Permafrost in Svalbard: a Review of Research History, Climatic Background and Engineering Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Permafrost in Svalbard: a Review of Research History, Climatic Background and Engineering Challenges Permafrost in Svalbard: a review of research history, climatic background and engineering challenges Ole Humlum, Arne Instanes & Johan Ludvig Sollid This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Informa- tion on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from less than 100 m near the coasts to more than 500 m in the highlands. Ground ice is present as rock glaciers, as ice-cored moraines, buried glacial ice, and in pingos and ice wedges in major valleys. Engineering problems of thaw-settlement and frost-heave are described, and the impli- cations for road design and construction in Svalbard permafrost areas are discussed. O. Humlum, Dept. of Physical Geography, Institute of Geosciences, University of Oslo, Box 1042 Blindern, NO-0316 Oslo, Norway, and Dept. of Geology, University Centre in Svalbard, NO-9170 Longyearbyen, Norway, [email protected]; A. Instanes, Instanes Consulting Engineers, Storetveitveien 96, NO-5072 Bergen, Norway; J. L. Sollid, Dept. of Physical Geography, Institute of Geosciences, University of Oslo, Box 1042 Blindern, NO-0316 Oslo, Norway. Recent changes in the Arctic atmosphere–ice– high climatic sensitivity of the Arctic (Giorgi ocean system have sparked intense discussions 2002). Recently, however, Polyakov, Akasofu et as to whether these changes represent episodic al. (2002) and Polyakov, Alekseev et al. (2002) events or long-term shifts in the Arctic environ- presented updated observational trends and vari- ment. Concerns about future climate change stem ations of Arctic climate and sea ice cover during from the increasing concentration of greenhouse the 20th century which do not support the mod- gases in the atmosphere. During the last 15 years elled polar amplifi cation of temperature changes the Arctic has gained a prominent role in the sci- observed by surface stations at lower latitudes. entifi c debate regarding global climatic change There is reason, therefore, to evaluate cli- (Houghton et al. 2001). Existing knowledge on mate dynamics and their respective impacts on Quaternary climate and Global Climate Models high latitude ecosystems, including permafrost predicts that the effect of any present and future regions. The latter currently occupies 20 - 25 % global climatic change would be amplifi ed in the of the land surface of the Northern Hemisphere polar regions due to feedbacks in which variations (Péwé 1983; Zhang et al. 2000). Slight chang- in the extent of glaciers, snow, sea ice, permafrost es in mean annual air temperature, wind speed and atmospheric greenhouse gases play key roles. and precipitation have the potential to change the Recent subcontinental-scale analysis of meteor- state of large regions of currently frozen ground ological data obtained during the observation- (Nelson et al. 2001, 2002; Anisimov et al. 2002). al period lends empirical support to the alleged Humlum et al. 2003: Polar Research 22(2), 191–215 191 Fig. 1. Map of the Svalbard archipelago (small, southern island of Bjørnøya not shown), showing the position of places referred to in the text. Grey indicates permafrost areas (ca. 25 000 km2) without ice cover. Svalbard permafrost research surface at Kapp Thordsen in 1883. He was able to demonstrate temperature variations to a depth of 2 m. Later, Holmsen (1913) studied ground ice This section outlines research on permafrost in in Colesdalen, central Spitsbergen. Observing Svalbard, an archipelago of 63 000 km2 (Fig 1), ground ice at several sites below the upper marine since the late 19th century. This example of an limit, he was probably the fi rst to demonstrate a early international research effort was, especial- late Holocene age for permafrost and ground ice ly during the fi rst years, dominated by Nordic at low altitudes in Svalbard. researchers. Some of the publications referred Werenskiold (1922) published the fi rst review of to below are published in Norwegian or other frozen ground phenomena in Spitsbergen. Other Nordic languages only. As such, they are not early observations relating to Svalbard perma- always easily accessible to an international audi- frost were carried out by Huxley & Odell (1924), ence. The research focus has traditionally been Gripp (1926), Elton (1922, 1927) and Kulling on the main island, Spitsbergen. Among many (1937). From measurements of fi rn temperatures fi ne scientists, one in particular stands out: Olav in the accumulation area of Fjortende Julibreen, Liestøl (1916–2002), who provided ideas and Sverdrup (1935) was presumably one of the fi rst inspiration for many Nordic permafrost scientists to demonstrate that bedrock below large glaciers active in Svalbard. in Svalbard does not necessary need to be frozen. Permafrost was known to be present in Sval- Orvin (1941) published descriptions of horizontal bard at least since the First International Polar layers of ground ice (presumably refrozen ground Year in 1882 and the fi rst coal mining operations water) from Spitsbergen. Later, Orvin (1944) in 1898. Ekholm (1890) measured ground tem- addressed the apparent paradox of explaining peratures at different depths below the terrain permanent springs in a region with extensive per- 192 Permafrost in Svalbard: a review ennial frozen ground. cal aspects have also been addressed by several Liestøl (1962) described so-called “talus ter- workers, especially in relation to water supply at races” from various sites in Svalbard. These the Large-scale Research Facility in Ny-Ålesund, rock-glacier-like features were described as north-west Spitsbergen (e.g. Lauritzen 1991; consisting of recurrent layers of ground ice and Sandsbråten 1995; Haldor sen et al. 1996; Booij et debris, exposed to permafrost creep. Jahn (1960, al. 1998; Haldorsen & Heim 1999). 1965, 1967) described slope evolution, patterned The vertical temperature profi le of thick per- ground, solifl uction, rock falls and avalanches, mafrost has recently been recognized as an including the June 1953 avalanche disaster in important means of obtaining information on Longyearbyen. Jahn (1976) and Larsson (1982) past surface temperatures. This is the object of both described another catastrophic mass move- a joint European research initiative, Permafrost ment event that affected Longyearbyen during a and Climate in Europe (PACE), that has estab- heavy rainstorm in August 1972. This event was lished a number of permafrost monitoring sites due to saturation of unconsolidated near-surface in a north–south European transect (Sollid et al. sediments (the active layer) by heavy rain. 2000; Isaksen et al. 2001; Isaksen, Humlum & Liestøl (1976) was the fi rst systematically to Sollid 2003). The northernmost site is located consider the thickness and thermal conditions of on Janssonhaugen, in upper Adventdalen, central Svalbard permafrost. This classic paper describes Spitsbergen. The temperature profi le from the the distribution of pingos, springs and permafrost more than 100 m deep borehole clearly demon- in Spitsbergen. From observations made during strates the effect of a marked 20th century warm- mining operations, he was able to estimate the ing around 1920 as well as later meteorological magnitude of the geothermal gradient—about variations (Isaksen, Ødegård et al. 2000; Isaksen, 2 - 2.5 °C/100 m in central Spits berg en. Péwé Vonder Mühll et al. 2000; Isaksen 2001; Isaksen, (1979) and Péwé et al. (1981) also discussed Sval- Humlum, Sollid et al. 2003). bard permafrost in relation to climate and ongo- Pingos are well-known phenomena in Sval- ing mining operations. bard. Svensson (1971) gave the fi rst detailed Several other papers merit identifi cation in description, based upon observations made in this review. For example, Liestøl (1976, 1980, Adventdalen, near Longyearbyen. It was possible 1986) measured permafrost temperatures and to obtain a maximum age for pingo initiation of permafrost thickness in several deep boreholes about 2650 yr BP, suggesting a late Holocene age on Spitsbergen, while Gregersen & Eidsmoen for permafrost near sea level in the region. The (1988) studied near-shore permafrost conditions distribution and formation of pingos in Svalbard at Longyearbyen and Svea. Salvigsen & Elgers- was further described and discussed in a semi- ma (1985) and Salvigsen et al. (1983) discussed nal paper by Liestøl (1976). Yoshikawa & Harada the issue of taliks and karst features in perma- (1995) present additional observations on the rate frost in relation to large glaciers, major lakes or and timing of pingo growth in central Spitsber- warm groundwater springs. Lauritzen & Bottrell gen. Salvigsen (1977) and Åkerman (1982, 1987) (1994) described microbiological activity in some discuss the sporadic occurrence of palsas in Sval- of these Svalbard springs. Finally, Landvik et al. bard. (1988) discussed the possible occurrence of sub- Ice wedges represent another typical example marine permafrost on the shelf around Svalbard of geomorphic permafrost phenomenon present from a glacial-isostatic point of view. in Svalbard (Svensson 1976). They have been The Norwegian Committee on Permafrost the object of intermittent research, often in asso- established the fi rst site for Arctic engineering ciation with
Recommended publications
  • Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen U Svalbard Archipelago 80° 80°
    distinguished travel for more than 35 years Voyage UNDER THE Midnight Sun Arctic Expedition12° 16° 20° 24° 28° 32° Spitsbergen u Svalbard Archipelago 80° 80° 80° Raudfjorden Nordaustlandet Woodfjorden Smeerenburg Monaco Glacier The Arctic’s 79° 79° 79° Kongsfjorden Svalbard King’s Glacier Archipelago Ny-Ålesund Spitsbergen Longyearbyen Canada 78° 78° 78° i Greenland tic C rcle rc Sea Camp Millar A U.S. North Pole Russia Bellsund Calypsobyen Svalbard Archipelago Norway Copenhagen Burgerbukta 77° 77° 77° Cruise Itinerary Denmark Air Routing Samarin Glacier Hornsund Barents Sea June 20 to 30, 2022 4° 8° Spitsbergen12° u Samarin16° Glacier20° u Calypsobyen24° 76° 28° 32° 36° 76° Voyage across the Arctic Circle on this unique 11-day Monaco Glacier u Smeerenburg u Ny-Ålesund itinerary featuring a seven-night cruise round trip Copenhagen 1 Depart the U.S. or Canada aboard the Five-Star Le Boréal. Visit during the most 2 Arrive in Copenhagen, Denmark enchanting season, when the region is bathed in the magical 3 Copenhagen/Fly to Longyearbyen, Spitsbergen, light of the Midnight Sun. Cruise the shores of secluded Norway’s Svalbard Archipelago/Embark Le Boréal 4 Hornsund for Burgerbukta/Samarin Glacier Spitsbergen—the jewel of Norway’s rarely visited Svalbard 5 Bellsund for Calypsobyen/Camp Millar archipelago enjoy expert-led Zodiac excursions through 6 Cruising the Arctic Ice Pack sandstone mountain ranges, verdant tundra and awe-inspiring 7 MåkeØyane/Woodfjorden/Monaco Glacier ice formations. See glaciers calve in luminous blues and search 8 Raudfjorden for Smeerenburg for Arctic wildlife, including the “King of the Arctic,” the 9 Ny-Ålesund/Kongsfjorden for King’s Glacier polar bear, whales, walruses and Svalbard reindeer.
    [Show full text]
  • Handbok07.Pdf
    - . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? ....
    [Show full text]
  • Market Risk Index 120 Amundsen Sea 90 60 30 0 30 60 90 120
    COUNTRY RISK MAP 2010 150 120 90 60 30 0 30 60 90 120 150 180 ARCTIC OCEAN FRANZ JOSEF ARCTIC OCEAN LAND SEVERNAYA ARCTIC OCEAN ZEMLYA Ellesmere Island QUEEN ELIZABETH Longyearbyen NEW SIBERIAN ISLANDS Svalbard NOVAYA Kara Sea ISLANDS Greenland Sea ZEMLYA Laptev Sea Banks (NORWAY) Barents Sea Island Greenland East Siberian Sea Beaufort Sea Ban Wrangel (DENMARK) Island Victoria Bay Island Ban Jan Mayen Norwegian Chukchi (NORWAY) Island Sea Sea Arctic Circle (66°33') Arctic Circle (66°33') NORWAY Great Nuuk ICELAND White Sea U. S. Bear Lake (Godthåb) SWEDEN Provideniya Davis Denmark Strait Reykjavík Faroe Islands FINLAND Lake Strait (DEN.) Gulf R U S S I A Tórshavn of Ladoga Lake Great Bothnia Onega Slave Lake Hudson Oslo Helsinki 60 60 Bay Stockholm Tallinn Gulf of Alaska Rockall EST. Labrador (U.K.) Baltic Bering Sea Riga S North Sea LAT. Sea DENMARK Moscow Sea Copenhagen LITH. Lake RUSSIA Sea of C A N A D A UNITED Vilnius Baikal S Minsk N D Dublin Isle of KINGDOM S Okhotsk LA Man IS (U.K.) BELARUS T IA N Lake IRELAND Amsterdam Berlin Warsaw U.S. LE U Winnipeg Kamchatskiy A NETH. Astana Sakhalin A Island of L D S London Brussels POLAND E U T A N GERMANY Prague Kyiv I A N I S L Newfoundland Celtic BELGIUM LUX. Sea Guernsey (U.K.) Luxembourg CZECH REP. U K R A I N E Jersey (U.K.) SLOVAKIA Gulf of Paris Vienna Bratislava S K A Z A K H S T A N Ulaanbaatar KURIL Lake St.
    [Show full text]
  • Full Programme
    5th Conference of the International Society for Atmospheric Research using Remotely-piloted Aircraft Full Programme nd Monday, 22 May 2017 9:00am - 9:45am Registration, Coffee, Poster and Exhibit preparation: Purple Room 9:45am - 10:00am Welcome and Logistics: SAMS Director Prof. Nick Owens, Chair Phil Anderson: WSB 10:00am - 11:00am Science Applications 1: WSB 10:00am - 10:20am: 101 Heat flux estimates from SUMO profiles during the BLLAST campaign Line Båserud1, Joachim Reuder1, Marius O. Jonassen2,1, Timothy Bonin3,4, Phillip Chilson3, Maria A. Jiménez5 1 Geophysical Institute, University of Bergen, P.O. Box 7803, N-5020 Bergen, Norway 2 The University Centre in Svalbard, Longyearbyen, Norway 3 School of Meteorology and Advanced Radar Research Center, University of Oklahoma, OK, USA 4 CIRES/NOAA/ESRL, Boulder, CO, USA 5 Universitat de les Illes Balears, Palma de Mallorca, Spain Corresponding email: [email protected] 10:20am - 10:40am: 105 The 3D Mesonet Concept: Extending Networked Surface Meteorological Tower Observations Through Unmanned Aircraft Systems Phillip Chilson1,2,3, Chris Fiebrich4, Robert Huck3,5,6, James Grimsley3,5, Jorge Salazar2,3,7, Kenneth Carson8, Jamey Jacob9,10 1 School of Meteorology, University of Oklahoma (OU), Norman, OK, 2 Advanced Radar Research Center, OU, 3 Center for Autonomous Sensing and Sampling, OU, 4 Oklahoma Mesonet, OU, 5 Office of the Vice President for Research, OU, 6 College of Engineering, OU, 7 School of Electrical and Computer Engineering, OU, 8 Department of Aviation, OU, 9 Mechanical and Aerospace Engineering, Oklahoma State University (OSU), Stillwater, OK, 10 Unmanned Systems Research Institute, OSU 10:40am - 11:00am: 106 First experiments and results with a new developed airborne aerosol sampling unit carried by a multirotor UAV.
    [Show full text]
  • Climate in Svalbard 2100
    M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard.
    [Show full text]
  • Arctic Environments
    Characteristics of an arctic environment and the physical geography of Svalbard - ‘geography explained’ fact sheet The Arctic environment is little studied at Key Stage Three yet it is an excellent basis for an all-encompassing study of place or as a case study to illustrate key concepts within a specific theme. Svalbard, an archipelago lying in the Arctic Ocean north of mainland Europe, about midway between Norway and the North Pole, is a place with an awesome landscape and unique geography that includes issues and themes of global, regional and local importance. A study of Svalbard could allow pupils to broaden and deepen their knowledge and understanding of different aspects of the seven geographical concepts that underpin the revised Geography Key Stage Three Programme of Study. Many pupils will have a mental image of an Arctic landscape, some may have heard of Svalbard. A useful starting point for study is to explore these perceptions using visual prompts and big questions – where is the Arctic/Svalbard? What is it like? What is happening there? Why is it like this? How will it change? Svalbard exemplifies the distinctive physical and human characteristics of the Arctic and yet is also unique amongst Arctic environments. Perceptions and characteristics of the Arctic may be represented in many ways, including art and literature and the pupil’s own geographical imagination of the place. Maps and photographs are vital in helping pupils develop spatial understanding of locations, places and processes and the scale at which they occur. Source: commons.wikimedia.org/wiki/Image:W_W_Svalbard... 1 Longyearbyen, Svalbard’s capital Source:http://www.photos- The landscape of Western Svalbard voyages.com/spitzberg/images/spitzberg06_large.jpg Source: www.hi.is/~oi/svalbard_photos.htm Where is Svalbard? Orthographic map projection centred on Svalbard and showing location relative to UK and EuropeSource: www.answers.com/topic/orthographic- projection..
    [Show full text]
  • Ny-Ålesund Research Station
    Ny-Ålesund Research Station Research Strategy Applicable from 2019 DEL XX / SEKSJONSTITTEL Preface Svalbard research is characterised by a high degree of interna- tional collaboration. In Ny-Ålesund more than 20 research About the Research Council of Norway institutes have long-term research and monitoring activities. The station is one of four research localities in Svalbard (Ny-Ålesund, Longyearbyen, Barentsburg and Hornsund). The Research Council of Norway is a national strategic and research community, trade and industry and the public Close cooperation between these communities is essential funding agency for research activities. The Council serves as administration. It is the task of the Research Council to identify for the further development of Ny-Ålesund. the key advisor on research policy issues to the Norwegian Norway’s research needs and recommend national priorities Photo: John-Arne Røttingen Government, the government ministries, and other central and to use different funding schemes to help to translate In 2016, the Norwegian Government announced (Meld.St.32 institutions and groups involved in research and development national research policy goals into action. The Research Council (2015-2016)) the development of a research strategy for the (R&D). The Research Council also works to increase financial provides a central meeting place for those who fund, carry out Ny-Ålesund research station. Guidelines and principles for investment in, and raise the quality of, Norwegian R&D and and utilise research and works actively to promote the research activity were established by the government in 2018 to promote innovation in a collaborative effort between the internationalisation of Norwegian research.
    [Show full text]
  • Foraminifera1 Stratigraphy of Raised Marine Deposits, Representing Isotope Stage 5, Prins Karls Forland, Western Sval Bard
    Foraminifera1 stratigraphy of raised marine deposits, representing isotope stage 5, Prins Karls Forland, western SVal bard HELENE BERGSTEN. TORBJORN ANDERSON and OLAFUR INGOLFSSON Bergsten, H., Andersson. T. & Ingolfsson, 0. 1998: Foraminiferd stratigraphy of raised marine deposits, representing isotope stage 5. Prins Karls Forland, western Svalbard. Polar Research 17(1). 81-91. Two raised marine sequences from Prim Karls Forland, western Svalbard, interpreted to have been deposited during part of isotope substage Se (Eemian) and substage 5a, were studied for foraminifera content. Time constraints are given by I4C ages, infrared stimulated luminescence age estimates and amino acid ratios in suhfossil marine molluscs. A diamicton (unit B) separates the two marine sequences and reflects an advancement of local glaciers sometime late in isotope stage 5. The two marine sequences contain diverse benthic foraminifera1 faunas, indicating periods of a relatively warm and seasonally ice-free marine shelf environment. Compared to the lowermost sequence (unit A), the upper marine sequence (unit C) seems to reflect a more shallow environment that could have resulted from the global lowering of the sea level towards the end of isotope stage 5. Our results further emphasise the problem of biostratigraphic distinction between interglacial and interstadial deposits at high latitudes, with temperature conditions for substage Sa close to those of substage 5e and present conditions. Helene Bergsten, Torbjorn Andersson and Olufur Ingdlfsson, Earth Sciences Centre, Goteborg University, Box 460, S-405 30 Goteborg, Sweden. Introduction Chronology and glacial history The Poolepynten site is situated on Prins Karls Sediments in the Poolepynten sections are ex- Forland, western Svalbard at N78'27'El l"40' posed in up to 10 metre high coastal cliffs over a (Fig.
    [Show full text]
  • '.Com,' Names for Antarctica, Urdu and More 17 June 2011, by ANICK JESDANUN , AP Technology Writer
    Beyond '.com,' names for Antarctica, Urdu and more 17 June 2011, By ANICK JESDANUN , AP Technology Writer (AP) -- Unless you're a Luddite, you're bound to the system from that round, including ".xxx." know of ".com," the Internet's most common address suffix. Meanwhile, ICANN approved ".ps" for the Palestinian territories (in 2000) and ".eu" for the You've also probably heard of ".gov," for U.S. European Union (in 2005). That's because those government sites, and ".edu," for educational two were on a country-code list kept by the institutions. International Organization for Standards, which in turn takes information from the United Nations. Did you know Antarctica has its own suffix, too? It's More recently, ICANN approved country names in ".aq." languages other than English - so India has ones for Hindi, Urdu and five others. The aviation industry has ".aero" and porn sites have ".xxx." There's ".asia" for the continent, plus An expansion plan before ICANN on Monday would suffixes for individual countries such as Thailand streamline procedures for creating names and (".th") and South Korea (".kr"). Thailand and Korea allow for an endless number. also have addresses in Thai and Korean. Just as names get added, names can disappear. There are currently 310 domain name suffixes - the Yugoslavia's ".yu" is gone, as is East Germany's ".com" part of Web and email addresses. Now, the ".dd." There's no longer an ".um" for the U.S. "minor organization that oversees the system is poised to outlying islands," which include the Midway Islands. accept hundreds or thousands more.
    [Show full text]
  • Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018
    Heavy Rain Events in Svalbard Summer and Autumn of 2016 to 2018 Ola Bakke Aashamar Thesis submitted for the degree of Master of Science in Meteorology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo Department of Arctic Geophysics The University Centre in Svalbard August 15, 2019 2 “ Når merket vel dere byfolk her i deres stengte gater selv det minste pust av den frihet som tindrer over Ishavets veldige rom? Sto en eneste av dere noensinne ensom under Herrens øyne i et øde av snø og natt? Stirret dere noen gang opp i polarlandets flammende nordlys og forstod de tause toner som strømmet under stjernene? Hva vet dere om de makter som taler i stormer, som roper i snøløsningens skred og som jubler i fuglefjellenes vårskrik? Ingenting. “ - Fritt etter John Giæver, Ishavets glade borgere (1956) ​ 3 Acknowledgements First of all, I am forever grateful to my main supervisor Marius Jonassen, who with his great insight and supportive comments gave me all the motivation and help I needed along the way towards this master thesis. Big round of applause to all the amazing students and staff at UNIS who I was lucky to meet during my stays in Svalbard, and the people at MetOs in Oslo. The times shared with you inspire me both personally and professionally, and I will always keep the memories! Then I want to thank Grete Stavik-Døvle, Terje Berntsen, Frode Stordal and Karl-Johan Ullavik Bakken for ​ ​ admitting and guiding two lost NTNU students into studies at UiO. If not for you, who knows what would have happened.
    [Show full text]
  • ESG Perspectives June 2019 Svalbard Sojourn an Arctic
    June 2019 ESG Perspectives ™ SVALBARD SOJOURN: AN ARCTIC EXPERIENCE by Bob Smith, President & CIO islands are 60% glaciated with some of the world’s fastest-moving glaciers. The balance of the region is 30% barren ground, and 10% is covered with very low ground vegetation. In contrast to other Arctic regions, the Svalbard has no indigenous population and there is no historical evidence that the Vikings settled in the area during their time. In fact, it was the 1596 Dutch expedition of Willem Barents who discovered and drew maps of the region before his ship was crushed by freezing sea ice leading to his untimely death. However, the work of this expedition survived, and it led to the exploration of the region by other European countries over the Photo of Bob Smith in Kungsfjord, Svalbard centuries. This eventually gave rise to the exploitation It is said that what happens in the Arctic doesn’t stay of the natural resources of the region as a destination in the Arctic. That is because this region provides for whalers, fur trappers, and seal hunters, as well as essential global climate regulation and substantial other animal-based products. With the industrialization ecosystem benefits to humanity outside and beyond of Europe and the arrival of steel-hulled ships in the its boundaries. Indeed, the Arctic environment, and early 1900s, this region also eventually became a source human society and its economic activities are deeply for industrial minerals and, in particular, coal. connected to each other, representing a pivotal link in a complex adaptive global ecosystem.
    [Show full text]
  • Svalbard (Norway)
    Svalbard (Norway) Cross border travel - People - Depending on your citizenship, you may need a visa to enter Svalbard. - The Norwegian authorities do not require a special visa for entering Svalbard, but you may need a permit for entering mainland Norway /the Schengen Area, if you travel via Norway/the Schengen Area on your way to or from Svalbard. - It´s important to ensure that you get a double-entry visa to Norway so you can return to the Schengen Area (mainland Norway) after your stay in Svalbard! - More information can be found on the Norwegian directorate of immigration´s website: https://www.udi.no/en/ - Find more information about entering Svalbard on the website of the Governor of Svalbard: https://www.sysselmannen.no/en/visas-and-immigration/ - Note that a fee needs to be paid for all visa applications. Covid-19 You can find general information and links to relevant COVID-19 related information here: https://www.sysselmannen.no/en/corona-and-svalbard/ Note that any mandatory quarantine must be taken in mainland Norway, not on Svalbard! Find more information and quarantine (hotels) here: https://www.regjeringen.no/en/topics/koronavirus-covid- 19/the-corona-situation-more-information-about-quarantine- hotels/id2784377/?fbclid=IwAR0CA4Rm7edxNhpaksTgxqrAHVXyJcsDBEZrtbaB- t51JTss5wBVz_NUzoQ You can find further information regarding the temporary travel restrictions here: https://nyalesundresearch.no/covid-info/ - Instrumentation (import/export) - In general, it is recommended to use a shipping/transport agency. - Note that due to limited air cargo capacity to and from Ny-Ålesund, cargo related to research activity should preferably be sent by cargo ship.
    [Show full text]