<<

autorenPDF-Vorlage_all_Short_notes_SHorT_noTe.qxd 28.07.2015 15:44 Seite 18

106 SHorT noTe HerPeToZoa 28 (1/2) Wien, 30. Juli 2015 SHorT noTe

only 172 mm SVL as the maximum value of er vertebrates. Particularly, individual color the samples studied by him. In any case, the variation is a main subject for research in present extremely old male of nearly 35 areas as diverse as ecology, ethology, phys - years represents also one of the biggest T. iology, evolutionary biology or ecotoxicolo - lepidus ever measured. gy (e.g., FuJII et al. 1989; CaMargo et al. reFerenCeS: BISCHoFF , W. & C HeyLan , M. 1999; MarTIn & F orSMan 1999; CHaPLen & B öHMe , W. (1984): Lacerta lepida DauDIn , 1802 – et al. 2002; Fren TIu et al. 2007; HeFLIn et Perleidechse; pp. 181-210. In: BöHMe , W. (ed.): al. 2009; LóPeZ et al. 2009; SköLD et al. Handbuch der reptilien und amphibien europas, vol. 2012). In vertebrates, skin color is mostly 2/I, echsen II ( Lacerta ). Wiesbaden (auLa). Bou- Lenger , g. a. (1920): Monograph of the Lacertidae, determined by the disposition of chromato- vol. 1. London (Trustees of the British Museum), pp. x, phores, specialized dermal cells ( MILLS & 352. BuSaCk , S. D . (1987): Morphological and bio - PaTTerSon 2009). In some species, col - chemical differentiation in Spanish and Moroccan pop - ulations of the lizard, Lacerta lepida .- Journal of oration can change at the individual level, Herpetology, Houston, etc.; 21 (4): 277-284. CaSTILLa , with these changes classified as either mor - a. M. & C aSTaneT , J . (1986): growth, age and longev - phological or physiological ( Bagnara ity of Lacerta lepida assessed by skeletochronography; 1976). The former is a slow process associ - pp. 331-335. In: roček , Z. (ed.): Studies in Herpe- ated with variations of pigment content in tology. Prague (SeH), pp. 754. CHeyLan , M. & grILLeT , P . (2004): Le lézard ocellé. Paris (Belin Éveil the integument. The latter is a much faster nature), pp. 95. DeCaux , C. (1897): un lézard ocellé (from minutes to hours) process based on conservé en captivité depuis quatorze ans.- La nature, intracellular movement of the organelles Paris; 1255: 43-44. eSSer , S. & B öHMe , W. ( 2009): (Vorläufiger) altersrekord einer Perleidechse, Timon containing the pigments. Physiological lepidus (DauDIn , 1802), im Tierhaus des Zoologischen color changes may be caused by a multitude Forschungsmuseums alexander koenig in Bonn.- of internal and external factors ( SköLD et al. elaphe, rheinbach; 17 (4): 44-47. FLoWer , S . S. 2012), but the cytological mechanisms (1925): Contribution to our knowledge of the duration of life in vertebrate . III. reptiles.- Proceedings involved are still unclear ( Bagnara 2005). of the Zoological Society, London, 95: 911-981. Bluish coloration is common among LeePer , F. (1953): nogmaals de onderdom van reptie - vertebrates, in spite of the generalized len en amfibien.- Lacerta, s’gravenhage; 11: 55-56. absence of blue pigments, with only a few MerTenS , r . (1970): Über die Lebensdauer einiger amphibien und reptilien in gefangenschaft.- Zoo- logischer garten, Leipzig; 39 (1/6): 193-209. PeTerS , g. (1962): ein Beitrag zur ökologie der Perleidechse (Lacerta l. lepida DauDIn ).- Mitteilungen des Zoo- Spain logischen Museums Berlin, Berlin; 38: 401-414. SaLVaDor , a. (1998): Fauna Iberica, vol. 10 (reptiles). Madrid (MnCn), pp. 709. SLaVenS , F. L. & S LaVenS , k. (1993): reptiles and in captivity. Breeding, longevity and inventory. Current January 1, 1993. Seattle (Slaveware), pp. 521. key WorDS: reptilia: Squamata: Lacertidae: Timon lepidus ; longevity, maximum dimensions, Spain SuBMITTeD: March 26, 2015 auTHorS: Wolfgang BöHMe (Corresponding author < [email protected] >); Sascha eSSer – Zoologisches Forschungsmuseum alexander koenig, adenauerallee 160, D-53113 Bonn, germany.

rapid color change to blue in metamorphic scovazzi (CaMerano , 1878)

The presence of brilliant colors such Fig. 1: Map showing the locations in Morocco as the primary colors red, yellow and blue where the metamorphic, rapidly color-changing (CaMerano , 1878) were found. has been widely studied and documented Cap Spartel (circle), oued Laou (solid square) and among animals, from invertebrates to high - Derdara (open square). autorenPDF-Vorlage_all_Short_notes_SHorT_noTe.qxd 28.07.2015 15:44 Seite 19

SHorT noTe HerPeToZoa 28 (1/2) Wien, 30. Juli 2015 SHorT noTe 107

fish species having real cyanophores ( goDa & F uJII 1995). Thus, most of the times blue is a structural color caused by light scatter - ing ( Bagnara et al. 2007). Several studies have revealed a functional role of blue (uMBerS 2013) in different life history traits as mate choice ( MarTIn & L óPeZ 1999; CuaDraDo 2000), crypsis ( MaCeDonIa et al. 2009) or antipredator strategies ( SaPo - rITo et al. 2007; HaWLena 2009). In amphibians, blue is produced in the absence of xantophores (or at least of some of their pigments) by the light scattered in the iridophores ( DueLLMan & T rueB 1986). although generally uncommon, blue is present in the regular color pattern of sever - al species ( Bagnara 2007; T o- LeDo & H aDDaD 2009) or as low frequency individual variants, as in several species of anura (see for example nISHIoka & u eDa 1985, r IVera et al. 2001 and references therein). even scarcer are the cases of indi - vidual color change from regular coloration into blue. a striking example is the tempo - ral color dimorphism observed in Rana arvalis nILSSon , 1842, with males changing from regular coloration to blue during the breeding season ( HeTTyey et al. 2009). Jörn köHLer (Hessisches Landesmuseum, Darmstadt) suggested (pers. comm.) that dehydration produced by prolonged hand- ling of juvenile can drive change of the color, providing observations of froglets turning blue in some species of the genera Stumpffia and Adenomera , among others. In the present note, the authors report the observation of color change from brown to blue in metamorphic Discoglossus scov - azzi (CaMerano , 1878) in different locali - ties from Morocco. During fieldwork car - ried out in May 2013 on three distant areas belonging to the Tanger-Tetouan region (achakkar, near Cap Spartel, 35°45.9’n, 5°55.9’W; oued Laou, 35°26.2’n, 5°04.9’ W; Derdara, 35°06.1’n, 5°18.1’W; Fig. 1), three metamorphic D. scovazzi were found that, when handled, quickly changed their

______

Fig. 2: Discoglossus scovazzi (CaMerano , 1878). a - normal coloration of metamorphic specimen; B - bluish coloration after manipulation; C - almost normalized coloration approximately 10 minutes after manipulation. autorenPDF-Vorlage_all_Short_notes_SHorT_noTe.qxd 28.07.2015 15:44 Seite 20

108 SHorT noTe HerPeToZoa 28 (1/2) Wien, 30. Juli 2015 SHorT noTe

original cryptic coloration to bluish tones and aposematic patterns ( ToLeDo & (Fig. 2). Maximum blue intensity was HaDDaD 2009). If the changes described achieved after less than a minute of being are limited to just a single species within manipulated. once the coloration had Discoglossus , or even localized populations changed, the specimens were released and within D. scovazzi , as suggested by the lack observed. The animals regained their origi - of further observations, it could even be nal color at a slower rate, taking from 10 to possible that blue color change developed 15 minutes to become fully brown. given under some type of selective pressure in this the structure of the dermal cromatophore region. However, all these open hypotheses unit described for Discoglossus (D’a nna & are in need of experimental testing before La SPIna 1975) and the rapidity of the the actual causes of this behavior are under - changes, they are most likely explained by stood. the mobilization of pigment-containing or - aCknoWLeDgMenTS: This work was par - ganelles in the xantophores. tially funded by the project cgl2010-15786 of Most species of the genus Discoglos - Ministerio de Ciencia e Innovación of Spain. The sec - ond author (er) is supported by a DgaPa-unaM sus feature a range of variation for intraspe - (Dirección general asuntos del Personal académico - cific patterns and colour shades (L anTZ universidad nacional autónoma de México) Post- 1947; M arTíneZ -S oLano 2009). D’a nna & Doctoral fellowship. The authors thank Iñigo MarTíneZ La SPIna (1975) also indicated that D. pic - SoLano and José MarTín for their review and com - tus can rapidly become darker or lighter in ments of the manuscript. response to the particular background color. reFerenCeS: Bagnara , J. T. (1976): Color change. pp. 1-52. In: LoFTS , B. (ed.): The physiology The authors did not detect any descriptions of the amphibia. Vol. III. new york (academic Press). of a drastic colorpattern change from cryp - Bagnara , J. T. (2005): The hormonal regulation of tic to blue in the genus Discoglossus such as colour change in amphibians. endocrinology. pp. 2377- reported here. apart from a thorough litera - 2391. In: HeaTWoLe , H. (ed.): amphibian biology, Vol. 6. Chipping norton, australia (Surrey Beatty and ture search, interviews with several experi - Sons). Bagnara , J. T. & F ernánDeZ P. J. & F uJII , r. enced researchers working for years with (2007): on the blue coloration of vertebrates.- Pigment species of Discoglossus , did not result in Cell research, oxford; 20: 14-26. BaLCoMBe , J. P. & observations of similar changes. BarnarD , n. D. & S anDuSky , C . (2004): Laboratory routines cause stress.- Contemporary Topics in Physiological color changes in am - Laboratory animal Science, Cordova, Tennessee; 43: phibians may be considered as functional 42-51. CaMargo , C. r. & V ISConTI , M. a. & traits of adaptive value, with implications in CaSTruCCI , a. M. (1999): Physiological color change in the bullfrog, Rana catesbei ana .- Journal of prey-predator interactions ( kIng & k Ing experimental Zoology, Hoboken, new york; 283: 160- 1991), thermoregulation and water balance 169. CHaPLen , F. W. r. & u PSon , r. H. & M CFaDDen , (HuTCHInSon & D uPrÉ 1992; k Ing et al. P. n. & k oLoDZIeJ , W. (2002): Fish chromatophores as 1994; STegen et al. 2004) or intraspecific cytosensors in a microscale device: detection of envi - ronmental toxins and bacterial pathogens.- Pigment communication ( WeLLS 1980). But they Cell research, oxford; 15: 19-26. CuaDraDo , M. may also occur as hormonally induced re - (200 0): Body colors indicate the reproductive status of sponses to stress ( nIeLSen 1978). In the female Common chameleons: experimental evidence present case, the observed color change oc- for the inter-sex communication function.- ethology, Berlin; 106: 79-91. D’a nna , T. & L a SPIna , r. (1975): curred within seconds, suggesting that the Interrelations of dermal chromatophores in Discoglos- stress can be derived directly from the fact sus pictus pictus .- Bolletino di Zoologia, Padova; 42: of being captured and grabbed, rather than 33-38. DueLLMan , W. e. & T rueB , L. (1986): Biology changes in environmental factors such as of amphibians. Baltimore & London (Johns Hopkins university Press). FrenTIu , F. D. & B ernarD , g. D. & hydration, temperature, or light intensity CueVaS , C. I. & S ISon -M anguS , M. P. & P ruDIC , k. L. (nIeLSen 1987; D ueLLMan & T rueB 1986; & B rISCoe , a. D. (2007): adaptive evolution of color kIng et al. 1994). Handling was shown to be vision as seen through the eyes of butterflies.- a strong stress source in several vertebrate Proceedings of the national academy of Sciences, Washington, D. C.; 104: 8634-8640. FuJII , r. & species (see BaLCoMBe et al. 2004 and refer - kaSukaWa , H. & M IyaJI , k. (1989): Mechanisms of ences therein). Turning blue, instead, could skin coloration and its changes in the blue-green dam - have additional implications, for example, a selfish, Chromis viridis .- Zoological Science, Tokyo; 6: possible anti-predator response ( uM BerS 477-486. goDa , M. F & F uJII , r. (1995 ): Blue chro - matophores in two species of callionymid fish.- 2013), as brilliant, conspicuous colors are Zoological Science, Tokyo; 12: 811-813. HaWLena , D. typically associated both with camouflaging (2009): Colorful tails fade when lizards adopt less risky autorenPDF-Vorlage_all_Short_notes_SHorT_noTe.qxd 28.07.2015 15:44 Seite 21

SHorT noTe HerPeToZoa 28 (1/2) Wien, 30. Juli 2015 SHorT noTe 109

behaviors.- Behavioral ecology and Sociobiology, Canadian Journal of Zoology, ottawa; 82: 889-896. Berlin; 64: 205-213. HeFLIn , B. & y oung , L. & ToLeDo , L. F. & H aDDaD , C. F. B. (20 09): Colors and LonDraVILLe , r. L. (2009): Short-term cycling of skin some morphological traits as defensive mechanisms in colouration in the blackspotted rockskipper anurans.- International Journal of Zoology, new york; Entomacrodus striatus .- Journal of Fish Biology, 2009: 1-12. uMBerS , k. D. L. ( 2013): on the percep - London; 74: 1635-1641. HeTTyey , a. & H erCZeg , g. tion, production and function of blue colouration in & L aurILa , a. & C roCHeT , P-a. & M erILa , J. (2009): animals.- Journal of Zoology, London; 289: 229–242. Body temperature, size, nuptial colouration and mating WeLLS , k. D. (1980): Social behavior and communica - success in male moor frogs ( Rana arvalis ).- amphibia- tion of a dendrobatid ( Colostethus tri nitatus ).- reptilia, Leiden; 30: 37-43. HuTCHInSon , V. H. & Herpeto logica, Lawrence; 36:189-199. DuPrÉ , r. k. (1992): Thermoregulation. pp. 206-249. keyWorDS: amphibia: anura: , In: FeDer , M. e. & B urggren , W . W. (eds): Discoglossus scovazzi , blue coloration, rapid color environmental Physiology of the amphibians. Chicago change, stress-induced color change, physiology, (university of Chicago Press). kIng , r. B. & k Ing , B. behaviour, Morocco (1991): Sexual differences in color and color change in woodfrogs.- Canadian Journal of Zoology, ottawa; 69: SuBMITTeD: February 11, 2014 1963-1968. kIng , r. B. & H auFF , S. & P HILLIPS , J. B. auTHorS: roberto garCía -r oa (Correspond- (1994): Physiological color change in the green ing author < [email protected] >) 1) ; ernesto Treefrog: responses to background brightness and tem - reCuero 2) ; Paloma MaS -P eInaDo 3, 4) perature.- Copeia, Washington; 1994: 422-432. LanTZ , 1) Department of evolutionary ecology. L. a. (1947): note on Discoglossus in captivity.- Pro- national Museum of natural Science – Spanish ceedings of the royal Society, London; (B) 134: 52-56. resarch Council (MnCn-CSIC). José gutiérrez LóPeZ , P. & g aBIroT , M. & M arTín , J. (2009): abascal, 2, 28006, Madrid, Spain. Immune challenge affects sexual coloration of male 2) Departamento de ecología de la Biodiversi- Iberian wall lizards.- Journal of experimental Zoology, dad, Instituto de ecología, universidad nacional new york; (a) 311: 96-104. MaCeDonIa , J. M. & autónoma de México, ap. Postal 70-275, Ciudad LaPPIn , a. k. & L oeW , e. r. & M CguIre , J. a. & universitaria, México DF, 04510, Mexico. HaMILTon , P. S. & P LaSMan , M. & B ranDT , y. & 3) Department of Biodiversity and evolutive LeMoS -e SPInaL , J. a. & k eMP , D. J. (2009): Conspic- ecology. national Museum of natural Science – uousness of Dickerson’s collared lizard ( Crotaphytus Spanish resarch Council (MnCn-CSIC). José guti- dickersonae ) through the eyes of conspecifics and érrez abascal, 2, 28006, Madrid, Spain. predators.- Biological Journal of the Linnean Society, 4) Instituto de estudios Ceutíes. Paseo del London; 97: 749-765. MarTín , J. & F orSMan , a. (1999): Social costs and development of nuptial col - revellín, 30. apartado de correos 593, 51080 Ceuta, oration in male Psammodromus algirus lizards: an Spain. experiment.- Behavioral ecology, oxford; 10: 396- 400. MarTín , J.& L óPeZ , P . (1999): nuptial coloration and mate guarding affect escape decisions of male lizards Psammodromus algirus .- ethology, Berlin; 105: Further confirmation for 439-447. MarTíneZ -S oLano , I. (2009): Sapillo pintojo mediterráneo – . pp. 1-13. In: Platyceps rhodorachis (Jan , 1865), SaLVaDor , a. & M arTíneZ -S oLano , I. (eds.): enci- from India, with a note on feeding clopedia virtual de los vertebrados españoles. Madrid (Museo nacional de Ciencias naturales). MILLS , M. g. on Cyrtodactylus fasciolatus & P aTTerSon , L . B. (2009): not just black and white: (BLyTH , 1861) Pigment pattern development and evolution in verte - brates.- Seminars in Cell & Developmental Biology, London; 20: 72-81. nIeLSen , H. I. (1978): The effect The snake genus Platyceps is repre - of stress and adrenaline on the color of Hyla cinerea sented by 15 species worldwide ( ueTZ & and Hyla arborea .- general and Comparative Hošek 2013), among them, P. ventromacu - endocrinology, orlando; 36: 543-552. nISHIoka , M. & ueDa , H. (1985): Blue variants in Hyla arborea japon - latus (g ray , 1834) , P. ladacensis (a nDer- ica .- Scientific report of the Laboratory for amphibian Son , 1871) and P. rhodorachis (Jan , 1865) Biology, Hiroshima; 7: 181-197. rIVera , x. & were rep orted from India ( kHan 1997; W HIT - arrIBaS , o. & M arTI , F. (2 001): revisión de anom - alías pigmentarias en los anfibios de la Península aker & C aPTaIn 2004; D aS 2012 ). Platy - Ibérica y de europa.- Butlletí de la Societat Catalana ceps ventromaculatus is rather distinctive in d’Herpeto logia, Barcelona; 15: 59-75. SaPorITo , r. a. morphology and in habits low elevation & Z uerCHer , r. & r oBerTS , M.& g eroW , k. g. & areas ( WHIT aker & C aPTaIn 2004). Platy - DonneLLy , M. a . (2007): experi mental evidence for aposematism in the Dendrobatid poison frog Oophaga ceps ladacensis and P. rhodorachis are pumilio .- Copeia, Washington; 2007 (4): 1006-1011. closely related and the former was often re- SköLD , H. n. & a SPengren , S. & W aLLIn , M. (2012): garded a subspecies of P. rhodorachis (an - rapid color change in fish and amphibians – function, DerSon 1896; L a TIFI 1985; u eTZ & H ošek regulation, and emerging applications.- Pigment Cell & 2013). recently SCHäTTI et al. (2013) de - Melanoma research, københavn; 26: 29-38. STegen , J. C. & g Ienger , C. M. & S un , L. (2004): The control scribed hybridization between P. rhodora - of color change in the Pacific tree frog, Hyla regilla .- chis and P. karelini in their common range.