Marine Tetrapods (Of the Kitimat Fjord System)

Total Page:16

File Type:pdf, Size:1020Kb

Marine Tetrapods (Of the Kitimat Fjord System) Bangarang February 2014 Backgrounder1 Marine Tetrapods (of the Kitimat Fjord System) Eric Keen Abstract Marine tetrapods are vertebrates secondarily adapted for marine environment who obtain most or all of their nourishment from the sea. This includes marine reptiles, marine mammals (cetaceans, pinnipeds, sirenians, sea otters, sea bats and polar bears) and seabirds. This Backgrounder reviews their general natural history and compiles information relevant to the status, ecology and distribution of those marine tetrapods expected in the Kitimat Fjord System. Of marine mammals, the Kitimat Fjord System is commonly host to two mysticetes, four odontocetes, two phocids, one otariid, and one mustelid. Depending on how one deals with the seasonal use of marine habitats, 35-55 seabirds are expected in the area (excluding shorebirds). Contents Natural History Taxonomy Marine tetrapods Marine mammals Seabirds Evolution Water: The subtle difference Marine mammals Seabirds Biology Anatomy, Morphology Energetics Diving Life History – Marine Mammals Life History – Seabirds Foraging Marine Mammals of the Kitimat Fjord System Toothed cetaceans Mustached cetaceans Pinnipeds Mustelids Seabirds of the Kitimat Fjord System Taxon by Taxon Important Bird Areas (IBAs) 1 Bangarang Backgrounders are imperfect but rigorouss reviews – written in haste, not peer-reviewed – in an effort to organize and memorize the key information for every aspect of the project. They will be updated regularly as new learnin’ is incorporated. 1 Natural History Taxonomy For our purposes, tetrapods (amphibians, reptiles, birds and mammals) are considered marine if they obtain most or all of their sea from the marine environment. Marine Mammals The term “marine mammal” is not a natural biological grouping; it encompasses 130 species of cetaceans, pinnipeds (these are the two most common and well known marine mammal groups), sirenians, and fissipeds (Carnivora members with separate digits, including the otters and polar bears), all of whom retrieve most of their food from the sea. As mammals, all of these groups are endothermic, nurse live young, and have diagnostically mammalian skulls. As marine mammals, they obtain all their food from the sea2. These disparate groups represent 5 or 6 recolonizations of aquatic habitat. Marine mammal taxonomy and systematics is highly controversial and currently in a state of flux. These marine mammal groups are united not by close relation, but by a similar story that has transformed their life histories and ecologies in shared respects3. Marine mammals are extraordinarily derived, rivaling the adaptive ingenuity of bats. To varying degrees and with exceptions, all are streamlined and have reduced appendages, modified physiology and anatomy for thermo- and osmo-regulation, unique strategies and “equipment” for foraging, enhancement or loss of certain senses, and myriad internal adaptations to marine living. Their secondarily marine life has also fundamentally restructured their life history, reproductive strategies, intelligence, and sociality. All marine mammals are directly or indirectly impacted by human activities, some to the point of extinction4. The zoogeography, distribution, and migratory behaviors of marine mammal species are highly variable and prohibit summary. One available generalization is that little is known of the particular factors that limit the occurrence of species. The physical and bathymetric features that drive megascale patterns in ocean circulation and productivity are ultimately responsible for many marine mammal distributions5. Cetaceans are a monophyletic group that diverged from other artiodactyls (even-toed ungulates) >50mya and underwent punctuated periods of radiation, survived by ~86 extant species. ). As the most derived secondarily marine mammal, they are completely independent of land, practically hairless, well-blubbered, and extremely hydrodynamic (fusiform bodies, no hind appendages, telescoped skull, etc.) 6. The Cetacea can be split into two monophyletic groups: Suborder Mysteceti (baleen whales): 4 families, 14 species. Mysticetes have no functional teeth beyond the fetus stage, and both nostrils are present as blowholes; their skulls are symmetrical, and they are universally large. The most speciose family is the Balaenopteridae, the lunge-feeding, dorsal-finned rorquals, which includes the largest animals to have ever lived (i.e. the blue whales). Other families are the Balaenidae (right and bowhead whales), Neobalaenidae (pygmy right whales, resurrected cetotheres), and Eschrichtiidae (gray whales) 7. Suborder Odontoceti (toothed whales): 10 families, 65 species. Odontocetes bear homodont teeth, have asymmetrical skulls, and all are known or assumed to echolocate. They are generally smaller than mysticetes, but male sperm whales (the lone species of the family Physteridae) can be over 60ft long. Many odontocetes are specialists at foraging at great depths, and include some of the deepest divers on earth. In addition to sperm whales, families include the Kogiidae (2 species; pygmy and dward sperm whales), Ziphiidae (21+ species; beaked whales), four families of river dolphins, all of whom returned independently of each other to freshwater 2 Ballance, L. 2013. Marine mammal taxonomy. Marine Tetrapods. Scripps Institution of Oceanography. Lecture 2. 3 Jefferson, T.A., M.A. Webber, and R.L. Pitman. 2008. Introduction. Marine Mammals of the World. Academic Press. 4 Jefferson, T.A., M.A. Webber, and R.L. Pitman. 2008. Introduction. Marine Mammals of the World. Academic Press. 5 Jefferson, T.A., M.A. Webber, and R.L. Pitman. 2008. Introduction. Marine Mammals of the World. Academic Press. 6 Ballance, L. 2013. Marine mammal taxonomy. Marine Tetrapods. Scripps Institution of Oceanography. Lecture 2. 7 Ballance, L. 2013. Marine mammal taxonomy. Marine Tetrapods. Scripps Institution of Oceanography. Lecture 2. 2 habitats (4 families, 4 genera, 4 species), the Monodontidae (beluga and narwhal), the Phocoenidae (porpoises; 3 genera, 7 species), and finally, the Delphinidae (17 genera, 36 species, the largest being the killer whale) 8. The Sirenia, the only marine mammal herbivores, boast a fossil record that extends back >50mya; they evolved from proboscideans (shared ancestors of elephants and hyraxes). There are two families (Trichechidae, 3 manatee species; Dugongidae, 1 dugong species)9. Marine mammals in the order Carnivora include all members of the Suborder Pinnipedia (fins modified as non- digited flippers; 34 species). Pinnipeds are a monophyletic group of amphibious carnivores that diverged from a (likely) ursid ancestor 30-35mya. There are five major lineages of pinnipeds, three of which are extant (tusked odobenid walruses, 1 species; eared otariid seals, 16 species; and earless phoecid “true” seals, 19 species)10. All species are tied in some way to land, all have skin with hair underlain with a blubber layer, some exhibit extensive sexual dimorphism, and all have small litters (~1 pup). The marine fissipeds (Carnivora), otters and bears, are relative newcomers. Otters (Mustelidae: Lutrinae, six of 13 species are marine-living, 1 obligately marine) are only a few million years old. Polar bears, the only marine ursid, diverged from brown bears ~1.3 mya. It is the least aquatic and least derived of the marine mammals11. Another marine representatives of the Carnivora one species of the Ursidae (polar bear, require sea ice and land; 1 genus, 1 species) 12. Within the Order Chiroptera, there is one bat species in the Noctilionidae that preys upon aquatic and marine fishes13. Identifying the representatives of these taxa can be difficult, but good identification guides are essential for wildlife watching, research, and education programs. Virtually every marine mammal species exhibits variability among its geographic populations. Significant dimorphism among sexes, life stages, seasonal appearances (though less important in marine mammals), uncommon color morphs, individuals (perhaps due to scarring or injuries), and sighting conditions – as well as the possibility of hybrids and intergrades between species -- may also confound efforts to identify and describe a species14. Seabirds The term “seabird” is a loosely taxonomic grouping that encompasses ~350 species in many evolutionarily disparate clades, including penguins, “tubenose” seabirds, tropicbirds, pelicans, frigatebirds, boobies and gannets, cormorants, and gulls and terns and their close relatives. As birds, all of these groups possess feathers, forelimbs modified into wings, no teeth, highly modified skeletons for flight, and an extensive airsac system throughout their body. Birds are also homeothermic and oviparous. As seabirds, they obtain all or most of their food from the sea. Notably, this group does not include sea ducks, osprey or sea eagles, and it does include species like gulls and terns who often obtain their food from land15. The penguins (O. Sphenisciformes, f. Spheniscidae, 6 genera and 18 species) are strictly marine, currently restricted to the southern hemisphere, and are primarily temperate and subpolar16. The “tubenoses” (O. Procellariiformes, 3 families) possess a diagnostic placement and shape of external nostrils. The albatrosses (f. Diomedeidae, 4 genera, 21 spp.) boast extreme wingspans, juvenile plumage wardrobes, and a poor ability to take off without wind or a running start. The fulmars, priors, petrels, and shearwaters (f. Procellariidae) are gull-sized, strictly marine birds comprising 14 genera with
Recommended publications
  • Section 3.2: Origin, Destination & Marine Traffic Volume Survey
    Section 3.2: Origin, Destination & Marine Traffic Volume Survey TERMPOL Surveys and Studies ENBRIDGE NORTHERN GATEWAY PROJECT FINAL - REV. 0 Prepared for: Northern Gateway Pipelines Inc. January 20, 2010 January 20, 2010 Final - Rev. 0 Page i Northern Gateway Pipelines Inc. Section 3.2: Origin, Destination & Marine Traffic Volume Survey Table of Contents Table of Contents 1 Introduction .................................................................................................... 1-1 1.1 Objectives ........................................................................................................ 1-1 1.2 Scope ............................................................................................................... 1-1 1.3 Sources of Data ............................................................................................... 1-1 1.4 Data validation ................................................................................................. 1-2 2 Description of Marine Network ........................................................................ 2-1 2.1 Proposed Routes for Enbridge Tankers ............................................................ 2-2 2.1.1 North Route ................................................................................................... 2-2 2.1.2 South Routes ................................................................................................. 2-4 2.2 Major Traffic Routes ........................................................................................
    [Show full text]
  • Amphibians 1) Transition to Land A) Life on Terrestrial Earth Is a Major
    Amphibians 1) Transition to land a) Life on terrestrial earth is a major theme for all non-fish vertebrates also known as Tetrapoda b) Of Tetrapoda there are two major groups Amphibians and amniotes c) The movement form water to land is one of the most complicated and dramatic events of the evolution of animals i) Land is physically hazardous for an animal that evolved in water, is made mostly of water, and all cellular activities occur in water. ii) Plants, snails, and many arthropods made the transition before vertebrates, which provided a plentiful food source. iii) With the transition to land, vertebrates had to adapt every organ system. d) Oxygen on land i) Atmospheric air contains 20 times more oxygen than water and diffuses more rapidly through air than water. ii) By the Devonian period (400+ million years ago) fish had diversified greatly. Some of these adaptations became useful for a terrestrial life (1) Fish had evolved an air sack within their body called a swim bladder. This would allow a space for gas exchange between an organism and air (a) These early fishes were most likely freshwater. Freshwater systems are more likely to evaporate or deoxygenate compares to salt water habitats. So having a vascularized swim bladder or lung would be beneficial. (b) To this day scientist still debate heavily on whether the swim bladder evolved for buoyancy control or lung first. (2) Fish also had evolved external nares for chemoreception. In a terrestrial environment these nares can be used to draw in air to the swim bladder/lung (3) Both of these structures show great examples of evolution utilizing existing structures to turn into something new and more adapted e) However both of the characteristics are shared among fishes and tetrapods, the big shift came in the bone structure of the limbs.
    [Show full text]
  • A Monodontid Cetacean from the Early Pliocene of the North Sea
    BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 77: 197-210,2007 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 77: 197-210,2007 A monodontid cetacean from the Early Pliocene of the North Sea by Olivier LAMBERT & Pierre GIGASE L a m b e r t O. & G ig a s e P., 2007 -A monodontid cetacean from fosse temporale est plus élevée que chez D. leucas et le rostre the Early Pliocene of the North Sea. Bulletin de I ’Institut royal des ne comporte pas la paire de dents maxillaires modifiées de M. Sciences naturelles de Belgique, Sciences de la Terre 77: 197-210, monoceros. Plusieurs sillons observés à la surface des os crâniens 9 figs, 2 tables, Brussels, October 15,2007 - ISSN 0374-6291. sont interprétés comme des marques de dents de requin, résultant soit d’un épisode de prédation, soit de l’action d’un charognard. Plusieurs os de l’oreille isolés du Néogène d’Anvers sont Abstract également attribués à un Monodontidae. Les nouveaux spécimens décrits ici indiquent que des membres de cette famille ont migré A partial skeleton from the Early Pliocene of Antwerp (north of vers des eaux plus froides avant ou durant le Pliocène précoce, Belgium), including a fragmentary skull, corresponds to the first bien avant les premières mentions pléistocènes de Delphinapterus record of a fossil member of the family Monodontidae in the North leucas dans la Mer du Nord. De plus, la paléobiogéographie des Sea. The vertex of the skull is lower than in the oldest known Delphinidae, Monodontidae et Phocoenidae fossiles suggère une Monodontidae, the latest Miocene Denebola brachycephala, and the origine pacifique pour les ‘crown-Delphinoidea’ de l’Atlantique orbit is more anteriorly shifted.
    [Show full text]
  • Marine Reptiles
    Species group report card – marine reptiles Supporting the marine bioregional plan for the North Marine Region prepared under the Environment Protection and Biodiversity Conservation Act 1999 Disclaimer © Commonwealth of Australia 2012 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and enquiries concerning reproduction and rights should be addressed to Department of Sustainability, Environment, Water, Population and Communities, Public Affairs, GPO Box 787 Canberra ACT 2601 or email [email protected] Images: A gorgonian wtih polyps extended – Geoscience Australia, Hawksbill Turtle – Paradise Ink, Crested Tern fishing – R.Freeman, Hard corals – A.Heyward and M.Rees, Morning Light – I.Kiessling, Soft corals – A.Heyward and M.Rees, Snubfin Dolphin – D.Thiele, Shrimp, scampi and brittlestars – A.Heyward and M.Rees, Freshwater sawfish – R.Pillans, CSIRO Marine and Atmospheric Research, Yellowstripe Snapper – Robert Thorn and DSEWPaC ii | Supporting the marine bioregional plan for the North Marine Region | Species group report card – marine reptiles CONTENTS Species group report card – marine reptiles ..........................................................................1 1. Marine reptiles of the North Marine Region .............................................................................3 2. Vulnerabilities and pressures ................................................................................................
    [Show full text]
  • Thomas Jefferson Meg Tooth
    The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 30 Number 3 September 2015 Thomas Jefferson Meg Tooth Features Thomas Jefferson Meg The catalogue number Review; Walking is: ANSP 959 Whales Inside The tooth came from Ricehope Estate, Snaggletooth Shark Cooper River, Exhibit South Carolina. Tiktaalik Clavatulidae In 1806, it was Juvenile Bald Eagle originally collected or Sculpting Whale Shark owned by Dr. William Moroccan Fossils Reid. Prints in the Sahara Volunteer Outing to Miocene-Pliocene National Geographic coastal plain sediments. Dolphins in the Chesapeake Sloth Tooth Found SharkFest Shark Iconography in Pre-Columbian Panama Hippo Skulls CT- Scanned Squalus sp. Teeth Sperm Whale Teeth On a recent trip to the Academy of Natural Sciences of Drexel University (Philadelphia), Collections Manager Ned Gilmore gave John Nance and me a behind -the-scenes highlights tour. Among the fossils that belonged to Thomas☼ Jefferson (left; American Founding Father, principal author of the Declaration of Independence, and third President of the United States) was this Carcharocles megalodon tooth. Jefferson’s interests and knowledge were encyclopedic; a delight to know that they included paleontology. Hand by J. Nance. Photo by S. Godfrey. Jefferson portrait from: http://www.biography.com/people/thomas-jefferson-9353715 ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora September 2015 Book Review: The Walking 41 million years ago and has worldwide distribution. It was fully aquatic, although it did have residual Whales hind limbs. In later chapters, Professor Thewissen George F. Klein discusses limb development and various genetic factors that make whales, whales. This is a The full title of this book is The Walking complicated topic, but I found these chapters very Whales — From Land to Water in Eight Million clear and readable.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • A NEW DWARF SEAL from the LATE NEOGENE of SOUTH AMERICA and the EVOLUTION of PINNIPEDS in the SOUTHERN HEMISPHERE by ANA M
    [Papers in Palaeontology, Vol. 2, Part 1, 2016, pp. 101–115] A NEW DWARF SEAL FROM THE LATE NEOGENE OF SOUTH AMERICA AND THE EVOLUTION OF PINNIPEDS IN THE SOUTHERN HEMISPHERE by ANA M. VALENZUELA-TORO1,2,NICHOLASD.PYENSON2,3,CAROLINAS. GUTSTEIN1,2,4 and MARIO E. SUAREZ 1 1Red Paleontologica U.Chile, Laboratorio de Ontogenia y Filogenia, Departamento de Biologıa, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Nu~ noa,~ Santiago, Chile; e-mails: [email protected], [email protected], [email protected] 2Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA; e-mail: [email protected] 3Departments of Mammalogy and Paleontology, Burke Museum of Natural History and Culture, Seattle, WA 98195, USA 4Current address: Area de Patrimonio Natural, Consejo de Monumentos Nacionales, Vicuna~ Mackenna, 84, Providencia, Santiago, Chile Typescript received 25 May 2015; accepted in revised form 15 September 2015 Abstract: Along the south-western coast of South America, foramen; a femur with a subtrochanteric fossa, among other three genera of fossil phocids (true seals) have been formally characters; in combination with a relatively small body size. described from the late Neogene: Acrophoca and Piscophoca All these features together distinguish A. changorum from all from Chile and Peru, and, more recently, Hadrokirus from other reported pinnipeds. This new taxon not only increases Peru, which all represent medium- to large-sized phocids. the taxonomic and morphological diversity of phocids of the Here, we report the discovery of Australophoca changorum late Neogene of the eastern South Pacific Ocean, but it also gen.
    [Show full text]
  • Foley Catheter Action in the Nasopharynx a Cadaveric Study
    ORIGINAL ARTICLE Foley Catheter Action in the Nasopharynx A Cadaveric Study Wai Chung Lee, FRCS(ORL); Peter Ka Ming Ku, FRCSEd; Charles Andrew van Hasselt, FRCS Objectives: To determine the action of the Foley cath- eral side at appropriate inflation volumes in 17 (85%) of eter in the posterior nasal cavity in relation to balloon 20 nasal fossae. Complete sealing between volumes of 12 volume, and to deduce its implications in the treatment and 15 mL was achieved in 13 fossae (65%), between 11 of posterior epistaxis. and 15 mL in 10 nasal fossae (50%), and between 5 and 15 mL in 3 nasal fossae (15%). Failure to seal at any vol- Design: Human cadaveric study. ume occurred in 3 nasal fossae (15%). Bimodal seal (ie, complete seal at high [15 mL] and low volumes [4-7 mL], Materials: Twenty nasal fossae of 10 adult cadavers. but leakage in intermediate volumes) occurred in 3 na- sal fossae (15%). The balloon remained in the nasopha- Interventions: A Foley catheter (size 14) was inserted rynx under traction and did not slip past the choanal rim into the nasopharynx via each nostril. The catheter bal- to encroach on the middle and inferior turbinates until loon was inflated to its recommended maximum vol- the balloon volume was reduced to between 4 and 7 mL. ume with 15 mL of water. Firm traction was applied to The balloon slid out of the nose at a volume of 5 mL or the catheter. Colored liquid was instilled into the ipsi- less. The inflation volumes ranging from 8 to 12 mL were lateral aspect of the nasal cavity, and liquid leakage into statistically more effective in sealing the choana than lower the contralateral side was monitored using a nasoendo- volumes (4-7 mL) (P,.002, x2 test).
    [Show full text]
  • How Plesiosaurs Swam: New Insights Into Their Underwater Flight Using “Ava”, a Virtual Pliosaur
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2019 doi:10.20944/preprints201910.0094.v1 How Plesiosaurs Swam: New Insights into Their Underwater Flight Using “Ava”, a Virtual Pliosaur Max Hawthorne1,*, Mark A. S. McMenamin 2, Paul de la Salle3 1Far From The Tree Press, LLC, 4657 York Rd., #952, Buckingham, PA, 18912, United States 2Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States 3Swindon, England *Correspondence: [email protected]; Tel.: 267-337-7545 Abstract Analysis of plesiosaur swim dynamics by means Further study attempted to justify the use of all four flippers of a digital 3D armature (wireframe “skeleton”) of a simultaneously via the use of paddle-generated vortices, pliosauromorph (“Ava”) demonstrates that: 1, plesiosaurs which require specific timing to achieve optimal additional used all four flippers for primary propulsion; 2, plesiosaurs thrust. These attempts have largely relied on anatomical utilized all four flippers simultaneously; 3, respective pairs studies of strata-compressed plesiosaur skeletons, and/or of flippers of Plesiosauridae, front and rear, traveled through preconceived notions as pertains to the paddles’ inherent distinctive, separate planes of motion, and; 4, the ability to ranges of motion [8, 10-12]. What has not been considered utilize all four paddles simultaneously allowed these largely are the opposing angles of the pectoral and pelvic girdles, predatory marine reptiles to achieve a significant increase in which strongly indicate varied-yet-complementing relations acceleration and speed, which, in turn, contributed to their between the front and rear sets of paddles, both in repose and sustained dominance during the Mesozoic.
    [Show full text]
  • The Giant Pliosaurid That Wasn't—Revising the Marine Reptiles From
    The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland DANIEL MADZIA, TOMASZ SZCZYGIELSKI, and ANDRZEJ S. WOLNIEWICZ Madzia, D., Szczygielski, T., and Wolniewicz, A.S. 2021. The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland. Acta Palaeontologica Polonica 66 (1): 99–129. Marine reptiles from the Upper Jurassic of Central Europe are rare and often fragmentary, which hinders their precise taxonomic identification and their placement in a palaeobiogeographic context. Recent fieldwork in the Kimmeridgian of Krzyżanowice, Poland, a locality known from turtle remains originally discovered in the 1960s, has reportedly provided additional fossils thought to indicate the presence of a more diverse marine reptile assemblage, including giant pliosaurids, plesiosauroids, and thalattosuchians. Based on its taxonomic composition, the marine tetrapod fauna from Krzyżanowice was argued to represent part of the “Matyja-Wierzbowski Line”—a newly proposed palaeobiogeographic belt comprising faunal components transitional between those of the Boreal and Mediterranean marine provinces. Here, we provide a de- tailed re-description of the marine reptile material from Krzyżanowice and reassess its taxonomy. The turtle remains are proposed to represent a “plesiochelyid” thalassochelydian (Craspedochelys? sp.) and the plesiosauroid vertebral centrum likely belongs to a cryptoclidid. However, qualitative assessment and quantitative analysis of the jaws originally referred to the colossal pliosaurid Pliosaurus clearly demonstrate a metriorhynchid thalattosuchian affinity. Furthermore, these me- triorhynchid jaws were likely found at a different, currently indeterminate, locality. A tooth crown previously identified as belonging to the thalattosuchian Machimosaurus is here considered to represent an indeterminate vertebrate.
    [Show full text]