Tom Hsiang the Battle Under Snow Between Fungal Pathogens

Total Page:16

File Type:pdf, Size:1020Kb

Tom Hsiang the Battle Under Snow Between Fungal Pathogens Naoyuki Matsumoto · Tom Hsiang Snow Mold The Battle Under Snow Between Fungal Pathogens and Their Plant Hosts Snow Mold ThiS is a FM Blank Page Naoyuki Matsumoto • Tom Hsiang Snow Mold The Battle Under Snow Between Fungal Pathogens and Their Plant Hosts Naoyuki Matsumoto Tom Hsiang Graduate School of Agriculture School of Environmental Sciences Hokkaido University University of Guelph Sapporo, Hokkaido Guelph, Ontario Japan Canada ISBN 978-981-10-0757-6 ISBN 978-981-10-0758-3 (eBook) DOI 10.1007/978-981-10-0758-3 Library of Congress Control Number: 2016937674 © Springer Science+Business Media Singapore 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer Science+Business Media Singapore Pte Ltd. Preface Climate change does not occur uniformly across the globe; its effects are considered most severe at higher latitudes in the northern hemisphere, and agricultural pro- duction is most likely to be influenced there (Murray and Gaudet 2013). This concern motivated scientists to convene an interdisciplinary forum, Plant and Microbe Adaptations to Cold (PMAC), in 1997 in Sapporo, Japan. Fifteen years later, PMAC 2012 met again in Sapporo, and this conference focused on sustainable agricultural production under changing climatic conditions. Scientists, as well as farmers and policy makers, participated the conference to discuss issues of impor- tance affected by climate change. Although concrete countermeasures were not presented, available scientific knowledge and established techniques can be adapted to minimize overwintering problems of crops. For example, extended snow cover for up to 163 days in certain areas of Hokkaido in northern Japan in the 2011/2012 winter (S. Inoue, personal communication) made farmers anxious; however, the survival of winter wheat was better than expected. Both biotic and abiotic factors that affect agricultural production respond to changes in winter climate. Abiotic factors mainly consist of freeze damage due to low temperatures and of ice encasement and damage that occur after repeated cycles of freezing and thawing of soil. Biotic factors are comprised mostly of snow molds incited by low-temperature fungi that prevail on plants under snow cover and represent the main theme of this book. Winter damage to agricultural production, unlike drought in summer, is not well documented. Gudleifsson (2013) presented an example in Iceland, where analyses of ice cores from glaciers indicated that the temperatures around the time of settlement from 900 to 1200 were fairly high and then fluctuated until 1900 with frequent winter damage to forage grass. Over one-third of the years were characterized as having mild or severe winter damage of pastures, resulting in reduced livestock production and subsequent famine. Correlations between temperature measurements and hay yield from 1900 to 2010 revealed that winter temperatures affected forage production more significantly (r=0.57***) than summer temperatures (r=0.28***). Recent global warming is generally considered to favor forage production. v vi Preface Frost depth (cm) 1987 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 Year Fig. 1 Change in annual soil frost in nine spots in Memuro, Hokkaido (Hirota et al. 2006) Climate change also affects agriculture in Hokkaido, Japan, where the quantity and quality of summer crops have been improved due to extended growth periods and increased cropping acreage, as well as reduced cool weather damage. The trends are not so apparent in forage crops or winter wheat that overwinters under snow. However, especially in eastern Hokkaido where deep soil frost is character- istic of the winter climate, early onset of snow cover and deep snow cover has attenuated the depth and duration of soil frost (Fig. 1, Hirota et al. 2013). Conse- quently, changes in winter climate have led to changes in snow mold flora, affecting breeding strategy. In this book, we described a common phenomenon occurring in snowy regions, namely, snow mold. Snow mold is important not only as one of agricultural issues in cold regions but interesting as a biological phenomenon. This book is an English version of the book Snow Mold written in Japanese by NM (Matsumoto 2013) and represents a synthesis of ideas of both authors of this version. References Gudleifsson BE (2013) Climatic and physiological background of ice encasement damage of herbage plants. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 63–72 Hirota T, Iwata Y, Hayashi Y, Suzuki S, Hamasaki T, Sameshima R, Takayabu I (2006) Decreasing soil-frost depth and its relation to climate change in Tokachi, Hokkaido, Japan. J Meteorol Soc Jpn 84:821–833 Hirota T, Yazaki T, Usuki K, Hayashi M, Nemoto M, Iwata Y, Yanai Y, Inoue S, Suzuki T, Shirahata M, Kajiyama T, Araki K, Maezuka K (2013) Soil frost control: its applications to volunteer potato management in a cold region. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 51–61 Preface vii Matsumoto N (2013) Snow mold. Hokkaido University Press, Sapporo (in Japanese) Murray T, Gaudet D (2013) Global change in winter climate and agricultural sustainability. In: Imai R, Yoshida M, Matsumoto N (eds) Plant and microbe adaptations to cold in a changing world. Springer, New York, pp 1–15 ThiS is a FM Blank Page Contents 1 Introduction .......................................... 1 1.1 SnowMold....................................... 2 1.1.1 Damage . .................................. 4 1.1.2 Life History . 5 1.1.3 Environment Under Snow . ...................... 6 1.2 Subnivean Environment .............................. 10 1.2.1 Litter Decomposition . 10 1.2.2 Organic Matter Recycling ....................... 11 1.2.3 Diversity Creation ............................. 11 1.3 Microorganisms in the Cryosphere . .................... 12 1.3.1 Physiological Issues ............................ 14 1.3.2 Ecological Issues . .......................... 16 References . 16 2 Ecology and Physiology ................................. 23 2.1 Survival Strategy . 24 2.1.1 Individualism ................................ 26 2.1.2 Population Structure ........................... 29 2.2 Predictability of Snow Cover . ......................... 33 2.2.1 Sclerotial Germination . 34 2.2.2 Sclerotial Size . 38 2.3 Psychrophily and Freeze Tolerance . ................... 43 2.3.1 Metabolism . 44 2.3.2 Freeze Tolerance . 45 2.3.3 Mechanism of Freeze Tolerance . ................. 46 References . 49 3 Snow Mold Fungi ...................................... 55 3.1 Typhula spp. .................................... 56 3.1.1 Mating Incompatibility . ....................... 56 3.1.2 Niche Separation . 59 ix x Contents 3.1.3 Typhula incarnata ............................. 60 3.1.4 Typhula ishikariensis ........................... 66 3.1.5 Typhula phacorrhiza ........................... 75 3.2 Sclerotinia spp. ................................... 76 3.2.1 Sclerotinia borealis ............................ 76 3.2.2 Sclerotinia nivalis ............................. 79 3.2.3 Sclerotinia trifoliorum .......................... 80 3.3 Microdochium nivale ................................ 81 3.3.1 Taxonomic Issues ............................. 81 3.3.2 Ecological Features . .......................... 82 3.4 Pythium spp. ...................................... 84 3.5 Other Basidiomycetous Snow Mold Pathogens . ........... 85 3.5.1 Supponuke fungus (Athelia sp.) . 85 3.5.2 Low-Temperature Basidiomycete (LTB, Coprinus psychromorbidus)............................. 87 References . 88 4 Resistance ............................................ 95 4.1 Field Observations .................................. 96 4.2 Laboratory Trials . ................................. 99 4.3 Resistance Mechanism . 100 4.3.1 Hardening . 100 4.3.2 Reserve Materials ............................. 101 4.3.3 PR Proteins and Other Substances ................. 102 4.4 Conclusions . ...................................... 104 References . 104 5 Control .............................................. 109 5.1 Chemical Control . 112 5.1.1 Bordeaux Mixture . .......... 113 5.1.2 Organic Mercury . 113 5.1.3 PCP, PCNB, and Thiophanate-Methyl . 114 5.1.4 New Fungicides and Mixture of Chemicals ........... 114 5.1.5 Resistance Activators . ........................ 115
Recommended publications
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Minireview Snow Molds: a Group of Fungi That Prevail Under Snow
    Microbes Environ. Vol. 24, No. 1, 14–20, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09101 Minireview Snow Molds: A Group of Fungi that Prevail under Snow NAOYUKI MATSUMOTO1* 1Department of Planning and Administration, National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo 062–8555, Japan (Received January 5, 2009—Accepted January 30, 2009—Published online February 17, 2009) Snow molds are a group of fungi that attack dormant plants under snow. In this paper, their survival strategies are illustrated with regard to adaptation to the unique environment under snow. Snow molds consist of diverse taxonomic groups and are divided into obligate and facultative fungi. Obligate snow molds exclusively prevail during winter with or without snow, whereas facultative snow molds can thrive even in the growing season of plants. Snow molds grow at low temperatures in habitats where antagonists are practically absent, and host plants deteriorate due to inhibited photosynthesis under snow. These features characterize snow molds as opportunistic parasites. The environment under snow represents a habitat where resources available are limited. There are two contrasting strategies for resource utilization, i.e., individualisms and collectivism. Freeze tolerance is also critical for them to survive freezing temper- atures, and several mechanisms are illustrated. Finally, strategies to cope with annual fluctuations in snow cover are discussed in terms of predictability of the habitat. Key words: snow mold, snow cover, low temperature, Typhula spp., Sclerotinia borealis Introduction Typical snow molds have a distinct life cycle, i.e., an active phase under snow and a dormant phase from spring to In northern regions with prolonged snow cover, plants fall.
    [Show full text]
  • Typhula Blight Paul Koch, UW-Plant Pathology and PJ Liesch, UW Insect Diagnostic Lab
    XHT1270 Provided to you by: Typhula Blight Paul Koch, UW-Plant Pathology and PJ Liesch, UW Insect Diagnostic Lab What is Typhula blight? Typhula blight, also known as gray or speckled snow mold, is a fungal disease affecting all cool season turf grasses (e.g., Kentucky bluegrass, creeping bentgrass, tall fescue, fine fescue, perennial ryegrass) grown in areas with prolonged snow cover. These grasses are widely used in residential lawns and golf courses in Wisconsin and elsewhere in the Midwest. What does Typhula blight look like? Typhula blight initially appears as roughly circular patches of bleached or straw-colored turf that can be up to two to three feet in diameter. When the disease is severe, patches can merge to form larger, irregularly-shaped bleached areas. Affected turf is often matted and can have a water-soaked appearance. At the edges of patches, masses of grayish-white fungal threads (called a mycelium) may form. In 1 3 addition, tiny ( /64 to /16 inch diameter) reddish-brown or black fungal survival Typhula blight causes circular patches of structures (called sclerotia) may be bleached turf that often merge to form larger, irregularly-shaped bleached areas. present. Typhula blight looks very similar to Microdochium patch/pink snow mold (see University of Wisconsin Garden Facts XHT1145, Microdochium Patch), but the Microdochium patch fungus does not produce sclerotia. Where does Typhula blight come from? Typhula blight is caused by two closely related fungi Typhula incarnata and Typhula ishikariensis. In general, T. incarnata is more common in the southern half of Wisconsin while T. ishikariensis is more common in the northern half of the state.
    [Show full text]
  • Wheat Diseases Ii
    WHEAT DISEASES II 1. Foot rot or eyespot. L, lodging in a field; C, and R, lesions 2. Rhizoctonia bare patch, L; sharp on culms eyespot lesions on clums, R 3. Take-all. L, in the field; C, darkened clum bases; R, white 4. Helminthosporium root and crown (foot) heads rot. L, field; R, decayed crowns 5. Frost injury 6. VVinter injury 7. Fusarium root and 8. Typhula blight or speckled snow mold. crown (foot) rot L, infected plants; R, sclerotia 9. Soil-borne mosaic. L, in a low-lying 10. Barley yellow 11. VVheat streak 12. Herbicide (Trifluralin) field; R, leaf symptoms dwarf mosaic injury UNIVERSITY OF ILLINOIS COLLEGE OF AGRICULTURE PLANT DISEASE NO. 6 COOPERATIVE EXTENSION SERVICE and VOCATIONAL AGRICULTURE SERVICE URBANA, ILLINOIS WHEAT DISEASES II 1. Foot Rot or Eyespot, also known as strawbreaker, is caused by the F. culmorum . Seedlings may wither and die while older plants mature soil-borne fungus Pseudocercosporella (Cercosporella) herpotrichoides. early producing fewer tillers and white heads with mostly shriveled Maturing plants lean or break over (lodge) in all d irections from a basal seed. Dry, light-brown to reddish-brown lesions develop in invaded stem or foot rot that develops during wet weather in autumn, winter coleoptile, crown (foot) and root tissue. The greatest yield loss occurs and early spring. Lens-shaped, white-to-light tan lesions with dark when infection of the crown or foot reduces the stand in random or brown margins and up to 4 cm long, form vertically on the stems and irregular patches. Surviving diseased plants are brittle, stunted, and a lower leaf sheaths near the soil line.
    [Show full text]
  • Snow Molds of Turfgrasses, RPD No
    report on RPD No. 404 PLANT July 1997 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN SNOW MOLDS OF TURFGRASSES Snow molds are cold tolerant fungi that grow at freezing or near freezing temperatures. Snow molds can damage turfgrasses from late fall to spring and at snow melt or during cold, drizzly periods when snow is absent. It causes roots, stems, and leaves to rot when temperatures range from 25° to 60°F (-3° to 15°C). When the grass surface dries out and the weather warms, snow mold fungi cease to attack; however, infection can reappear in the area year after year. Snow molds are favored by excessive early fall applications of fast release nitrogenous fertilizers, Figure 1. Gray snow mold on a home lawn (courtesy R. Alden excessive shade, a thatch greater than 3/4 inch Miller). thick, or mulches of straw, leaves, synthetics, and other moisture-holding debris on the turf. Disease is most serious when air movement and soil drainage are poor and the grass stays wet for long periods, e.g., where snow is deposited in drifts or piles. All turfgrasses grown in the Midwest are sus- ceptible to one or more snow mold fungi. They include Kentucky and annual bluegrasses, fescues, bentgrasses, ryegrasses, bermudagrass, and zoysiagrasses with bentgrasses often more severely damaged than coarser turfgrasses. Figure 2. Pink snow mold or Fusarium patch. patches are 8-12 There are two types of snow mold in the inches across, covered with pink mold as snow melts (courtesy R.W. Smiley). Midwest: gray or speckled snow mold, also known as Typhula blight or snow scald, and pink snow mold or Fusarium patch.
    [Show full text]
  • A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
    A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al.
    [Show full text]
  • Activated Resistance of Bentgrass Cultivars to Microdochium Nivale Under Predicted Climate Change Conditions
    Activated Resistance of Bentgrass Cultivars to Microdochium nivale under Predicted Climate Change Conditions by Sara Marie Stricker A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Masters of Science in Environmental Science Guelph, Ontario, Canada © Sara Marie Stricker, September, 2017 ABSTRACT ACTIVATED RESISTANCE OF BENTGRASS CULTIVARS TO MICRODOCHIUM NIVALE UNDER PREDICTED CLIMATE CHANGE CONDITIONS Sara Marie Stricker Advisor: University of Guelph, 2017 Professor Dr. Tom Hsiang The potential impact of predicted climate change on Microdochium nivale, which causes Microdochium patch on turfgrasses was investigated. Turfgrasses exposed to temperature fluctuations exhibited increased yellowing caused by M. nivale compared to a constant lower temperature incubation. The effect of increased CO2 (from 400 ppm to 800 ppm) on M. nivale hyphal growth, percent yellowing, and biochemical response was assessed for Agrostis spp. and Poa annua cultivars. The efficacy of the resistance activator, Civitas + Harmonizer, was assessed under conditions of increased CO2, two temperatures, and field conditions. Civitas + Harmonizer often decreased disease symptoms, and suppression varied by cultivar and environmental conditions. Elevated CO2 did not affect the growth of M. nivale, although evidence from growth room trials suggests it may decrease Microdochium patch disease severity in the future. However, the interactive effects of temperature, snow cover conditions, and moisture availability in the field under future conditions is unknown. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Dr. Tom Hsiang for welcoming me back into his lab and for his guidance, patience, and wry witticisms that kept me going. I am also very grateful for the opportunities I have had to participate in conferences and educational experiences throughout my time as a master’s student.
    [Show full text]
  • Typhula Quisquiliaris (Fr.) Henn., Bot
    © Miguel Ángel Ribes Ripoll [email protected] Condiciones de uso Typhula quisquiliaris (Fr.) Henn., Bot. Jb. 23: 288 (1896) Typhulaceae, Agaricales, Agaricomycetidae, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi ≡ Pistillaria quisquiliaris (Fr.) Fr. = Clavaria obtusa Sowerby = Geoglossum obtusum (Sowerby) Gray ≡ Clavaria quisquiliaris Fr. ≡ Clavaria quistuiltaris Fr. Material estudiado Tenerife, La Vica, Camino de los Canarios, 28R CS599458, 1045 m, sobre peciolos de helecho Pteridium aquilinum, 22-XII-2010, leg. Justo Caridad, José Cuesta & Miguel Á. Ribes, MAR-221210 65, AH 41412. Descripción macroscópica Basidiomas hasta de 9 mm de alto y 2,5-3 mm en la parte más ancha de la clávula, con estípite estéril y clávula fértil bien diferenciados, de consistencia córnea. La clávula es variable, de subcilíndrica a ovoide o claviforme-piriforme, en ocasiones comprimida y con formas ligeramente curvas, glabra y de color blanco. Estípite ligeramente más largo que la clávula, cilíndrico, blanco, subhialino y ligeramente pubescente en toda su longitud, de 1 mm de grosor, desarrollándose a partir de un esclerocio oblongo-elipsoidal, con la cutícula delgada de color amarillento claro e interior grisáceo-rosado, relativamente grande, de 2-3 mm de longitud y 0,4-0,6 mm de ancho, profundamente inmerso en el interior del tallo vegetal en sentido longitudinal. Descripción microscópica Basidios claviformes con cuatro esterigmas y fíbula basal Basidiosporas cilíndrico-elipsoidales, ligeramente cóncavas en la cara interna, lisas, hialinas, con apícula corta, amiloides, de (8,1) 8,9 – 10,9 (12,0) x (3,4) 3,8 – 4,4 (5,1) µm; Q = (2,1) 2,2 – 2,7 (2,9); N = 67; Me = 9,8 x 4,1 µm; Qe = 2,4.
    [Show full text]
  • Snow Mold on Turfgrass Introduction Winter Diseases of Turfgrasses Are Often Associated with Melting Snow Or Cold, Wet Periods
    CORNELL COOPERATIVE EXTENSION OF ONEIDA COUNTY 121 Second Street Oriskany, NY 13424-9799 (315) 736-3394 or (315) 337-2531 FAX: (315) 736-2580 Snow Mold on Turfgrass Introduction Winter diseases of turfgrasses are often associated with melting snow or cold, wet periods. Bluegrasses (Poa sp.), fescues (Festuca sp.), and ryegrasses (Lolium sp.) may be attacked, but bentgrasses (Agrostis sp.) are most sus- ceptible. Two diseases, Gray Snow Mold (Typhula blight) and Pink Snow Mold, are common in New York and may occur singly or side-by-side. Since different fungicides may be used to control each of these diseases, it is necessary to distinguish between them. Symptoms Gray snow mold (Typhula blight) is caused by Typhula incarnata and related species. It is a true snow mold and appears as roughly circular bleached patches up to 60 cm in diameter (Figure 1). Soon after the snow melts, the infected grass may be matted and surrounded by a white to gray halo of fluffy fun- gal growth. Examination of the diseased plants reveals tiny tan or brown pea-like structures (sclerotia) on or imbedded in infected leaves. The severity of the dis- ease will vary. It is particularly severe when turf has been subjected to a pro- longed, deep, compacted snow cover. Although the disease is unsightly, it rarely kills the grass. Figure 1: Infected spots on turf. Disease Cycle The disease cycle for this fungus is nearly opposite that of most others. This fungus produces sclerotia (resting structures) to help it survive the summer months. In late fall when conditions are favorable, these sclerotia may produce mycelium or basidiocarps (Figure 2) that produce spores.
    [Show full text]
  • Clavarioid Fungi of the Urals. II. the Nemoral Zone
    Karstenia 47: 5–16, 2007 Clavarioid fungi of the Urals. II. The nemoral zone ANTON G. SHIRYAEV SHIRYAEV, A. 2007: Clavarioid fungi of the Urals. II. The nemoral zone. – Karstenia 47: 5–16. 2007. Helsinki. ISSN 0453-3402. One hundred and eighteen clavarioid species are reported from the nemoral zone of the Ural Mts.. Eight of them, Ceratellopsis aculeata, C. terrigena, Lentaria corticola, Pistillaria quercicola, Ramaria broomei, R. lutea, R. subtilis and Typhula hyalina, are reported for the fi rst time from Russia. The material consists of 1300 collections and observations, and according to these, the most frequent species are Clavulina cinerea, Macrotyphula. juncea, Typhula erythropus, T. sclerotioides, T. uncialis and T. variabilis. These contain ca. 23 % of all observations, but only 5 % of all the species. In comparison with the boreal zone of the Urals, the nemoral zone consists less abundant species (1.7% / 14.6%) and an more rare species (47.8% / 38.2%). Species like Clavulinopsis aurantio- cinnabarina, Pistillaria quercicola, Ramaria broomei, R. lutea and Sparassis brevipes are considered to be relicts of Pliocen and Holocen periods. The most favorable habitats for the rare and relict species are discussed. The collecting sites are briefl y described and descriptions of the new and rare species for Russia are given. Key words: Aphyllophorales, Basidiomycetes, clavarioid fungi, distribution, nemoral, relicts, Ural Anton Shiryaev, Institute of Plant and Animal Ecology RAS, 8 March str. 202, 620144, Ekaterinburg, Russia Introduction The Northern subzone of the nemoral zone, like fungi associated mainly with the nemoral zone. also the hemiboreal zone, are widely distributed The delimitation between the southern parts of in Central Europe but in easternmost Europe hemiboreal zone and northern parts of nemoral represented just as narrow strips on the west- zone is often extremely diffi cult, and in the area ern slopes of the South Ural Mountains (Sjörs somewhat vague.
    [Show full text]
  • Turfgrass Disease Identification Guide for Golf TABLE of CONTENTS
    Turfgrass Disease Identification Guide for Golf TABLE OF CONTENTS TURFGRASS DISEASE IDENTIFICATION Ectotrophic Root Infecting Fungi Necrotic Ring Spot ......................................................... 4 Spring Dead Spot ........................................................... 6 Summer Patch ............................................................... 8 Take-all Patch .............................................................. 10 Fairy Rings Fairy Ring ..................................................................... 12 Superficial Fairy Ring .................................................... 14 Mildew Diseases Yellow Tuft (Downy Mildew) .......................................... 16 Powdery Mildew ........................................................... 18 Pythium Diseases Pythium Blight .............................................................. 20 Pythium Root Rot (Root Dysfunction) ........................... 22 Rhizoctonia Diseases Brown Patch, cool-season turf ..................................... 24 Large Patch, warm-season turf .................................... 26 Rust and Smut Diseases Rusts (Crown, Leaf, Stem, and Stripe) ......................... 28 Stripe Smut .................................................................. 30 Syngenta would like to acknowledge the following individuals for their contribution to the development of this turf guide: Pete Dernoeden, PhD, University of Maryland, and Bruce Clarke, PhD, Rutgers University. 2 Snow Molds Gray Snow Mold............................................................32
    [Show full text]
  • Reapprisal of Typhula 150515-1.Pdf
    Title Taxonomic reappraisal of Typhula variabilis, Typhula laschii, Typhula intermedia, and Typhula japonica Author(s) Ikeda, Sachiko; Hoshino, Tamotsu; Matsumoto, Naoyuki; Kondo, Norio Mycoscience, 56(5), 549-559 Citation https://doi.org/10.1016/j.myc.2015.05.002 Issue Date 2015-09 Doc URL http://hdl.handle.net/2115/62732 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Rights http://creativecommons.org/licenses/by-nc-nd/4.0/ Rights(URL) http://creativecommons.org/licenses/by-nc-nd/4.0/ Type article (author version) File Information Reapprisal of Typhula 150515-1.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP 1 Full paper 2 3 Taxonomic reappraisal of Typhula variabilis, Typhula laschii, Typhula intermedia, and 4 Typhula japonica 5 Sachiko Ikedaa,b,*, Tamotsu Hoshinoc, Naoyuki Matsumotod, Norio Kondoe 6 7 a Department of Phytopathology and Entomology, Hokkaido Research Organization, Kitami 8 Agricultural Experiment Station, Yayoi 52, Kunneppu, Hokkaido 099-1496 Japan 9 b Graduate School of Agriculture, Hokkaido University, Kitaku Kita 9, Nishi 9, Sapporo 060- 10 8589, Japan 11 c National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, 2-17- 12 2-1, Tsukisamu Higashi, Toyohira, Sapporo 062-8517, Japan 13 d Graduate School of Agriculture, Hokkaido University, Kitaku Kita 9, Nishi 9, Sapporo 060- 14 8589, Japan 15 e Research Faculty of Agriculture, Hokkaido University, Kitaku Kita 9, Nishi 9, Sapporo, 060- 16 8589, Japan 17 18 *Corresponding author: 19 S. Ikeda 20 Tel.: +81 157-47-2184 21 Fax: +81 157-47-2774 22 E-mail: [email protected] 23 Text: 17 pages; tables: 4, figures: 11 24 1 25 Abstract 26 27 We have redefined Typhula variabilis, T.
    [Show full text]