer was to design) was in charge of design.
    [Show full text]
  • The Manchester University "Baby" Computer and Its Derivatives, 1948 – 1951”
    Expert Report on Proposed Milestone “The Manchester University "Baby" Computer and its Derivatives, 1948 – 1951” Thomas Haigh. University of Wisconsin—Milwaukee & Siegen University March 10, 2021 Version of citation being responded to: The Manchester University "Baby" Computer and its Derivatives, 1948 - 1951 At this site on 21 June 1948 the “Baby” became the first computer to execute a program stored in addressable read-write electronic memory. “Baby” validated the widely used Williams- Kilburn Tube random-access memories and led to the 1949 Manchester Mark I which pioneered index registers. In February 1951, Ferranti Ltd's commercial Mark I became the first electronic computer marketed as a standard product ever delivered to a customer. 1: Evaluation of Citation The final wording is the result of several rounds of back and forth exchange of proposed drafts with the proposers, mediated by Brian Berg. During this process the citation text became, from my viewpoint at least, far more precise and historically reliable. The current version identifies several distinct contributions made by three related machines: the 1948 “Baby” (known officially as the Small Scale Experimental Machine or SSEM), a minimal prototype computer which ran test programs to prove the viability of the Manchester Mark 1, a full‐scale computer completed in 1949 that was fully designed and approved only after the success of the “Baby” and in turn served as a prototype of the Ferranti Mark 1, a commercial refinement of the Manchester Mark 1 of which I believe 9 copies were sold. The 1951 date refers to the delivery of the first of these, to Manchester University as a replacement for its home‐built Mark 1.
    [Show full text]
  • ASAP 2020 Opinion
    Message from the Conference Chairs ASAP 2020 We welcome you to the 31st IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2020). This year’s event was supposed to take place in Manchester, United Kingdom, a major city in the northwest of England with a rich industrial heritage. Manchester has transformed the modern world through a boom in textile manufacturing during the industrial revolution in Victorian England. In the 1880s, 80% of the world cotton production went through Manchester for trade and manufacturing, making Manchester the first industrialized city in the world. To master the enormous logistics, the 58 km Manchester Ship Canal connected Manchester with the Irish Sea in 1894, and the world’s first steam-powered, inter-urban railway for transporting both passengers and goods was completed between Manchester and Liverpool in 1830. Its Manchester terminus is now part of the Science and Industry Museum where we planed the ASAP 2020 banquet. ASAP 2020 is hosted by the Department of Computer Science at The University of Manchester, which is one of the oldest in the UK. The University of Manchester played an important role in the development of computing. This includes the development of the first electronically stored program computer, the first floating-point machine, and the Atlas computer, which was once the world’s most powerful computer and the first machine to use paged virtual memory. The school and department of Computer Science was home to Alan Turing and Tom Kilburn; and in November 2018, the 1 million processor SpiNNaker neuromorphic supercomputer went into service under the supervision of Steve Furber.
    [Show full text]