Current State and Reassessment of Threatened Species Status of Invertebrates Endemic to Great Artesian Basin Springs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Habitat Usage by the Page Springsnail, Pyrgulopsis Morrisoni (Gastropoda: Hydrobiidae), from Central Arizona
THE VELIGER ᭧ CMS, Inc., 2006 The Veliger 48(1):8–16 (June 30, 2006) Habitat Usage by the Page Springsnail, Pyrgulopsis morrisoni (Gastropoda: Hydrobiidae), from Central Arizona MICHAEL A. MARTINEZ* U.S. Fish and Wildlife Service, 2321 W. Royal Palm Rd., Suite 103, Phoenix, Arizona 85021, USA (*Correspondent: mike[email protected]) AND DARRIN M. THOME U.S. Fish and Wildlife Service, 2800 Cottage Way, Rm. W-2605, Sacramento, California 95825, USA Abstract. We measured habitat variables and the occurrence and density of the Page springsnail, Pyrgulopsis mor- risoni (Hershler & Landye, 1988), in the Oak Creek Springs Complex of central Arizona during the spring and summer of 2001. Occurrence and high density of P. morrisoni were associated with gravel and pebble substrates, and absence and low density with silt and sand. Occurrence and high density were also associated with lower levels of dissolved oxygen and low conductivity. Occurrence was further associated with shallower water depths. Water velocity may play an important role in maintaining springsnail habitat by influencing substrate composition and other physico-chemical variables. Our study constitutes the first empirical effort to define P. morrisoni habitat and should be useful in assessing the relative suitability of spring environments for the species. The best approach to manage springsnail habitat is to maintain springs in their natural state. INTRODUCTION & Landye, 1988), is medium-sized relative to other con- geners, 1.8 to 2.9 mm in shell height, endemic to the The role that physico-chemical habitat variables play in Upper Verde River drainage of central Arizona (Williams determining the occurrence and density of aquatic micro- et al., 1985; Hershler & Landye, 1988; Hershler, 1994), invertebrates in spring ecosystems has been poorly stud- with all known populations existing within a complex of ied. -
Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. -
Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J. -
North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886
THE NAUTILUS 101(1):25-32, 1987 Page 25 . North American Hydrobiidae (Gastropoda: Rissoacea): Redescription and Systematic Relationships of Tryonia Stimpson, 1865 and Pyrgulopsis Call and Pilsbry, 1886 Robert Hershler Fred G. Thompson Department of Invertebrate Zoology Florida State Museum National Museum of Natural History University of Florida Smithsonian Institution Gainesville, FL 32611, USA Washington, DC 20560, USA ABSTRACT scribed) in the Southwest. Taylor (1966) placed Tryonia in the Littoridininae Taylor, 1966 on the basis of its Anatomical details are provided for the type species of Tryonia turreted shell and glandular penial lobes. It is clear from Stimpson, 1865, Pyrgulopsis Call and Pilsbry, 1886, Fonteli- cella Gregg and Taylor, 1965, and Microamnicola Gregg and the initial descriptions and subsequent studies illustrat- Taylor, 1965, in an effort to resolve the systematic relationships ing the penis (Russell, 1971: fig. 4; Taylor, 1983:16-25) of these taxa, which represent most of the generic-level groups that Fontelicella and its subgenera, Natricola Gregg and of Hydrobiidae in southwestern North America. Based on these Taylor, 1965 and Microamnicola Gregg and Taylor, 1965 and other data presented either herein or in the literature, belong to the Nymphophilinae Taylor, 1966 (see Hyalopyrgus Thompson, 1968 is assigned to Tryonia; and Thompson, 1979). While the type species of Pyrgulop- Fontelicella, Microamnicola, Nat ricola Gregg and Taylor, 1965, sis, P. nevadensis (Stearns, 1883), has not received an- Marstonia F. C. Baker, 1926, and Mexistiobia Hershler, 1985 atomical study, the penes of several eastern species have are allocated to Pyrgulopsis. been examined by Thompson (1977), who suggested that The ranges of both Tryonia and Pyrgulopsis include parts the genus may be a nymphophiline. -
The New Zealand Mud Snail Potamopyrgus Antipodarum (J.E
BioInvasions Records (2019) Volume 8, Issue 2: 287–300 CORRECTED PROOF Research Article The New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Mollusca) in the Iberian Peninsula: temporal patterns of distribution Álvaro Alonso1,*, Pilar Castro-Díez1, Asunción Saldaña-López1 and Belinda Gallardo2 1Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain 2Department of Biodiversity and Restoration. Pyrenean Institute of Ecology (IPE-CSIC). Avda. Montaña 1005, 50059, Zaragoza, Spain Author e-mails: [email protected] (ÁA), [email protected] (PCD), [email protected] (ASL), [email protected] (BG) *Corresponding author Citation: Alonso Á, Castro-Díez P, Saldaña-López A, Gallardo B (2019) The Abstract New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Invasive exotic species (IES) are one of the most important threats to aquatic Mollusca) in the Iberian Peninsula: ecosystems. To ensure the effective management of these species, a comprehensive temporal patterns of distribution. and thorough knowledge on the current species distribution is necessary. One of BioInvasions Records 8(2): 287–300, those species is the New Zealand mudsnail (NZMS), Potamopyrgus antipodarum https://doi.org/10.3391/bir.2019.8.2.11 (J.E. Gray, 1853) (Tateidae, Mollusca), which is invasive in many parts of the Received: 7 September 2018 world. The current knowledge on the NZMS distribution in the Iberian Peninsula is Accepted: 4 February 2019 limited to presence/absence information per province, with poor information at the Published: 29 April 2019 watershed scale. The present study aims to: 1) update the distribution of NZMS in Handling editor: Elena Tricarico the Iberian Peninsula, 2) describe its temporal changes, 3) identify the invaded habitats, Thematic editor: David Wong and 4) assess the relation between its abundance and the biological quality of fluvial systems. -
Developing Husbandry Methods to Produce a Reproductively Viable
Chronicles of Ex Situ Springsnail Management at Phoenix Zoo's Conservation Center Stuart A. Wells, Phoenix Zoo Conservation and Science Department [email protected] Summary The Phoenix Zoo’s Arthur L. and Elaine V. Johnson Foundation Conservation Center (Johnson Center) is the hub of our local species conservation involvement. We work closely Arizona Game and Fish Department (AGFD) and U.S. Fish and Wildlife Service (USFWS) to assist with species conservation. Our conservation mission is to support field conservation by developing husbandry techniques and propagation for release protocols for species to be released back into their natural habitat. We are by AGFD and USFWS to work with them on the conservation of threatened and endangered species such as the desert pupfish, Gila topminnow, Chiricahua leopard frog, Mt. Graham red squirrel, black-footed ferret and the recently listed narrow-headed gartersnake. In 2004, a sudden dramatic reduction in the range of the Three Forks springsnail started discussions about creating a refugium as a hedge against extinction. In 2008, representatives from AGFD and USFWS asked the Zoo to collaborate on this project due to our historical involvement with native species conservation. Very little was known about the conditions necessary for sustained ex situ management and reproduction of hydrobiids. It was not clear if they could be maintained long-term nor whether they would be able to reproduce, and there was no record of this species ever reproducing outside of its natural habitat. In this paper, we chronicle the milestones, lessons learned and successes achieved while developing a consistent and reliable method of maintaining springsnail species ex situ. -
Molecular Phylogeny and Biogeography of Spring-Associated Hydrobiid Snails of the Great Artesian Basin, Australia
Molecular Phylogenetics and Evolution 34 (2005) 545–556 www.elsevier.com/locate/ympev Molecular phylogeny and biogeography of spring-associated hydrobiid snails of the Great Artesian Basin, Australia Kathryn E. Pereza,¤, Winston F. Ponderb, Donald J. Colganb, Stephanie A. Clarkc,1, Charles Lydearda a Department of Biological Sciences, Biodiversity and Systematics, University of Alabama, Box 870345, Tuscaloosa, AL 35487-0345, USA b Australian Museum, Sydney, NSW 2010, Australia c Centre for Biostructural and Biomolecular Research, University of Western Sydney, Hawkesbury Campus, Locked Bag 1797 Penrith South DC, NSW 1797, Australia Received 6 July 2004; revised 15 November 2004 Available online 6 January 2005 Abstract The Great Artesian Basin (GAB) of Australia underlies some of the driest parts of South Australia and Queensland and feeds numerous freshwater springs. Prominent and endangered components of the GAB spring community are snails of the family Hydro- biidae. This paper examines the evolutionary relationships of the entire hydrobiid fauna associated with the GAB, and includes appropriate non-GAB species to place the GAB fauna in a broader phylogenetic context. The Queensland genus Jardinella is a focus of this paper, providing a Wne scale examination of relationships between spring supergroups in the northeastern regions of the GAB. Maximum parsimony and Bayesian analyses performed on 16S, CO1, and combined sequence data from 40 hydrobiid taxa found four major clades of Australian taxa. The analysis revealed that at least three separate colonization events of the GAB spring fauna have occurred. Two of these are represented by considerable radiations, (1) Jardinella to the north and east and (2) Caldicochlea, Fonscochlea, and possibly Trochidrobia in South Australia. -
Prioritising Threatened Species and Threatening Processes Across Northern Australia: User Guide for Data
Prioritising threatened species and threatening processes across northern Australia User guide for data by Anna Pintor, Mark Kennard, Jorge G. Álvarez-Romero and Stephanie Hernandez © James Cook University, 2019 Prioritising threatened species and threatening processes across northern Australia: User guide for data is licensed by James Cook University for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see creativecommons.org/licenses/by/4.0 This report should be cited as: Pintor A,1 Kennard M,2 Álvarez-Romero JG,1,3 and Hernandez S.1 2019. Prioritising threatened species and threatening processes across northern Australia: User guide for data. James Cook University, Townsville. 1. James Cook University 2. Griffith University 3. ARC Centre of Excellence for Coral Reef Studies Cover photographs Front cover: Butler’s Dunnart is a threatened species which is found only on the Tiwi Islands in the Northern Territory, photo Alaric Fisher. Back cover: One of the spatially explicit maps created during this project. This report is available for download from the Northern Australia Environmental Resources (NAER) Hub website at nespnorthern.edu.au The Hub is supported through funding from the Australian Government’s National Environmental Science Program (NESP). The NESP NAER Hub is hosted by Charles Darwin University. ISBN 978-1-925800-44-9 December, 2019 Printed by Uniprint Contents Acronyms....................................................................................................................................vi -
Bayardella Burch, 1977
Bayardella Burch, 1977 Diagnostic features Snails with small neritiform or cylindrical shell with a low spire. The shell surface has raised spiral ribs and transverse striae, giving appearance of small, incised rectangles The aperture length is almost equal to the whole shell, and has a continuous periostracal fringe. The columellar margin is reflected and slightly curved, without a columellar fold. A deep umbilicus is present. The copulatory organ has an accessory bursa, but lacks a flagellum. A large muscular bulb is suspended from the proximal end of the praeputium, into which the duct of the accessory bursa opens. The anus lies on the anterior edge of rectal lobe. Classification Class Gastropoda Infraclass Heterobranchia Megaorder Hygrophila Order Lymnaeida Superfamily Planorboidea Family Planorbidae Subfamily: Miratestinae Genus Bayardella Burch, 1977 Type species: Plesiophysa (Bayardella) johni Burch, 1977 Original reference: Burch, J.B. (1977). A new freshwater snail (Basommatophora : Planorbidae) from Australia, Plesiophysa (Bayardella) johni. Malacological Review 10: 79-80. Type locality: sdell River, Walcott nlet, north Western Australia. State of taxonomy We follow Walker (1988). We know of at least one undescribed species of Bayardella. Biology and ecology Under wood and stones, in streams and waterholes. At least one species (B. cosmeta) capable of aestivation (Smith and Burn, 1976); biology otherwise unstudied. Distribution Northern, central and eastern Australian mainland. Notes Only Glyptophysa (Glyptophysa) aliciae has similar heavy periostracal spiral ridges. Bayardella has a narrower and much smaller spire and a less distinct shoulder and is smaller in size than G. (G) aliciae. Bayardella also has a much larger aperture compared to G. (G) aliciae. -
Potamopyrgus Antipodarum (Gray, 1843) (Gastropoda, Tateidae) in Chile, and a Summary of Its Distribution in the Country
16 3 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 16 (3): 621–626 https://doi.org/10.15560/16.3.621 Range extension of the invasive Potamopyrgus antipodarum (Gray, 1843) (Gastropoda, Tateidae) in Chile, and a summary of its distribution in the country Gonzalo A. Collado1, 2, Carmen G. Fuentealba1 1 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán, 3800708, Chile. 2 Grupo de Biodiversidad y Cambio Global, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán, 3800708, Chile. Corresponding author: Gonzalo A. Collado, [email protected] Abstract The New Zealand mudsnail Potamopyrgus antipodarum (Gray, 1843) has been considered as one of the most invasive mollusks worldwide and recently was listed among the 50 most damaging species in Europe. In the present paper, we report for the first time the presence ofP. antipodarum in the Maule river basin, Chile. The identity of the species was based on anatomical microdissections, scanning electron microscopy comparisons, and DNA barcode analysis. This finding constitutes the southernmost record of the species until now in this country and SouthAmerica. Keywords Alien species, DNA barcode, cryptic species, invasive mollusks, Maule River, range distribution. Academic editor: Rodrigo Brincalepe Salvador | Received 05 February 2020 | Accepted 23 March 2020 | Published 22 May 2020 Citation: Collado GA, Fuentealba CG (2020) Range extension of the invasive Potamopyrgus antipodarum (Gray, 1843) (Gastropoda, Tateidae) in Chile, and a summary of its distribution in the country. Check List 16 (3): 621–626. https://doi.org/10.15560/16.3.621 Introduction the 50 most damaging species in Europe (Nentwig et al. -
Gastropoda: Physidae) in Singapore
BioInvasions Records (2015) Volume 4, Issue 3: 189–194 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.3.06 © 2015 The Author(s). Journal compilation © 2015 REABIC Research Article Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore Ting Hui Ng1,2*, Siong Kiat Tan3 and Darren C.J. Yeo1,2 1Department of Biological Sciences, National University of Singapore 14 Science Drive 4, Singapore 117543, Republic of Singapore 2NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Republic of Singapore 3Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore E-mail: [email protected] (THN), [email protected] (SKT), [email protected] (DCJY) *Corresponding author Received: 24 December 2014 / Accepted: 6 May 2015 / Published online: 2 June 2015 Handling editor: Vadim Panov Abstract The freshwater snail identified as Physastra sumatrana has been recorded in Singapore since the late 1980’s. It is distributed throughout the island and commonly associated with ornamental aquatic plants. Although the species has previously been considered by some to be native to Singapore, its origin is currently categorised as unknown. Morphological comparisons of freshly collected specimens and material in museum collections with type material, together with DNA barcoding, show that both Physastra sumatrana, and a recent gastropod record of Stenophysa spathidophallus, in Singapore are actually the same species—the globally-invasive Physa acuta. An unidentified physid snail was also collected from the Singapore aquarium trade. -
Aquatic Snails of the Snake and Green River Basins of Wyoming
Aquatic snails of the Snake and Green River Basins of Wyoming Lusha Tronstad Invertebrate Zoologist Wyoming Natural Diversity Database University of Wyoming 307-766-3115 [email protected] Mark Andersen Information Systems and Services Coordinator Wyoming Natural Diversity Database University of Wyoming 307-766-3036 [email protected] Suggested citation: Tronstad, L.M. and M. D. Andersen. 2018. Aquatic snails of the Snake and Green River Basins of Wyoming. Report prepared by the Wyoming Natural Diversity Database for the Wyoming Fish and Wildlife Department. 1 Abstract Freshwater snails are a diverse group of mollusks that live in a variety of aquatic ecosystems. Many snail species are of conservation concern around the globe. About 37-39 species of aquatic snails likely live in Wyoming. The current study surveyed the Snake and Green River basins in Wyoming and identified 22 species and possibly discovered a new operculate snail. We surveyed streams, wetlands, lakes and springs throughout the basins at randomly selected locations. We measured habitat characteristics and basic water quality at each site. Snails were usually most abundant in ecosystems with higher standing stocks of algae, on solid substrate (e.g., wood or aquatic vegetation) and in habitats with slower water velocity (e.g., backwater and margins of streams). We created an aquatic snail key for identifying species in Wyoming. The key is a work in progress that will be continually updated to reflect changes in taxonomy and new knowledge. We hope the snail key will be used throughout the state to unify snail identification and create better data on Wyoming snails.