Pohlia Section Cacodon (Mielichhoferiaceae, Bryophyta) with Axillary Bulbils in the Iberian Peninsula

Total Page:16

File Type:pdf, Size:1020Kb

Pohlia Section Cacodon (Mielichhoferiaceae, Bryophyta) with Axillary Bulbils in the Iberian Peninsula Anales del Jardín Botánico de Madrid Vol. 64(1): 55-62 enero-junio 2007 ISSN: 0211-1322 Pohlia section Cacodon (Mielichhoferiaceae, Bryophyta) with axillary bulbils in the Iberian Peninsula by Juan Guerra Departamento de Biología Vegetal, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain [email protected] Abstract Resumen Guerra, J. 2007. Pohlia section Cacodon (Mielichhoferiaceae, Guerra, J. 2007. Pohlia sección Cacodon (Mielichhoferiaceae, Bryophyta) with axillary bulbils in the Iberian Peninsula. Anales Bryophyta) con bulbillos axilares, en la Península Ibérica. Anales Jard. Bot. Madrid 64(1): 55-62. Jard. Bot. Madrid 64(1): 55-62 (en inglés). A taxonomic and descriptive study is presented of the propag- Se realiza un estudio taxonómico y descriptivo de las especies uliferous species –with axillary bulbils– of section Cacodon of the con bulbillos axilares de la sección Cacodon del género Pohlia, genus Pohlia in the Iberian Peninsula. Among the nine species of existentes en la Península Ibérica. De las nueve especies de la this section present in the Iberian Peninsula, seven produce axil- sección presentes en el área, siete producen propágulos (bulbi- lary propagula (bulbils). The propagulum morphology, seen to llos) de origen caulinar. Se describe la morfología de estos pro- be the most relevant gametophyte identification character, is págulos, que resulta ser el carácter más relevante para la iden- described. Data are provided on the habitat and distribution of tificación de las especies. Se aportan datos sobre hábitat y dis- the species in the Iberian Peninsula, where they are considered tribución en la Península Ibérica, donde pueden considerarse rare or very rare. raras o muy raras. Keywords: Pohlia, Pohlia section Cacodon, Bryophyta, Iberian Palabras clave: Pohlia, Pohlia sección Cacodon, Bryophyta, Pe- Peninsula. nínsula Ibérica. Introduction dictyon (Müll. Hal.) Ochyra (= Mniobryum Ny- holm, nom. inv.), and the genus Pohlia is included The genus Pohlia Hedw. (1801: 171), which has un- in the family Mielichhoferiaceae, which closely re- dergone substantial systematic and taxonomic flects the criteria proposed by Koponen (1988). changes that were summarized by Shaw (1984), has The section Cacodon includes 15 species in Europe traditionally been included in Bryaceae (e.g. Brothe- (cf. Hill & al., 2006), of which 9 (P. andalusica rus, 1924). However, phylogenetic studies carried out (Höhn.) Broth., P. annotina (Hedw.) Lindb., P. camp- with molecular markers, using plastid, mitochondrial totrachela (Renauld & Cardot) Broth., P. drummondii and nuclear DNA sequences (Cox & al., 2000, 2004), (Müll. Hal.) A.L. Andrews, P. filum (Schimp.) place the genus Pohlia closer to Mniaceae. Its exclu- Martensson, P. flexuosa Hook., P. lescuriana (Sull.) sion from Bryaceae has been proposed, along with Ochi, P. ludwigii (Spreng. ex Schwägr.) Broth. and Epipterigium Lindb. and Mielichhoferia Nees & P. proligera (Kindb.) Lindb. ex Broth.) are found in Hornsch. (cf. Shaw, 2005). the Iberian Peninsula. Except for P. lescuriana and Shaw (1984) considered an infrageneric subdivi- P. ludwigii, the species of section Cacodon produce sion with three subgenera: Pohlia, Nyholmiella propagula in the form of axillary bulbils with their Shaw and Mniobryum (Limpr.) Nyholm, the latter origin in the stem, which, when developed, permit with two sections, Mniobryum and Cacodon Lindb. the species to be identified quite easily. None of the ex Broth. In Hill & al. (2006) three sections are con- species of the section Cacodon has been found with sidered for the genus: Pohlia, Cacodon and Apalo- sporophytes in the Iberian Peninsula. 56 J. Guerra In this article we provide morphological, choro- KEY TO THE IBERIAN SPECIES logical and ecological data that broaden the knowl- edge of these propaguliferous species in a territory 1. Bulbils 1(2) in the axils of leaves, usually longer than 380 μm long ................................................................................. 2 where they are infrequent and probably undercol- 1. Bulbils usually numerous in the axils of leaves, usually shorter lected. than 380 μm long ............................................................ 3 2. Bulbils oblong to cylindrical, with laminate leaf primordia Material and Methods arising from base to apex ....................... 1. P. drummondii 2. Bulbils ovoid to elliptical or subspherical, with laminate leaf All the available material (65 specimens) of the stud- primordia arising only at the apex ...................... 2. P. filum ied species deposited in the Iberian herbaria have been 3. Bulbils mainly isodiametric, spherical to short oblong, with 1- 4 toothlike primordia of 1-2(3) cells .. 4. P. camptotrachela studied. In addition, all the lectotypes of the species that 3. Bulbils mainly long, obconic, oblong, ovoid or vermicular, it was possible to locate were studied. The bulbils were sometimes all three types mixed in the same plant, with lam- photographed with a SPOT INSIGHT U3.5 digital inate leaf primordia of 3-6 cells wide at the base or with camera mounted on an OLYMPUS BH2 microscope. toothlike primordia .......................................................... 4 Measurement of the leaves, cells, etc., were made with a 4. Bulbils mainly obconic, sometimes oblong, reddish to brown- micrometer attached to the same microscope. ish, with laminate leaf primordia of 3-6 cells wide at the base ................................................................. 3. P. andalusica Substantial differences exist between the morphol- 4. Bulbils ovoid, shortly oblong or vermicular, greenish or red- ogy of the propagula type in this group of Pohlia, dish, with toothlike primordia ........................................... 5 which, furthermore, tends to change as the bulbils 5. Plants with bulbils ovoid or shortly oblong in the axils of mid- mature (cf. Andrews, 1935; Nyholm, 1958; Wilczek dle and lower leaves, and usually vermicular in the axils of up- & Demaret, 1970; Crum, 1976; Townsend, 1995). Al- per leaves, toothlike primordia less than 1/10 of bulbil length ..................................................................... 5. P. flexuosa though the nomenclature to define the different types 5. Plants with only vermicular bulbils, toothlike primordia more of axillary bulbils is similar in all the recent studies on than 1/10 of bulbil length ................................................. 6 the group (Wilczek & Demaret, 1970; Lewis & Smith, 6. Bulbils vermicular, mainly with 2-4(5) multicellular toothlike 1977, 1978; Demaret & Wilczek, 1979, 1980; Shaw, primordia .................................................... 6. P. annotina 1981a, 1981b; Sotiaux & Arts, 1989), in this paper, for 6. Bulbils vermicular, with 1(2) unicellular toothlike primordia .. the sake of simplicity, we have only distinguished the .................................................................... 7. P. proligera following two types of bulbil. Bulbil A) ovoid, elliptic, oblong, obconic, subspherical or cylindrical with lam- 1. Pohlia drummondii (Müll. Hal.) A.L. Andrews, inate leaf primordia (Fig.1 a-k) and B) subspherical or Moss Fl. N. Amer. 2: 196. 1935 obconic to vermicular with different degrees of spi- Bryum drummondii Müll. Hal., Bot. Zeitung (Berlin) ralling and with toothlike leaf primordia, that is with 20: 328. 1862, basionym. Lectotype: BM! apical teeth (Fig. 1 l-n; Fig. 2 a-o). Not only are the leaf (Fig. 1 a-d) primordia differences of primary importance, but also the form and size are important. Plants 0.5-4.5(5) cm high, generally growing in loose turfs, sometimes dense, greenish, sometimes yellowish, Taxonomy slightly shiny when dry. Leaves appressed to more or less erect when dry, erect-patent when moist, ovate, Pohlia Sect. Cacodon Lindb.ex Broth., Nat. Pflanzen- rarely ovate-lanceolate, sometimes carinate, not or fam. 1(3): 547. 1903 hardly decurrent, 0.8-1.5(1.8) × 0.2-0.5(0.7) mm; apex Pohlia Sect. Pohliella Loeske, Stud. Morph. Syst. acute, sometimes slightly obtuse, not twisted; margins Laubm.: 125. 1910, nom. nud. plane, sometimes slightly recurved at the base, very Type: Pohlia erecta Lindb. slightly denticulate towards the apex, entire in lower half; upper leaves similar to the lower leaves. Costa 56- Small to moderately robust plants. Upper leaves 60(70) μm wide near leaf base, ending below apex; usually similar to lower not forming comal tufts. Me- cross section rounded. Upper and middle laminal cells dian laminal cells narrowly hexagonal-rhomboidal to long-rhomboidal to linear, sometimes long oblong, 35- linear or vermicular. Dioicous. Bulbils usually pre- 85(90) × 6-10 μm, walls (0.9)1.2-1.5 μm wide; basal sent. Capsule horizontal to pendulous, ovoid to pyri- cells mainly rectangular, sometimes long rhomboidal, form; neck short. Exothecial cells short rectangular, 86-100 × (8)12-14 μm; alar cells long-rectangular, 30-50 with evenly thickened, sinuose walls; stomata superfi- × 8-10(12) μm. Bulbils 1(2) in the axils of upper leaves, cial or rarely slightly sunken. Annulus differentiated. oblong to cylindrical, (350)400-700(1000) μm long, red Endostome hyaline; segments well developed and –when fresh and alive– to brownish, opaque, with lam- keeled, rarely imperfect or rudimentary. inate leaf primordia arising from base to apex. Anales del Jardín Botánico de Madrid 64(1): 55-62, enero-junio 2007. ISSN: 0211-1322 Pohlia section Cacodon with axillary bulbils in the Iberian Peninsula 57 Fig. 1. Pohlia drummondii (MUB 18549): a-d, bulbils.
Recommended publications
  • Revision and Checklist of the Moss Families Bartramiaceae and Mniaceae in Vietnam Timo KOPONEN1, Thanh-Luc NGUYEN2, Thien-Tam L
    Hattoria 10: 69–107. 2019 Revision and checklist of the moss families Bartramiaceae and Mniaceae in Vietnam Timo KOPONEN1, Thanh-Luc NGUYEN2, Thien-Tam LUONG3, 4 & Sanna HUTTUNEN4 1 Finnish-Chinese Botanical Foundation, Mailantie 109, FI-08800 Lohja, Finland & Finnish Museum of Natural History, Botany Unit (bryology), P.O. Box 7 (Unioninkatu 4), FI-00014 University of Helsinki, Finland 2 Southern Institute of Ecology, Vietnam Academy of Science and Technology, 1 Mac Dinh Chi, District 1, Ho Chi Minh City, Vietnam 3 University of Science, Vietnam National University Ho Chi Minh City, 227 Nguyen Van Cu, District 5, Ho Chi Minh City, Vietnam 4 Herbarium (TUR), Biodiversity Unit, FI 20014 University of Turku, Finland Author for correspondence: Thanh-Luc NGUYEN, [email protected] Abstract The genera Fleischerobryum Loeske and Philonotis Brid. of the Bartramiaceae and the family Mniaceae (excluding Pohlia Hedw.) are revised for Vietnam, based on specimens studied and literature reports. Four species are added to the flora: Orthomnion javense (M.Fleisch.) T.J.Kop., Philonotis asperifolia Mitt., P. laii T.J.Kop., P. speciosa (Griff.) Mitt. syn. nov. (based on P. mercieri Paris & Broth.), and Plagiomnium wui (T.J.Kop.) Y.J.Yi & S.He. Eight species are excluded from the flora. Two taxa are considered doubtful. The flora now includes one species of Fleischerobryum, eight species of Philonotis, one species of Mnium Hedw. (doubtful), three species of Orthomnion Wills. and five species of Plagiomnium (one doubtful). The 15 species are divided into phytogeographical elements. Eight belong to the Southeast Asiatic temperate to meridional element, and seven to the Southeast Asiatic meridional to subtropical element.
    [Show full text]
  • Molecular Studies Resolve Nyholmiella (Orthotrichaceae) As a Separate Genus
    Journal of Systematics and Evolution 48 (3): 183–194 (2010) doi: 10.1111/j.1759-6831.2010.00076.x Molecular studies resolve Nyholmiella (Orthotrichaceae) as a separate genus ∗ 1Jakub SAWICKI 2V´ıtezslavˇ PLA´ SEKˇ 1Monika SZCZECINSKA´ 1(Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łodzki´ 1, 10-727 Olsztyn, Poland) 2(Department of Biology & Ecology, University of Ostrava, Chittussiho 10, CZ-710 00, Czech Republic) Abstract Two Orthotrichum species of the subgenus Orthophyllum were compared with other representatives of this genus using internally transcribed spacer regions 1 and 2, the chloroplast trnH–psbA region, and inter-simple sequence repeat (ISSR) and intron–exon splice conjunction (ISJ) markers. The ISSR and ISJ markers used revealed many bands and mutations specific only to O. gymnostomum and O. obtusifolium. Phylogenetic analysis clearly supported previous concepts postulating that species of the subgenus Orthophyllum should be recognized as the separate genus Nyholmiella. Key words molecular taxonomy, Nyholmiella, Orthotrichum, phylogeny. The genus Orthotrichum Hedw. is a widespread namely O. gymnostomum and O. obtusifolium, into the moss group that includes approximately 155 species subgenus Orthophyllum. Hagen (1908) went one step (Goffinet et al., 2007). Taxa belonging to this genus further, forming a separate genus for O. gymnostomum are found throughout the world, from the Arctic to the and O. obtusifolium, namely Stroemia Hag. These plants Antarctic, except in deserts and wet tropical forests. were distinguished by obtuse leaves with incurved or Species of the genus Orthotrichum grow on trees and plane leaf margins and incrassate leaf cells with a stout rocks to a height of approximately 5000 m above sea central papilla on each side.
    [Show full text]
  • Fossil Mosses: What Do They Tell Us About Moss Evolution?
    Bry. Div. Evo. 043 (1): 072–097 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.7 Fossil mosses: What do they tell us about moss evolution? MicHAEL S. IGNATOV1,2 & ELENA V. MASLOVA3 1 Tsitsin Main Botanical Garden of the Russian Academy of Sciences, Moscow, Russia 2 Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia 3 Belgorod State University, Pobedy Square, 85, Belgorod, 308015 Russia �[email protected], https://orcid.org/0000-0003-1520-042X * author for correspondence: �[email protected], https://orcid.org/0000-0001-6096-6315 Abstract The moss fossil records from the Paleozoic age to the Eocene epoch are reviewed and their putative relationships to extant moss groups discussed. The incomplete preservation and lack of key characters that could define the position of an ancient moss in modern classification remain the problem. Carboniferous records are still impossible to refer to any of the modern moss taxa. Numerous Permian protosphagnalean mosses possess traits that are absent in any extant group and they are therefore treated here as an extinct lineage, whose descendants, if any remain, cannot be recognized among contemporary taxa. Non-protosphagnalean Permian mosses were also fairly diverse, representing morphotypes comparable with Dicranidae and acrocarpous Bryidae, although unequivocal representatives of these subclasses are known only since Cretaceous and Jurassic. Even though Sphagnales is one of two oldest lineages separated from the main trunk of moss phylogenetic tree, it appears in fossil state regularly only since Late Cretaceous, ca.
    [Show full text]
  • Comparative Plastomes Analysis Reveals the First Infrageneric Evolutionary Hotspots of Orthotrichum S.L
    Turkish Journal of Botany Turk J Bot (2019) 43: 444-457 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1811-13 Comparative plastomes analysis reveals the first infrageneric evolutionary hotspots of Orthotrichum s.l. (Orthotrichaceae, Bryophyta) 1, 1 1 1 Patryk MIZIA *, Kamil MYSZCZYŃSKI , Monika ŚLIPIKO , Katarzyna KRAWCZYK , 2 1 1 Vítězslav PLÁŠEK , Monika SZCZECIŃSKA , Jakub SAWICKI 1 Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland 2 Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic Received: 09.11.2018 Accepted/Published Online: 24.02.2019 Final Version: 08.07.2019 Abstract: Plastomes serve as the main resources in the study of plant phylogeny, phylogeography, and barcode development. To date, only 5 complete plastomes of acrocarpous mosses are known. This study analyzes the complete plastome sequence of 5 mosses from Orthotrichaceae: Nyholmiella obtusifolia (Brid.) Holmen & E. Warncke; Orthotrichum rogeri Brid.; Stoneobryum bunyaense D.H. Norris & H. Rob.; Lewinskya incana F. Lara, Garilleti & Goffinet; and Ulota bruchii Hornsch. The plastomes of all studied species are similar in length (ca. 123 kbp) and have a quadripartite structure with 118 unique genes. A total of 278 simple sequence repeats were found, and the mononucleotide repeats were the most abundant. Dinucleotide, trinucleotide, and tetranucleotide repeats were also observed. Tandem repeats were observed in all studied genomes in similar amounts. A total of 6331 single nucleotide polymorphisms and 779 indels were found in the analyzed genomes. The most variable spacer was located between rpl14 and rps8 (π = 0.366), and matK (π = 0.046) was the most variable of the genes.
    [Show full text]
  • Monoicous Species Pairs in the Mniaceae (Bryophyta); Morphology, Sexual Condition and Distiribution
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019 DOI: 10.2478/cszma-2019-0008 Published: online 1 July 2019, print July 2019 On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution Timo Koponen On the hypothesis of dioicous − monoicous species pairs in the Mniaceae (Bryophyta); morphology, sexual condition and distiribution. – Acta Mus. Siles. Sci. Natur., 68: 67-81, 2019. Abstract: Some early observations seemed to show that, in the Mniaceae, the doubling of the chromo- some set affects a change from dioicous to monoicous condition, larger size of the gametophyte including larger leaf cell size, and to a wider range of the monoicous counterpart. The Mniaceae taxa are divided into four groups based on their sexual condition and morphology. 1. Dioicous – monoicous counterparts which can be distinguished by morphological characters, 2. Dioicous – monoicous taxa which have no morphological, deviating characters, 3. Monoicous species mostly with diploid chromosome number for which no dioicous counterpart is known, and 4. The taxa in Mniaceae with only dioicous plants. Most of the monoicous species of the Mniaceae have wide ranges, but a few of them are endemics in geographically isolated areas. The dioicous species have either a wide holarctic range or a limited range in the forested areas of temperate and meridional North America, Europe and SE Asia, or in subtropical Asia. Some of the monoicous species are evidently autodiploids and a few of them are allopolyploids from cross-sections of two species. Quite recently, several new possible dioicous – monoicous relationships have been discovered.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Volume 1, Chapter 2-7: Bryophyta
    Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium.....................................................................................................
    [Show full text]
  • Notes on Bryaceae (Bryopsida) in Japan
    Hattoria 5: 51-70, 2014 Notes on Bryaceae (Bryopsida) in Japan Tadashi Suzuki1 1The Hattori Botanical Laboratory, Shimada Branch, 6480-3 Takasago-cho, Shimada-shi, Shizuoka- ken 427-0054, Japan Abstract. Four genera of Bryaceae, Acidodontium Schwaegr., Orthodontium Schwaegr., Pseudopohlia Williams and Schizymenium Harv. are newly found in Japan. Two species of Acidodontium, A. megalocarpum (Hook.) Ren. & Card. and A. longifolium (Par.) Broth., two species of Orthodontium, O. denticulatum Geh. & Hampe and O. pellucens (Hook.) Bruch, Schimp. & Gümbel, Pseudopohlia didymodontia (Mitt.) A. L. Andrews, Schizymenium novoguinense (E. B. Bartram) A. Eddy, three species of Brachymenium, B. alpinum Ochi, B. jilinense T. J. Kop., A. J. Shaw, J.-S. Lou & C. Gao and B. muricola Broth. and Mielichhoferia pusilla (Hook. f. & Wilson) Mitt. are added to the moss flora of Japan. Two new combinations, Schizymenium japonicum (Besch.) Tad. Suzuki and Schizymenium sasaokae (Broth.) Tad. Suzuki are made. Introduction In a catalog of the mosses of Japan, Iwatsuki (2004) listed 9 genera of Bryaceae. In this paper, four genera of Bryaceae are added to the moss flora of Japan and I present information on 12 species of the family in Japan. A key to genera of Bryaceae in Japan is provided. Descriptions, specimens examined, distributions, notes and illustrations of 12 species are included. All collections are deposited in the Herbarium of the Hattori Botanical Laboratory (NICH). Key to genera of Bryaceae in Japan 1. Upper leaf cells linear-rhomboidal, firm-walled, basal leaf cells abruptly short-rectangular to subquadrate; axillary gemmae present ·························································· Pseudopohlia 1. Plants not with combination of characters mentioned above ·················································· 2 2.
    [Show full text]
  • Total of 10 Pages Only May Be Xeroxed
    CENTRE FOR NEWFOUNDLAND STUDIES TOTAL OF 10 PAGES ONLY MAY BE XEROXED (Without Author's Permission) ,, l • ...J ..... The Disjunct Bryophyte Element of the Gulf of St. Lawrence Region: Glacial and Postglacial Dispersal and Migrational Histories By @Rene J. Belland B.Sc., M.Sc. A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Biology Memorial University of Newfoundland December, 1Q84 St. John's Newfoundland Abstract The Gulf St. Lawrence region has a bryophyte flora of 698 species. Of these 267 (38%) are disjunct to this region from western North America, eastern Asia, or Europe. The Gulf of St. Lawrence and eastern North American distributions of the disjuncts were analysed and their possible migrational and dispersal histories during and after the Last Glaciation (Wisconsin) examined. Based on eastern North American distribution patterns, the disjuncts fell into 22 sub­ elements supporting five migrational/ dispersal histories or combinations of these : (1) migration from the south, (2) migration from the north, (3) migration from the west, (4) survival in refugia, and (5) introduction by man. The largest groups of disjuncts had eastern North American distributions supporting either survival of bryophytes in Wisconsin ice-free areas of the Gulf of St. Lawrence or postglacial migration to the Gulf from the south. About 26% of the disjuncts have complex histories and their distributions support two histories. These may have migrated to the Gulf from the west and/or north, or from the west and/or survived glaciation in Gulf ice-free areas.
    [Show full text]
  • New Dihydrobiflavones from the Moss Plagiomnium Cuspidatum
    New Dihydrobiflavones from the Moss Plagiomnium cuspidatum Siegbert Anhut, Tassilo Seeger, H.-Dietmar Zinsmeister FB 15, Botanik, Universität des Saarlandes, D-6600 Saarbrücken, Bundesrepublik Deutschland Hans Geiger Institut für Chemie der Universität Hohenheim, D-7000 Stuttgart 70, Bundesrepublik Deutschland Z. Naturforsch. 44c, 189—192 (1989); received November 25, 1988 Mosses, Mniaceae, Plagiomnium cuspidatum. Dihydrobiflavone In Plagiomnium cuspidatum the three new dihydrobiflavones 2,3-dihydro-5'-hydroxyamento- flavone, 2,3-dihydro-5',3'"-dihydroxyamentoflavone and 2,3-dihydro-5'-hydroxyrobustaflavone were detected. Introduction For a long time 5',8"-biluteolin (= 5',3'"-di- hydroxyamentoflavone) from Dicranum scoparium [ 1 , 2 ] was the only known biflavonoid in bryophytes. Meanwhile this compound and other biflavonoids have been isolated from other mosses [3—6]. Most recently we described the isolation of a luteolin-apigenin dimer, 5'-hydroxyamentoflavone, from Plagiomnium elatum [3]. In continuation of the Amentoflavone (4) R = R' = H chemical investigation of the moss family Mniaceae 5',3"'-Dihydroxyamentoflavone (5) R = R' = OH the biflavonoids of Plagiomnium cuspidatum were ( = 5',8"-Biluteolin) studied. Results and Discussion From Plagiomnium cuspidatum three biflavonoids 2, 3, 7 were isolated. By 'H NMR studies, however, it was obvious that 2 contains additionally a small amount of the further compound 8 . Robustaflavone (6) R = R' H 5',3'"-Dihydroxyrobustaflavone ( 7 ) R = R' OH (= 5',6"-Biluteolin) OH 0 ,3-Dihydroamentoflavone (1) R = R' = H ,3-Dihydro-5'-hydroxyamentoflavone (2) R = OH, R' = H ,3-Dihydro-5',3'"-dihydroxyamentoflavone (3) R = R' = OH Reprint requests to Prof. Dr. Zinsmeister. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0341 - 0382/89/0300- 0189 $01.30/0 2,3-Dihydro-5'-hydroxyrobustaflavone (8) 190 S.
    [Show full text]
  • Bibliography of Publications 1974 – 2019
    W. SZAFER INSTITUTE OF BOTANY POLISH ACADEMY OF SCIENCES Ryszard Ochyra BIBLIOGRAPHY OF PUBLICATIONS 1974 – 2019 KRAKÓW 2019 Ochyraea tatrensis Váňa Part I. Monographs, Books and Scientific Papers Part I. Monographs, Books and Scientific Papers 5 1974 001. Ochyra, R. (1974): Notatki florystyczne z południowo‑wschodniej części Kotliny Sandomierskiej [Floristic notes from southeastern part of Kotlina Sandomierska]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 360 Prace Botaniczne 2: 161–173 [in Polish with English summary]. 002. Karczmarz, K., J. Mickiewicz & R. Ochyra (1974): Musci Europaei Orientalis Exsiccati. Fasciculus III, Nr 101–150. 12 pp. Privately published, Lublini. 1975 003. Karczmarz, K., J. Mickiewicz & R. Ochyra (1975): Musci Europaei Orientalis Exsiccati. Fasciculus IV, Nr 151–200. 13 pp. Privately published, Lublini. 004. Karczmarz, K., K. Jędrzejko & R. Ochyra (1975): Musci Europaei Orientalis Exs‑ iccati. Fasciculus V, Nr 201–250. 13 pp. Privately published, Lublini. 005. Karczmarz, K., H. Mamczarz & R. Ochyra (1975): Hepaticae Europae Orientalis Exsiccatae. Fasciculus III, Nr 61–90. 8 pp. Privately published, Lublini. 1976 006. Ochyra, R. (1976): Materiały do brioflory południowej Polski [Materials to the bry‑ oflora of southern Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 432 Prace Botaniczne 4: 107–125 [in Polish with English summary]. 007. Ochyra, R. (1976): Taxonomic position and geographical distribution of Isoptery‑ giopsis muelleriana (Schimp.) Iwats. Fragmenta Floristica et Geobotanica 22: 129–135 + 1 map as insertion [with Polish summary]. 008. Karczmarz, K., A. Łuczycka & R. Ochyra (1976): Materiały do flory ramienic środkowej i południowej Polski. 2 [A contribution to the flora of Charophyta of central and southern Poland. 2]. Acta Hydrobiologica 18: 193–200 [in Polish with English summary].
    [Show full text]
  • Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete.
    [Show full text]