Marine Conservation Science & Policy: Sea Grasses
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Balance of Nutrient Losses and Gains in Seaccrass Meadows M
MARINE ECOLOGY PROGRESS SERIES Vol. 71: 85-96, 1991 Published March 28 Mar. Ecol. Prog. Ser. REVIEW The balance of nutrient losses and gains in seaccrass meadows M. A. ~emminga',P. G. ~arrison~,F. van ~ent' ' Delta Institute for Hydrobiological Research, Vierstraat 28,4401 EA Yerseke. The Netherlands Dept of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, British Columbia, Canada V6T 2B1 ABSTRACT: Seagrasses abound in the dynamic environment of shallow marine waters. From the often high annual biomass production it can be deduced that seagrass meadows have high requirements for inorganic nutrients, although the nutrient demands will be met to some extent by internal recycling. A series of processes lead to nutrient losses from the seagrass bed. Export of leaves and leaf fragments with currents, leaching losses from photosynthetically active leaves and from senescent and dead plant material, and nutrlent transfer by mobile foraging animals, are processes speclfic to seagrass meadows; in addition, the nutrient losses are aggravated by 2 processes con~monlyoccurring in marine sedirnents: denitrification and diffusion of nutrients from the sediments to the overlying water column. The persistence in time of most seagrass meadows points to an existing balance between nutrient losses and gains. Three processes may contribute to the replenishment of nutrients: nitrogen-fixation, sedimentation and nutrient uptake by the leaves. Nitrogen-fixation undoubtedly is important, but continued biomass production requires other nutrients as well. Crucial contributions, therefore, must come from sedimenta- tion and/or leaf uptake. The concept of the seagrass meadow as an open system, with nutrient fluxes from and to the system varylng in time, allows for imbalances between nutrient losses and gains. -
Ecological Indicators for Assessing and Communicating Seagrass Status and Trends in Florida Bay§ Christopher J
Ecological Indicators 9S (2009) S68–S82 Contents lists available at ScienceDirect Ecological Indicators journal homepage: www.elsevier.com/locate/ecolind Ecological indicators for assessing and communicating seagrass status and trends in Florida Bay§ Christopher J. Madden a,*, David T. Rudnick a, Amanda A. McDonald a, Kevin M. Cunniff b, James W. Fourqurean c a Everglades Division, South Florida Water Management District, 8894 Belvedere Rd., West Palm Beach, FL 33411, USA b R.C.T. Engineering, Inc., 701 Northpoint Parkway, West Palm Beach, FL 33407, USA c Dept. of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA ARTICLE INFO ABSTRACT Article history: A suite of seagrass indicator metrics is developed to evaluate four essential measures of seagrass Received 23 April 2008 community status for Florida Bay. The measures are based on several years of monitoring data using the Received in revised form 20 January 2009 Braun-Blanquet Cover Abundance (BBCA) scale to derive information about seagrass spatial extent, Accepted 11 February 2009 abundance, species diversity and presence of target species. As ecosystem restoration proceeds in south Florida, additional freshwater will be discharged to Florida Bay as a means to restore the bay’s hydrology Keywords: and salinity regime. Primary hypotheses about restoring ecological function of the keystone seagrass Florida Bay community are based on the premise that hydrologic restoration will increase environmental variability Seagrass and reduce hypersalinity. This will create greater niche space and permit multiple seagrass species to co- Status Indicators exist while maintaining good environmental conditions for Thalassia testudinum, the dominant climax Thalassia seagrass species. -
Marine Reptiles
Species group report card – marine reptiles Supporting the marine bioregional plan for the North Marine Region prepared under the Environment Protection and Biodiversity Conservation Act 1999 Disclaimer © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] Images: A gorgonian wtih polyps extended – Geoscience Australia, Hawksbill Turtle – Paradise Ink, Crested Tern fishing – R.Freeman, Hard corals – A.Heyward and M.Rees, Morning Light – I.Kiessling, Soft corals – A.Heyward and M.Rees, Snubfin Dolphin – D.Thiele, Shrimp, scampi and brittlestars – A.Heyward and M.Rees, Freshwater sawfish – R.Pillans, CSIRO Marine and Atmospheric Research, Yellowstripe Snapper – Robert Thorn and DSEWPaC ii | Supporting the marine bioregional plan for the North Marine Region | Species group report card – marine reptiles CONTENTS Species group report card – marine reptiles ..........................................................................1 1. Marine reptiles of the North Marine Region .............................................................................3 2. Vulnerabilities and pressures ................................................................................................ -
Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier, -
Early Triassic Marine Reptile Representing the Oldest Record Of
www.nature.com/scientificreports OPEN Early Triassic marine reptile representing the oldest record of unusually small eyes in reptiles Received: 20 April 2018 Accepted: 12 December 2018 indicating non-visual prey detection Published: xx xx xxxx Long Cheng1, Ryosuke Motani 2, Da-yong Jiang 3, Chun-bo Yan1, Andrea Tintori4 & Olivier Rieppel5 The end-Permian mass extinction (EPME) led to reorganization of marine predatory communities, through introduction of air-breathing top predators, such as marine reptiles. We report two new specimens of one such marine reptile, Eretmorhipis carrolldongi, from the Lower Triassic of Hubei, China, revealing superfcial convergence with the modern duckbilled platypus (Ornithorhynchus anatinus), a monotreme mammal. Apparent similarities include exceptionally small eyes relative to the body, snout ending with crura with a large internasal space, housing a bone reminiscent of os paradoxum, a mysterious bone of platypus, and external grooves along the crura. The specimens also have a rigid body with triangular bony blades protruding from the back. The small eyes likely played reduced roles during foraging in this animal, as with extant amniotes (group containing mammals and reptiles) with similarly small eyes. Mechanoreceptors on the bill of the animal were probably used for prey detection instead. The specimens represent the oldest record of amniotes with extremely reduced visual capacity, utilizing non-visual cues for prey detection. The discovery reveals that the ecological diversity of marine predators was already high in the late Early Triassic, and challenges the traditional view that the ecological diversifcation of marine reptiles was delayed following the EPME. Te modern marine ecosystem would be incomplete without air-breathing, tetrapod predators, such as cetaceans and pinnipeds1, which dominate the list of the heaviest marine predators. -
Seagrass of Vasiliko Bay, Eastern Mediterranean: Lost Cause Or Priority Conservation Habitat?
Journal of Marine Science and Engineering Article Seagrass of Vasiliko Bay, Eastern Mediterranean: Lost Cause or Priority Conservation Habitat? Demetris Kletou 1,2, Periklis Kleitou 1,2, Ioannis Savva 2 , Martin J. Attrill 1, Stephanos Charalambous 3, Alexis Loucaides 2 and Jason M. Hall-Spencer 1,4,* 1 School of Biological & Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] (D.K.); [email protected] (P.K.); [email protected] (M.J.A.) 2 Marine & Environmental Research (MER) Lab Ltd., Limassol 4533, Cyprus; [email protected] (I.S.); [email protected] (A.L.) 3 T.C. Geomatic Technologies Ltd., Nicosia 1095, Cyprus; [email protected] 4 Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan * Correspondence: [email protected] Received: 27 July 2020; Accepted: 5 September 2020; Published: 16 September 2020 Abstract: Mediterranean coasts are affected by multiple mounting pressures. In Cyprus, marine fish farming has grown rapidly in the past decade and is concentrated in the west side of Vasiliko Bay. The east coast of this bay has ports, a power station, a desalination unit, a cement factory, a major new oil terminal, and gas storage facilities. The bay is earmarked to create the largest hydrocarbon processing, storing, and transport facility in the region. Here, we assess the status of Posidonia oceanica habitat in an understudied region at the upper thermal, and eastern limit, of this Mediterranean endemic seagrass. An extensive ancient seagrass meadow was revealed, covering about 200 ha across 10 km of coastline, over soft substrata at ca 10–30 m depth, and over hard substrata at ca 0–6 m depth. -
Detritus Dynamics in the Seagrass Posidonia Oceanica: Elements for an Ecosystem Carbon and Nutrient Budget
MARINE ECOLOGY PROGRESS SERIES Vol. 151: 43-53, 1997 Published May 22 Mar Ecol Prog Ser Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget M. A. Mateo*, J. Romero Departament d'Ecologia, Universitat de Barcelona, Diagonal 645, E-08028 Barcelona, Spain ABSTRACT. Leaf decay, leaf l~tterexport, burial in belowground sinks, and resp~ratoryconsumption of detritus were exam~nedat 2 different depths in a Posidonia oceanica (L ) Delile meadow off the Medes Islands, NW Mediterranean. At 5 m, the amount of exported leaf litter represented carbon, nitrogen and phosphorus losses of 7. 9 and 6%)of the plant primary productlon, respectively. About 26% of the carbon produced by the plant in 1 yr was immobilized by burial in the belowground compartment, i.e. as roots and rhizomes. Annual nitrogen and phosphorus burial in the sediment was 8 and 5",, of total N and P needs, respectively. Respiratory consumption (aerobic) of carbon leaf detritus represented 17"" of the annual production. An additional, but very substantial, loss of carbon as very fine particulate organic matter has been estimated at ca 48%. At 13 m the pattern of carbon losses was similar, but the lesser effect of wave action (reldtive to that at 5 m) reduced exportation, hence increasing the role of respiratory consumption. Data on carbon losses indicated that only a small part of the plant productlon was actually available to fuel the food web of this ecosystem. Total nutrient losses were in the range of 21 to 47 ",I of annual needs. From differences found in N and P concentrations between liv~ngand dead tissues, it is suggested that important nutrient recycling (50 to 70%)) may be due either to reclamation or to leaching immediately after plant death. -
Late Cretaceous) of Morocco : Palaeobiological and Behavioral Implications Remi Allemand
Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications Remi Allemand To cite this version: Remi Allemand. Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco : palaeobiological and behavioral implications. Paleontology. Museum national d’histoire naturelle - MNHN PARIS, 2017. English. NNT : 2017MNHN0015. tel-02375321 HAL Id: tel-02375321 https://tel.archives-ouvertes.fr/tel-02375321 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MUSEUM NATIONAL D’HISTOIRE NATURELLE Ecole Doctorale Sciences de la Nature et de l’Homme – ED 227 Année 2017 N° attribué par la bibliothèque |_|_|_|_|_|_|_|_|_|_|_|_| THESE Pour obtenir le grade de DOCTEUR DU MUSEUM NATIONAL D’HISTOIRE NATURELLE Spécialité : Paléontologie Présentée et soutenue publiquement par Rémi ALLEMAND Le 21 novembre 2017 Etude microtomographique de l’endocrâne de reptiles marins (Plesiosauria et Mosasauroidea) du Turonien (Crétacé supérieur) du Maroc : implications paléobiologiques et comportementales Sous la direction de : Mme BARDET Nathalie, Directrice de Recherche CNRS et les co-directions de : Mme VINCENT Peggy, Chargée de Recherche CNRS et Mme HOUSSAYE Alexandra, Chargée de Recherche CNRS Composition du jury : M. -
190 World's First Herbivorous Filter-Feeding Marine Reptile
BCAS Vol.30 No.3 2016 Earth Sciences World’s First Herbivorous Filter- feeding Marine Reptile ome strange creatures cropped up in the wake Its head was poorly preserved, but it seemed to have of one of Earth’s biggest mass extinctions a flamingo-like beak. However, in a paper published S252 million years ago. In 2014, scientists May 6 in Science Advances, Dr. LI Chun, Institute of discovered a bizarre fossil – a crocodile-sized sea- Vertebrate Paleontology and Paleoanthropology (IVPP), dwelling reptile, Atopodentatus unicus, that lived 242 Chinese Academy of Sciences, and his international million years ago in what today is southwestern China. team described two new specimens and revealed what Fossil and reconstruction of Atopodentatus unicus (Image by IVPP) 190 Bulletin of the Chinese Academy of Sciences Vol.30 No.3 2016 Science Watch Earth Sciences was really going on—that "beak" is actually part of a among marine reptiles. It is older than other marine hammerhead-shaped jaw apparatus, which the reptile used animals that ate plants with a filter-feeding system by to feed on plants on the ocean floor. It's the earliest known about eight million years, said the team. example of an herbivorous marine reptile. Atopodentatus appeared during the Triassic period These two newly discovered specimens of soon after the biggest mass extinction of species in Earth's Atopodentatus were collected from the Middle Triassic history, illustrating that life recovered and diversified (Anisian) Guanling Formation of Luoping County, Yunnan more quickly than previously thought. Other oddball Province, southwestern China. The new specimens clearly creatures also swam the seas at the time, including a demonstrate that rather than being downturned, the reptile called Dinocephalosaurus whose neck comprised rostrum developed into a “hammerhead” with pronounced half of its 17-foot (5.25 meters) length. -
Australian Seabird Rescue Inc. Animal Husbandry Policy and Procedure
Australian Seabird Rescue Inc. Policies and Procedures Animal Husbandry Policy and Procedures www.seabirdrescue.org.au ASR aims to reduce the human impact on the environment This policy applies to staff and volunteers of Australian Seabird Rescue Inc. Summary: This document lays down the framework for managing the clinical operations for rescuing, treating, rehabilitation and release of sea turtles, sea snakes and seabirds. 1 AUSTRALIAN SEABIRD RESCUE INC. ANIMAL HUSBANDRY POLICY AND PROCEDURE Title: Animal Husbandry Policy and Procedure Replacing existing policy plan or procedure No Type of document: Policy Plan Procedure Related Legislation or other Documents Department of Planning Industry & Environment (DPIE) NSW: Code of Practice for Injured and Sick Sea turtles and Sea Snakes 2020 Department of Planning Industry & Environment NSW: Rehabilitation of Native Animals Policy 2020 Office of Environment and Heritage (OEH) Code of Practice for Injured Sick or Orphaned Protected Fauna 2011 Department of Primary Industry NSW: Oil and Chemical Spill Wildlife Response 2012 Poisons and Therapeutic Goods Act 1966 National Parks and Wildlife Act 1974 (NPW Act). NSW Biodiversity Conservation Act 2016 Veterinary Practice Act 2003 ASR Interaction with Veterinarians Policy 2021 Author: Anna Dicker, Olly Pitt, Lisa Hood, Penny Beaver Applicable to: All staff and volunteers Distribution to: All staff involved in animal care Distribution by: Orientation Kit, Manual, Central Register, Website Approved by: Date To Take Effect: March 2021 Australian Seabird -
Seagrass (Zostera Marina) Health in a Eutrophic
SEAGRASS (ZOSTERA MARINA) HEALTH IN A EUTROPHIC COASTAL MARINE ECOSYSTEM AS AFFECTED BY MULTIPLE ENVIRONMENTAL STRESSORS: SHADING, SEDIMENT ORGANIC MATTER, TOTAL SULFUR, AND SOLUBLE SULFIDES A Thesis Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science by Katherine Ann Haviland August 2019 i © 2019 Katherine Ann Haviland 1 ABSTRACT Increased organic matter inputs in eutrophic marine coastal systems may lead to high levels of microbial sulfate reduction and elevated concentrations of sulfide in porewaters, resulting in subsequent declines in seagrass health. I examined this process in West Falmouth Harbor, a nitrogen (N)- enriched lagoon in Cape Cod. West Falmouth Harbor can be divided into three sub-basins: Snug Harbor, which is impacted by N-inputs from groundwater and contained seagrass until a die-off event in 2010; the Middle Harbor, which is impacted by N-enrichment and contains seagrass; and the Outer Harbor, which contains a seagrass meadow but is less N-impacted. I found the highest levels of porewater sulfide in the Middle Harbor, with an average rooting zone value of 2.3 mM total soluble sulfide, as well as sediment organic matter values as high as 15%, and average δ34S leaf tissue value of 0.0 ‰, implying plant exposure to isotopically light porewater sulfides. This contrasts with much lower sulfide and sediment organic matter concentrations in the Outer and Snug Harbors, at 1.0 and 0.7 mM for sulfide, and 6% and 8% organic matter, respectively. Soluble sulfide and δ34S values found in 2007 in the innermost, highly eutrophic Snug Harbor sub-basin prior to the seagrass die-off event in 2010 were comparable to 2018 Middle Harbor values, with soluble sulfides at 3.0 mM and leaf tissue δ34S at 0.2 ‰. -
Restoration of Seagrass Meadows in the Mediterranean Sea: a Critical Review of Effectiveness and Ethical Issues
water Review Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues Charles-François Boudouresque 1,*, Aurélie Blanfuné 1,Gérard Pergent 2 and Thierry Thibaut 1 1 Aix-Marseille University and University of Toulon, MIO (Mediterranean Institute of Oceanography), CNRS, IRD, Campus of Luminy, 13009 Marseille, France; [email protected] (A.B.); [email protected] (T.T.) 2 Università di Corsica Pasquale Paoli, Fédération de Recherche Environnement et Societé, FRES 3041, Corti, 20250 Corsica, France; [email protected] * Correspondence: [email protected] Abstract: Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural Citation: Boudouresque, C.-F.; ecosystem (e.g., sandy bottoms, sublittoral reefs) with P.