Potamopyrgus Antipodarum (Gray, 1843) (Gastropoda, Tateidae) in Chile, and a Summary of Its Distribution in the Country
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The New Zealand Mud Snail Potamopyrgus Antipodarum (J.E
BioInvasions Records (2019) Volume 8, Issue 2: 287–300 CORRECTED PROOF Research Article The New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Mollusca) in the Iberian Peninsula: temporal patterns of distribution Álvaro Alonso1,*, Pilar Castro-Díez1, Asunción Saldaña-López1 and Belinda Gallardo2 1Departamento de Ciencias de la Vida, Unidad Docente de Ecología, Facultad de Ciencias, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain 2Department of Biodiversity and Restoration. Pyrenean Institute of Ecology (IPE-CSIC). Avda. Montaña 1005, 50059, Zaragoza, Spain Author e-mails: [email protected] (ÁA), [email protected] (PCD), [email protected] (ASL), [email protected] (BG) *Corresponding author Citation: Alonso Á, Castro-Díez P, Saldaña-López A, Gallardo B (2019) The Abstract New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) (Tateidae, Invasive exotic species (IES) are one of the most important threats to aquatic Mollusca) in the Iberian Peninsula: ecosystems. To ensure the effective management of these species, a comprehensive temporal patterns of distribution. and thorough knowledge on the current species distribution is necessary. One of BioInvasions Records 8(2): 287–300, those species is the New Zealand mudsnail (NZMS), Potamopyrgus antipodarum https://doi.org/10.3391/bir.2019.8.2.11 (J.E. Gray, 1853) (Tateidae, Mollusca), which is invasive in many parts of the Received: 7 September 2018 world. The current knowledge on the NZMS distribution in the Iberian Peninsula is Accepted: 4 February 2019 limited to presence/absence information per province, with poor information at the Published: 29 April 2019 watershed scale. The present study aims to: 1) update the distribution of NZMS in Handling editor: Elena Tricarico the Iberian Peninsula, 2) describe its temporal changes, 3) identify the invaded habitats, Thematic editor: David Wong and 4) assess the relation between its abundance and the biological quality of fluvial systems. -
Potamopyrgus Antipodarum POTANT/EEI/NA009 (Gray, 1843)
CATÁLOGO ESPAÑOL DE ESPECIES EXÓTICAS INVASORAS Potamopyrgus antipodarum POTANT/EEI/NA009 (Gray, 1843) Castellano: Caracol del cieno Nombre vulgar Catalán: Cargol hidròbid; Euskera: Zeelanda berriko lokatzetako barraskiloa Grupo taxonómico: Fauna Posición taxonómica Phylum: Mollusca Clase: Gastropoda Orden: Littorinimorpha Familia: Hydrobiidae Observaciones Sinonimias: taxonómicas Hydrobia jenkinsi (Smith, 1889), Potamopyrgus jenkinsi (Smith, 1889) Resumen de su situación e Especie con gran capacidad de colonización y alta tasa impacto en España reproductiva, que produce poblaciones muy abundantes, produciendo una modificación de la cadena trófica de los ecosistemas acuáticos; desplazamiento y competencia con especies autóctonas e impacto en las infraestructuras acuáticas. Normativa nacional Catálogo Español de Especies Exóticas Invasoras Norma: Real Decreto 630/2013, de 2 de agosto. Fecha: (BOE nº 185 ): 03.08.2013 Normativa autonómica - Normativa europea - La Comisión Europea está elaborando una legislación sobre especies exóticas invasoras según lo establecido en la actuación 16 (crear un instrumento especial relativo a las especies exóticas invasoras) de la “Estrategia de la UE sobre la biodiversidad hasta 2020: nuestro seguro de vida y capital natural” COM (2011) 244 final, para colmar las lagunas que existen en la política de lucha contra las especies exóticas invasoras. Acuerdos y Convenios - Convenio sobre la Diversidad Biológica (CBD), 1992. internacionales - Convenio relativo a la conservación de la vida silvestre y del medio natural de Europa. Berna 1979.- Estrategia Europea sobre Especies Exóticas Invasoras (2004). - Convenio internacional para el control y gestión de las aguas de lastre y sedimentos de los buques. Potamopyrgus antipodarum Página 1 de 3 Listas y Atlas de Mundial Especies Exóticas - Base de datos del Grupo Especialista de Especies Invasoras Invasoras (ISSG), formado dentro de la Comisión de Supervivencia de Especies (SSC) de la UICN. -
Porin Expansion and Adaptation to Hematophagy in the Vampire Snail
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Piercing Fishes: Porin Expansion and Adaptationprovided by Archivio to istituzionale della ricerca - Università di Trieste Hematophagy in the Vampire Snail Cumia reticulata Marco Gerdol,1 Manuela Cervelli,2 Marco Oliverio,3 and Maria Vittoria Modica*,4,5 1Department of Life Sciences, Trieste University, Italy 2Department of Biology, Roma Tre University, Italy 3Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Roma, Italy 4Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy 5UMR5247, University of Montpellier, France *Corresponding author: E-mail: [email protected]. Associate Editor: Nicolas Vidal Downloaded from https://academic.oup.com/mbe/article-abstract/35/11/2654/5067732 by guest on 20 November 2018 Abstract Cytolytic pore-forming proteins are widespread in living organisms, being mostly involved in both sides of the host– pathogen interaction, either contributing to the innate defense or promoting infection. In venomous organisms, such as spiders, insects, scorpions, and sea anemones, pore-forming proteins are often secreted as key components of the venom. Coluporins are pore-forming proteins recently discovered in the Mediterranean hematophagous snail Cumia reticulata (Colubrariidae), highly expressed in the salivary glands that discharge their secretion at close contact with the host. To understand their putative functional role, we investigated coluporins’ molecular diversity and evolu- tionary patterns. Coluporins is a well-diversified family including at least 30 proteins, with an overall low sequence similarity but sharing a remarkably conserved actinoporin-like predicted structure. Tracking the evolutionary history of the molluscan porin genes revealed a scattered distribution of this family, which is present in some other lineages of predatory gastropods, including venomous conoidean snails. -
Draft Oecd Guideline for the Testing of Chemicals
OECD/OCDE 2XX 1 Adopted: 2 xx.xx.xxxx 3 This document contains the response by UBA to the comments combined by OECD secretary 4 (September 2015); consequently line numbering has been changed 5 DRAFT 6 7 OECD GUIDELINE FOR THE TESTING OF CHEMICALS 8 9 10 Potamopyrgus antipodarum Reproduction Test 11 12 INTRODUCTION 13 14 1. The need for testing the reproductive toxicity of some chemicals in aquatic molluscs has been 15 highlighted in the OECD Detailed Review Paper on mollusc toxicity testing (1). This guideline is 16 designed to assess potential effects of prolonged exposure to chemicals on reproduction and survival 17 of parthenogenetic lineages of the freshwater mudsnail Potamopyrgus antipodarum. This species 18 belongs to the phylum Mollusca, class Gastropoda, order Neotaenioglossa and family Hydrobiidae. P. 19 antipodarum originates from New Zealand, but has been introduced to other parts of the world. 20 Typical habitats are running freshwaters from small creeks to streams, lakes and estuaries. Mudsnails 21 are also able to survive and reproduce in brackish water with salinity up to 15‰. In their ancestral 22 distribution area, the populations have an almost balanced ratio of males to females with a sympatric 23 coexistence of biparental and parthenogenetic populations. In other parts of the world populations 24 consist almost entirely of female snails reproducing parthenogenetically. In this way a single snail is 25 capable of establishing an entire population. In Europe, male snails are found only very rarely and did 26 never occur in a long-term laboratory culture. Reproduction occurs all over the year. P. -
Aquatic Snails of the Snake and Green River Basins of Wyoming
Aquatic snails of the Snake and Green River Basins of Wyoming Lusha Tronstad Invertebrate Zoologist Wyoming Natural Diversity Database University of Wyoming 307-766-3115 [email protected] Mark Andersen Information Systems and Services Coordinator Wyoming Natural Diversity Database University of Wyoming 307-766-3036 [email protected] Suggested citation: Tronstad, L.M. and M. D. Andersen. 2018. Aquatic snails of the Snake and Green River Basins of Wyoming. Report prepared by the Wyoming Natural Diversity Database for the Wyoming Fish and Wildlife Department. 1 Abstract Freshwater snails are a diverse group of mollusks that live in a variety of aquatic ecosystems. Many snail species are of conservation concern around the globe. About 37-39 species of aquatic snails likely live in Wyoming. The current study surveyed the Snake and Green River basins in Wyoming and identified 22 species and possibly discovered a new operculate snail. We surveyed streams, wetlands, lakes and springs throughout the basins at randomly selected locations. We measured habitat characteristics and basic water quality at each site. Snails were usually most abundant in ecosystems with higher standing stocks of algae, on solid substrate (e.g., wood or aquatic vegetation) and in habitats with slower water velocity (e.g., backwater and margins of streams). We created an aquatic snail key for identifying species in Wyoming. The key is a work in progress that will be continually updated to reflect changes in taxonomy and new knowledge. We hope the snail key will be used throughout the state to unify snail identification and create better data on Wyoming snails. -
Aquatic Ecology of the Montagu River Catchment
Aquatic Ecology of the Montagu River Catchment A Report Forming Part of the Requirements for State of Rivers Reporting David Horner Water Assessment and Planning Branch Water Resources Division DPIWE. December, 2003 State of Rivers Aquatic Ecology of the Montagu Catchment Copyright Notice: Material contained in the report provided is subject to Australian copyright law. Other than in accordance with the Copyright Act 1968 of the Commonwealth Parliament, no part of this report may, in any form or by any means, be reproduced, transmitted or used. This report cannot be redistributed for any commercial purpose whatsoever, or distributed to a third party for such purpose, without prior written permission being sought from the Department of Primary Industries, Water and Environment, on behalf of the Crown in Right of the State of Tasmania. Disclaimer: Whilst DPIWE has made every attempt to ensure the accuracy and reliability of the information and data provided, it is the responsibility of the data user to make their own decisions about the accuracy, currency, reliability and correctness of information provided. The Department of Primary Industries, Water and Environment, its employees and agents, and the Crown in the Right of the State of Tasmania do not accept any liability for any damage caused by, or economic loss arising from, reliance on this information. Preferred Citation: DPIWE (2003). State of the River Report for the Montagu River Catchment. Water Assessment and Planning Branch, Department of Primary Industries, Water and Environment, Hobart. Technical Report No. WAP 03/09 ISSN: 1449-5996 The Department of Primary Industries, Water and Environment The Department of Primary Industries, Water and Environment provides leadership in the sustainable management and development of Tasmania’s resources. -
Austropyrgus Tathraensis Clark, Miller & Ponder, 2003
Austropyrgus tathraensis Clark, Miller & Ponder, 2003 Diagnostic features This is one of several species of Austropyrgus found in the southern half of New South Wales. They are all very similar, being separated on small differences in size and shape of the shells and Distribution of Austropyrgus tathraensis. Austropyrgus tathraensis (adult size 2.1-2.8 mm) in anatomical details. They have elongate-conic shells with adults having a slightly thickened aperture and the operculum bears several pegs. Like most species of Austropyrgus, it is geographically isolated and has a restricted range. This species is found around Bega and Tathra. Austropyrgus tathraensis is most similar to A. sparsus, A. wombeyanensis, A. buchanensis and A. abercrombiensis. t differs from A. sparsus in lacking a simple outer lip (i.e, it is not reflected). From A. wombeyanensis it differs in its slightly narrower shell and in some radular differences while A. buchanensis has a slightly broader shell and some anatomical differences. Classification Austropyrgus tathraensis Clark, Miller & Ponder, 2003 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Austropyrgus Cotton, 1942 Original name: Austropyrgus tathraensis Clark, Miller & Ponder, 2003. Clark, S. A., Miller, A. C. and Ponder, W. F. (2003). Revision of the snail genus Austropyrgus (Gastropoda: Hydrobiidae): A morphostatic radiation of freshwater gastropods in southeastern Australia. Records of the Australian Museum Supplement 28: 1ĕ109. Type locality: Tributary of Wapengo Creek, on Tathra-Bermagui Road, New South Wales. Biology and ecology n small streams on water weeds, hard substrata (rocks etc.) and crawling on litter and sediment. Can be locally abundant. -
New Populations of Two Threatened Species of Alsodes (Anura
Zoosyst. Evol. 94 (2) 2018, 349–358 | DOI 10.3897/zse.94.25189 New populations of two threatened species of Alsodes (Anura, Alsodidae) reveal the scarce biogeographic knowledge of the genus in the Andes of central Chile Claudio Correa1,*, Paulo Zepeda2, Nicolás Lagos3, Hugo Salinas4, R. Eduardo Palma2, Dayana Vásquez2,* 1 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile 2 Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile 3 Alianza Gato Andino, Jenner 152, B° La Quinta, Segunda Sección Villa Carlos Paz, Córdoba, Argentina 4 Ecodiversidad Consultores, Riñihue 1022, Puente Alto, Santiago, Chile http://zoobank.org/D9185A98-A5A3-4B0B-9010-E81BC732E6FA Corresponding author: Claudio Correa ([email protected]) Abstract Received 21 March 2018 High Andean environments of central Chile (32°–38°S) are inhabited by several endemic Accepted 1 June 2018 species of the genus Alsodes. Two of them, A. pehuenche and A. hugoi, have geographic Published 17 July 2018 distributions restricted to their type locality and surroundings. The Chilean government classifies A. pehuenche as Critically Endangered (like the IUCN) and A. hugoi as Vul- Academic editor: nerable. In this study we report 16 new localities of Alsodes, corresponding to first order Peter Bartsch streams, located in the Andes of Chile between 35°58’ and 36°32’S (1800–2470 m). In some of these sites, adults and juveniles morphologically similar to A. pehuenche and Key Words A. hugoi were observed, as well as specimens of Alsodes that could not be identified by their external morphology. -
Westrapyrgus Slacksmithae Ponder, Clark and Miller, 1999
Westrapyrgus slacksmithae Ponder, Clark and Miller, 1999 Diagnostic features Shell ovate-conic, whorls convex, periphery rounded; head-foot black or dark grey. This species differs from Westrapyrgus westralis in having a more ovate shell and pigmented head-foot. Distribution of Westrapyrgus slacksmithae. Westrapyrgus slacksmithae (3-4.1 mm) Classification Westrapyrgus slacksmithae Ponder, Clark and Miller, 1999 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus WestrapyrgusPonder, Clark and Miller, 1999 Original name: Westrapyrgus slacksmithae Ponder, Clark and Miller, 1999. Ponder, W. F., Clark, S. A. & Miller, A. C. (1999). A new genus and two new species of Hydrobiidae (Mollusca: Gastropoda: Caenogastropoda) from south Western Australia. Journal of the Royal Society of Western Australia 82: 109ĕ120. Type locality: Walyunga Pool, Avon River, near junction of Woorooloo Brook and Avon River, at car park Walyunga National Park, NE of Perth, Western Australia. Synonym: Potamopyrgus sp. (Kendrick, 1976). Biology and ecology Found on submerged sticks, bark and stones in pools and streams in coastal rivers. Distribution This species appears to be restricted to a few localities in the Avon and Moore Rivers north of Perth, Western Australia. Further reading Kendrick, G. M. (1976). The Avon: faunal and other notes on a dying river in south-Western Australia. The Western Australian Naturalist 13: 97-114. Ponder, W.F., Clark, S. A. & Miller, A. C. (1999). A new genus and two new species of Hydrobiidae (Mollusca: Gastropoda: Caenogastropoda) from south Western Australia. Journal of the Royal Society of Western Australia 82: 109ĕ120. To cite this resource: Ponder, W. F., Hallan, A., Shea, M. -
Schinus Molle L.) to CONTROL RICE WEEVIL (Sitophilus Oryzae L.
154RESEARCH CHILEAN J. AGRIC. RES. - VOL. 69 - Nº 2 - 2009 BIOLOGICAL ACTIVITY OF ESSENTIAL OILS FROM LEAVES AND FRUITS OF PEPPER TREE (Schinus molle L.) TO CONTROL RICE WEEVIL (Sitophilus oryzae L.) 1 1 1* Verónica Benzi , Natalia Stefanazzi , and Adriana A. Ferrero ABSTRACT Rice weevil (Sitophilus oryzae L.) is a primary insect pest of stored grain. The development of resistance resulted in the application of synthetic insecticides. In recent years many plant essential oils have provided potential alternatives to currently used insect control agents. The Brazilian pepper tree (Schinus molle L. var. areira (L.) DC.�����������������) (Anacardiaceae) has different biological properties such as insecticidal activity. In this study, repellent, fumigant activity, nutritional indices, and feeding deterrent action were evaluated on S. oryzae adults. Filter paper impregnation was used to test fumigant toxicity, whereas treated whole wheat was used to evaluate repellent activity and a flour disk bioassay was done to evaluate feeding deterrent action and nutritional index alteration. Leaf essential oils showed repellent effects at both concentrations (0.04 and 0.4% w/w), while fruit essential oils lacked repellent activity. Both plant oils altered nutritional indices. Fruit essential oils had a strong feeding deterrent action (62%) while leaves had a slight effect (40.6%). With respect to fumigant activity, neither of the essential oils was found to be toxic. Key words: Schinus molle, Sitophilus oryzae, repellency, fumigant toxicity, nutritional indices, feeding deterrence. INTRODUCTION Resistance and toxicity problems of the synthetic insecticides have resulted in the necessity of finding Harvest grains are basic human food products (Padín more effective and healthier alternatives. -
Edgbastonia (Barcaldinia) Ponder, Zhang, Hallan & Shea, 2019
Edgbastonia (Barcaldinia) Ponder, Zhang, Hallan & Shea, 2019 Diagnostic features Species of Edgbastonia (Barcaldinia) differ from the typical subgenus in lacking a columellar fold, in having a yellowish (not reddish) operculum and in the ventral channel being attached and open to the capsule gland (not separate from it). Classification Class Gastropoda Infraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Tateidae Genus Edgbastonia Ponder in Ponder, Wilke, Zhang, Golding, Fukuda, & Mason 2008 (Type species: Edgbastonia alanwillsi Ponder in Ponder et al., 2008). Subgenus Barcaldinia Ponder, Zhang, Hallan & Shea, 2019 (Type species Jardinella edgbastonensis Ponder & Clark, 1990) Original reference: Ponder, W. F., Zhang, W. -H., Hallan, A., & Shea, M. E. (2019). New taxa of Tateidae (Caenogastropoda, Truncatelloidea) from springs associated with the Great Artesian Basin and Einasleigh Uplands, Queensland, with the description of two related taxa from eastern coastal drainages. Zootaxa 4583(1): 1-67. Type locality: Springs at Edgbaston Station near Aramac, Queensland. Biology and ecology Live in springs, on sediment and vegetation. Distribution Species in this subgenus are found in the Barcaldine Supergroup and in non-GAB springs associated with the Einasleigh Uplands in the lower part of Cape York. Further reading Fensham, R., Ponder, W. & Fairfax , R. (2010). Recovery plan for the community of native species dependent on natural discharge of groundwater from the Great Artesian Basin. Report to Department of the Environment, Water, Heritage and the Arts, Canberra. Queensland Department of Environment and Resource Management, Brisbane. https://www.environment.gov.au/system/files/resources/0cefc83a-3854-4cff-9128-abc719d9f9b3/files/great-artesian-basin-ec.pdf Fensham, R. J., Silcock, J. -
Observed Performance of Dams During Earthquakes Vol. 3
United States Society on Dams Observed Performance of Dams During Earthquakes Volume III February 2014 United States Society on Dams Observed Performance of Dams During Earthquakes Volume III Volume III February 2014 Prepared by the USSD Committee on Earthquakes U.S. Society on Dams Vision To be the nation's leading organization of professionals dedicated to advancing the role of dams for the benefit of society. Mission — USSD is dedicated to: · Advancing the knowledge of dam engineering, construction, planning, operation, performance, rehabilitation, decommissioning, maintenance, security and safety; · Fostering dam technology for socially, environmentally and financially sustainable water resources systems; · Providing public awareness of the role of dams in the management of the nation's water resources; · Enhancing practices to meet current and future challenges on dams; and · Representing the United States as an active member of the International Commission on Large Dams (ICOLD). The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and may not be construed as an endorsement of any product or firm by the United States Society on Dams. USSD accepts no responsibility for the statements made or the opinions expressed in this publication. Copyright © 2014 U. S. Society on Dams Printed in the United States of America ISBN 978-1-884575-65-5 Library of Congress Control Number: 2014932950 U.S. Society on Dams 1616 Seventeenth Street, #483 Denver, CO 80202 Telephone: 303-628-5430 Fax: 303-628-5431 E-mail: [email protected] Internet: www.ussdams.org FOREWORD In July, 1992, the U. S.