Light but Strong

Total Page:16

File Type:pdf, Size:1020Kb

Light but Strong National Aeronautics and Space Administration Light but Strong A Lesson in Engineering engineering is out of this world this of out is engineering EP-2013-09-107-MSFC teacher Light but Strong notes Materials (per group): Carolyn Russell — In the Next Generation words of an engineer: “Materials Science Standards: • Plastic drinking straws engineering is (30) a diverse, Structure and Properties • Scissors (1 pair) challenging field of of Matter • Pennies (20) study 2-PS1-1. Plan and conduct an • One small paper or because investigation to describe and classify Styrofoam cup everything different kinds of materials by their • One 3” by 3” piece of in the world is made observable properties. cardboard from different • Balance scale (optional) 2-PS1-2. Analyze data obtained materials, each having specific from testing different materials to • Various materials characteristics. To develop a determine which materials have the such as clay, tape new rocket, NASA materials properties that are best suited for an (recommended for engineers must first choose, then test the materials, to intended purpose. younger students), or ensure the rocket is strong and playdough to connect light weight so that building can 5-PS1-3. Make observations and the straws together. measurements to identify materials begin.” based on their properties. Engineering Design An Introduction to Materials Engineering K-2-ETS1-2. Develop a simple sketch, Lesson Duration: 1 hour drawing, or physical model to illustrate how the shape of an object helps it The Challenge function as needed to solve a given Design and build a mobile launcher platform that is light enough to be problem. moved to the launch pad, but strong enough to hold the weight of the rocket. 3-5-ETS1-1. Define a simple problem reflecting a need or a want that 1. Be prepared includes specified criteria for success • Read the teacher notes and student journal page. and constraints on materials, time, or cost. • Gather materials for the activity listed on the teacher notes page. • Count the straws ahead of time for each group. 3-5-ETS1-2. Generate and compare • Draw a spacecraft on the side of the small cup to represent the crew multiple possible solutions to a vehicle. problem based on how well each is likely to meet the criteria and 2. Background information on materials engineering constraints of the problem. Materials engineers are involved in the development, processing, and testing of the materials used to create a range of products. A materials 3-5-ETS1-3. Plan and carry out fair engineer at NASA would develop lightweight, strong, heat resistant tests in which variables are controlled materials for use in space. and failure points are considered to identify aspects of a model or 3. Introduce the challenge (5 minutes) prototype that can be improved. • Students should develop an understanding of the word material. 2 A material is a substance out of which a thing is or can be made. Choose an object in your classroom and hold it up in front of the class. Ask the class what materials make up the object. (Example: a pencil is made of wood, lead, metal, and rubber for the eraser.) Do this several times with different objects until the students under- stand the word material. • Discuss with the class what the role of a materials engineer is at NASA. A materials engineer selects the materials to build rockets, spacecrafts, and launch pads. Sometimes they have to make new materials to meet the needs of the rocket. Read Carolyn Russell’s description of a materials engineer to the class. Show the class pictures of the Space Launch System (SLS) rockets. • Introduce the activity to the students. Tell your students they have been challenged by a NASA materials engineer to use a lightweight material to build a mobile launcher platform that can be light enough to move, but also strong enough to hold the weight of the rocket. The students should brainstorm ideas, design the launcher platform, and evaluate how well the launch pad held the weight of the astronauts (pennies). Put The Mobile Launcher students into groups of 3-5 to build the platform. Platform (MLP) at Kennedy Students will build a mobile launcher platform that will be light, but Space Center was originally also strong enough to hold the weight of the astronauts (pennies) constructed for transporting in the cup (rocket) that sits on top of the launcher platform. The the Saturn V rocket. The platforms should be built with straws and a material such as tape base alone is 25-feet high. or clay to hold the platform together. After each group completes their mobile launcher platform, set a 3" by 3" piece of cardboard on top of the launcher platform with a cup Change it up! sitting on top and drop one penny at a time into the cup (rocket) There are many ways to to test the strength of the platform until the platform collapses. enhance the activity! Explain that mobile launcher platforms have to be light enough to roll out to the launch site, but also strong enough to hold the weight • Choose a height or weight of a rocket and crew. The SLS 70-metric ton rocket will weigh 5.5 goal for the platform. million pounds. The 130-metric ton rocket will weigh 6.5 million • Have different groups use rocket. different materials to build the platform and compare. 4. Think it over and design (15 minutes) • Require a hole in the center • Distribute the challenge instructions and journal page to each of the launch pad for the student. rocket “flame.” • What kind of mobile launcher platform can you make from the • Have the students make supplies provided? (Straws can serve as the walls of the platform. their own material using a The tape or clay could be used to hold the straws together.) recipe for homemade play If you use clay to build the platform, place a sheet of dough. Recipes can be paper on the table for them to build the platform on. If found online. ! the straws are too flexible, cut them in half. 3 Light but Strong NASA materials engineer Carolyn Russell inspects sample weld plugs on a piece of light weight aluminum. • Instruct students to answer the questions on the journal page about two items that they think are light but strong. (Examples: aluminum, cardboard, plastic, and more) • Have the students get together with their assigned groups and discuss how they will build their mobile launcher platform. Have each student draw a picture of the group’s proposed mobile launcher platform on their individual journal page. 5. Build and test (30 minutes) • Distribute materials to the groups. • Explain that each group’s mobile launcher platform will be tested by placing a 3" by 3" piece of cardboard on top of the platform. A cup representing the rocket will be placed on the cardboard. One penny at a time will be placed in the cup to see how much weight the mobile launcher platform will hold. The platform must be 6" high. Give each group 20–30 minutes to build their platform. 6. Discuss activity (10 minutes) • Have the students share how they designed their mobile launcher platform and the results. • What features helped your platform withstand the weight of the pennies? • Would you make any changes if you could rebuild the platform? • Did any materials work better than others? 4 SLS FUN FACTS It’s true! • The 70 t SLS will weigh almost as much • You can fit 9 fully loaded school buses into as 8 fully-loaded 747 jumbo jets, and it the 130 t SLS. produces as much thrust at launch as 135 jet engines. • The 130 t SLS will create as much horsepower as 17,400 train engines. • The Mars Curiosity rover is about the size of a Mini-Cooper. The 70 t SLS can launch 70 Curiosity rovers at the same time. 5 student journal Light but Strong notes Your Challenge To design and build a mobile launcher platform that will hold as much weight as possible. Think it over Your platform must be both light and strong. Discuss with your group: • What does it mean for something to be light weight? • What does it mean for something to be strong? The core stage of the SLS will be made from a light and strong material called aluminum. Name one thing that you know is made of aluminum. _____________________________________________________________ Name two items that are light but also strong. _____________________________________________________________ _____________________________________________________________ core stage Plan and design Your platform must hold the rocket (a cup) six inches above the ground. The platform must also be able to be moved to the testing site and hold a 3” by 3” piece of cardboard. Discuss with your group how you will build your mobile launcher platform. • Which materials will you use? • What will your platform look like? • What type of material will you use to hold the platform together? 6 Draw a picture of your proposed platform: Build Collect all of the materials to begin building your platform. Did you use all of your materials? Yes ____No____ Did you change your original design as you were building? Yes ____No____ Why?____________________________________________________________ Testing and results Now that you have finished building your mobile launcher platform, it is time to test how much weight your platform can hold. Move your platform to the testing area. Estimate how many pennies How many pennies did your your platform will hold. platform hold? If you did this activity again, would you change your design? Yes ____No____ Why?____________________________________________________________ 7 Light but Strong SLS 70-metric ton vehicle 8 SLS 130-metric ton vehicle 9 National Aeronautics and Space Administration George C.
Recommended publications
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Building KSC's Launch Complex 39
    National Aeronautics and Space Administration Building KSC’s Launch Complex 39 n the beginning, there was sand and adjacent to the VAB would house the Apollo I palmettos and water. Yet out of this idyllic spacecraft and the Launch Control Center. setting would grow the most unique structures -- The launcher-transporter would incorporate engineering milestones -- that would set the stage three major facilities: a pedestal for the space for the future in space. vehicle, an umbilical tower to service the upper The Kennedy Space Center of the 21st reaches of the space vehicle, and a rail transport- century began life in the early 1960s when new er. An arming tower would stand about midway Facts facilities were needed to launch the moon-bound between the assembly building and the pads. Saturn V rockets. The Apollo Saturn would carry a number of Initial plans called for a launch complex hazardous explosives: the launch escape system comprising a Vertical Assembly Building (VAB), (the tower on top of the vehicle that lifted the a launcher-transporter, an arming area and a spacecraft away from the launch vehicle in case launch pad. The VAB would consist of assembly of an emergency), retrorockets to separate the bay areas for each of the stages, with a high-bay stages, ullage rockets to force fuel to the bottom unit approximately 110 meters in height for final of tanks, and the launch vehicle’s destruct system. assembly and checkout of the vehicle. Buildings These plans would be modified during NASA NASA Launch Pad 39A is under construction (foreground) with the imposing Vertical Assembly Building rising from the sand in the background.
    [Show full text]
  • + STS-123 Press
    CONTENTS Section Page STS-123 MISSION OVERVIEW................................................................................................ 1 TIMELINE OVERVIEW.............................................................................................................. 11 MISSION PROFILE................................................................................................................... 15 MISSION PRIORITIES............................................................................................................. 17 MISSION PERSONNEL............................................................................................................. 19 STS-123 ENDEAVOUR CREW .................................................................................................. 21 PAYLOAD OVERVIEW .............................................................................................................. 31 KIBO OVERVIEW.................................................................................................................................. 31 KIBO MISSION CONTROL CENTER ....................................................................................................... 39 TSUKUBA SPACE CENTER.................................................................................................................... 43 SPACE STATION INTEGRATION AND PROMOTION CENTER .................................................................. 47 JAXA’S EXPERIMENTS DURING THE 1J/A STAGE.................................................................................
    [Show full text]
  • + STS-115 Press
    STS-121 Press Kit CONTENTS Section Page STS-115 MISSION OVERVIEW: SPACE STATION ASSEMBLY RESUMES................................ 1 STS-115 TIMELINE OVERVIEW ............................................................................................... 10 MISSION PRIORITIES............................................................................................................. 12 LAUNCH AND LANDING ........................................................................................................... 14 LAUNCH............................................................................................................................................... 14 ABORT-TO-ORBIT (ATO)...................................................................................................................... 14 TRANSATLANTIC ABORT LANDING (TAL)............................................................................................. 14 RETURN-TO-LAUNCH-SITE (RTLS)....................................................................................................... 14 ABORT ONCE AROUND (AOA)............................................................................................................... 14 LANDING ............................................................................................................................................. 14 MISSION PROFILE................................................................................................................... 15 STS-115 ATLANTIS CREW .....................................................................................................
    [Show full text]
  • E N G in E E Rin G Is O Ut O F Th Is W O Rld Light but Strong
    National Aeronautics and Space Administration Light but Strong A Lesson in Engineering EP-2015-11-102-MSFC world this of is out engineering teacher Light but Strong notes Materials (per group): Carolyn Russell — In the words Next Generation of an engineer: “Materials Science Standards: • Plastic drinking straws engineering is (30) a diverse, Structure and Properties • Scissors (1 pair) challenging of Matter field of • Pennies (20) study 2-PS1-1. Plan and conduct an • One small paper or because investigation to describe and Styrofoam cup everything classify different kinds of materials • One 3” by 3” piece of in the world by their observable properties. cardboard is made from different 2-PS1-2. Analyze data obtained • Balance scale (optional) materials, each having specific from testing different materials to • Various materials characteristics. To develop a determine which materials have the such as clay, tape new rocket, NASA materials properties that are best suited for an (recommended for engineers must first choose, intended purpose. younger students), or then test the materials, to ensure the rocket is strong and playdough to connect 5-PS1-3. Make observations and light weight so that building can the straws together. measurements to identify materials begin.” based on their properties. Engineering Design An Introduction to Materials Engineering Lesson Duration: 1 hour K-2-ETS1-2. Develop a simple sketch, drawing, or physical model The Challenge to illustrate how the shape of an Design and build a mobile launcher platform that is light enough object helps it function as needed to to be moved to the launch pad, but strong enough to hold the solve a given problem.
    [Show full text]
  • Crawler-Transporter
    National Aeronautics and Space Administration Crawler-Transporter pair of behemoth machines called crawler-trans- carry it 3.4 miles to Launch Pad 39A or 4.2 miles A porters have carried the load of taking rockets to Launch Pad 39B. Because each pad is built atop and spacecraft to the launch pad for more than a sloping pyramid, the crawler uses its hydraulic sus- 40 years at NASA’s Kennedy Space Center in Florida. pension to keep the platform level all the way to the Each the size of a baseball infield and powered by top where it sets the platform in place so the vehicle locomotive and large electrical power generator en- can lift off safely. gines, the crawler-transporters stand ready to keep up the work for the next generation of launch vehicles Roller Bearing History projects to lift astronauts into space. The crawlers are unique in the world, having been In a July 1965 test, the crawler moved a launch built in 1965 to move the massive Saturn V rocket umbilical tower about one mile on two short stretches facts from Kennedy’s Vehicle Assembly Building to Launch of road. During the operation, metal fragments were Complex 39. After the moon landing and Skylab discovered on the crawlerway. A thorough search dis- programs ended, the crawlers continued their work, closed pieces of bearing races, rollers and retainers taking space shuttles to their launch pads for 30 from the crawler’s traction-support roller assembly. A years. roller bearing and associated assembly redesign was With the shuttle fleet retired in 2011, the crawlers undertaken in the fall of 1965.
    [Show full text]
  • 24. CRAWLER TRANSPORTER STEERING and JEL SYSTEMS by Virgil Leon Davis John F
    https://ntrs.nasa.gov/search.jsp?R=19760012108 2020-03-22T16:53:17+00:00Z 24. CRAWLER TRANSPORTER STEERING AND JEL SYSTEMS By Virgil Leon Davis John F. Kennedy Space Center SUMMARY A vital element to Launch Complex 39 and the Kennedy Space Center (KSC) mobile transfer operation is a culmination of many unique engineering mech­ anisms known as the Crawler Transporter. The Transporter is a mighty tortoise weighing 2.8 million kilograms (6.3 million pounds) used to lift a S.7-million -kilogram (12.6-million-pound) combination of Mobile Launcher and space vehicle, transfer this load approximately 5.6 kilometers (3.5 miles) from its point of assembly, negotiate curves of l52-meter (500-foot) mean radius, climb a 5-percent grade while maintaining the 122-meter (400-foot) structure in a verti­ cal position within 10 minutes of are, and smoothly position this huge structure to within +5.1 centimeters (+ 2 inches) on support pedestals at the launch pad. - INTRODUCTION There are some unique mechanisms in the hydraulic jacking, equalization, leveling (JEL), and steering systems required by the Crawler to perform its mission. Numerous problems associated with these mechanisms have been over­ come in a program requiring fabrication of operational equipment while proceed­ ing with a developmental process. This was necessary since complete data did not exist in some phases of the design prior to construction. Besides, such an independent transporter system had never been built, and today only two such systems are in existence. PRELIMINARY DESIGN CONSIDERATIONS The primary impetus behind the selection of the Crawler Transporter as the prime mover during the development of facilities for the Saturn V space vehi­ cle in 1962 was the fabrication of a similar device--a 76.2-meter (250-foot) high, 8.16-million-kilogram (18-million-pound) stripping shovel.
    [Show full text]
  • Spaceport News John F
    July 22, 2011 SPECIAL EDITION Vol. 51, No. 14 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe Missions accomplished! he space shuttle. us improvements in com- There was never Space Shuttle Program Final Numbers munication, technology, Tanother spacecraft medicine and space explo- like it . as large as a Individuals Flown: 355 Total Fliers: 852 ration. Not only that, it DC-9 airliner, but strong also has provided me with enough to withstand the Miles Traveled: 542,398,878 the opportunity to meet vacuum of space . big Earth Orbits: 21,156 truly wonderful people enough to carry huge and work on a unique and satellites and built to be Time in Space: 1,332 days, 20 hours, 1 minute, 34 seconds iconic piece of history.” reused dozens of times. Robert Smith, aircraft And it had wings, just like servicer, URS Fed- the imagined spaceships supervisor, Brevard portunity to showcase treasure may never be eral Technical Services: science fiction writers Achievement: “To be part an American work force replicated again.” “Working at KSC the designed for their fan- of the space program has with extreme passion, Rachel Wiedemann, last 10 years has been a tastic tales of adventure. been the most rewarding dedication and innova- aerothermal engineer, dream come true. Work- And there may never be time of my working life. tion. This American The Boeing Co.: “The ing around true American another spacecraft quite To all, ‘thank you.’ ” space shuttle has meant heroes and being a part of like it again. Mark Nappi, vice seven years of the most a team as big as ours here Every employee who president of Launch incredible, inspiring job has forever changed my has worked at Kennedy and Recovery Systems, I could have ever asked life.” Space Center during the United Space Alliance for.
    [Show full text]
  • Crawler-Transporters Fact Sheet
    National Aeronautics and Space Administration Crawler-Transporters Crawler-Transporter Able to raise and lower its sides and corners inde- pendently, the crawlers are designed to roll under- A pair of behemoth machines called crawler-trans- neath a mobile launcher (ML), pick it up and steadily porters have carried the load of taking rockets and carry it 4.2 miles to Launch Pad 39B. Because each spacecraft to the launch pad for more than 50 years pad is built atop a sloping pyramid, the crawler uses at NASA’s Kennedy Space Center in Florida. its hydraulic suspension to keep the platform level all the way to the top where it sets the platform in place Each larger than the size of a baseball infield and so the vehicle can lift off safely. powered by locomotive and large electrical power facts generator engines, the crawler-transporters stand ready to keep up the work for the next generation Crawler-Transporter 2 of launch vehicles that will lift astronauts into space. Kennedy has upgraded one of its two massive crawl- er transporters as the agency continues to prepare The crawlers are unique in the world, having been built for its journey to the Moon and Mars under the Ar- in 1965 to move the massive Saturn V rocket from temis program. Crawler-transporter 2 (CT-2) is more Kennedy’s Vehicle Assembly Building (VAB) to Launch than 50 years old, but with the current modifications Complex 39. After the Moon landing and Skylab pro- conducted by the Exploration Ground Systems (EGS) grams ended, the crawlers continued their work, tak- Program, CT-2 is expected to be in service for many ing space shuttles to their launch pads for 30 years.
    [Show full text]
  • Space Shuttle
    A Versatile Vehicle HQJLQHVHDFKSURGXFLQJSRXQGV PLO FLDOLVWV7KHFRPPDQGHUDQGSLORWDUHVHOHFWHGIURP 7KH6SDFH6KXWWOH3URJUDPLVPDNLQJWKH9LVLRQ OLRQQHZWRQV RIWKUXVWZKHQRSHUDWLQJDWSHUFHQW WKHSLORWDVWURQDXWFRUSVKLJKO\TXDOLILHGLQGLYLGXDOV IRU6SDFH([SORUDWLRQDUHDOLW\7KHILUVWWUXHDHUR DWOLIWRII DWVHDOHYHO 7KLVILJXUHLVGHULYHGIURPIOLJKW ZLWKDWOHDVWKRXUVRISLORWLQFRPPDQGWLPHLQ VSDFHYHKLFOHWKH6SDFH6KXWWOHWDNHVRII OLNHDURFNHW H[SHULHQFHDQGLVSHUFHQWEHWWHUWKDQWKHUHTXLUHG MHWDLUFUDIWDQGWKH\PXVWPHHWRWKHUULJRURXVTXDOLIL 7KHZLQJHGRUELWHUWKHQPDQHXYHUVDURXQGWKH(DUWK GHVLJQPLQLPXP7KHHQJLQHVEXUQIRUPRUHWKDQHLJKW FDWLRQV0LVVLRQVSHFLDOLVWVDUHVFLHQWLVWVSK\VLFLDQVRU OLNHDVSDFHVKLSDQGODQGVRQDUXQZD\OLNHDQDLU PLQXWHVZKLOHWRJHWKHUGUDZLQJJDOORQV RWKHUKLJKO\TXDOLILHGVSHFLDOLVWV SODQH OLWHUV RI SURSHOODQWVHDFKPLQXWHZKHQDWIXOOSRZHU 3D\ORDGVSHFLDOLVWVDUHSHUVRQVRWKHUWKDQ1$6$ 7KH6SDFH6KXWWOHLVGHVLJQHGWRFDUU\ODUJHDQG %HIRUHIOLJKWWKHRUELWHULVPDWHGWRDKXJHH[WHU DVWURQDXWV²LQFOXGLQJLQWHUQDWLRQDOFLWL]HQV²ZKRKDYH KHDY\SD\ORDGVLQWRVSDFHDVZHOODVIHUU\UHVLGHQWFUHZV QDOWDQNVWDQGLQJIHHW PHWHUV KLJKDQG VSHFLDOL]HGRQERDUGGXWLHV7KH\PD\EHDGGHGWR WRWKH,QWHUQDWLRQDO6SDFH6WDWLRQ%XWXQOLNHHDUOLHU IHHW PHWHUV LQGLDPHWHU7KHVXSHUOLJKWZHLJKW 6KXWWOHFUHZVLI DFWLYLWLHVDUHLQYROYHGWKDWKDYHXQLTXH PDQQHGVSDFHFUDIWWKDWZHUHJRRGIRURQO\RQHIOLJKW WDQNILUVWIORZQLQZHLJKVPLOOLRQSRXQGV UHTXLUHPHQWV WKH6KXWWOHRUELWHUDQG6ROLG5RFNHW%RRVWHUVFDQEH NLORJUDPV DWOLIWRII 6KXWWOHFUHZVH[SHULHQFHDPD[LPXPJUDYLW\ORDG XVHGDJDLQDQGDJDLQ Just after sundown, Space Shuttle Endeavour ap- 7ZRLQQHUWDQNVSURYLGHDPD[LPXPRI RI J VGXULQJODXQFKDQGOHVVWKDQJ
    [Show full text]
  • July 2002 Newsletter
    Acoustics • Shock • Vibration • Signal Processing July 2002 Newsletter Shalom Feature Articles This is the One Year Anniversary edition of the Vibrationdata Newsletter. I hope that you are enjoying the articles. I plan to continue this newsletter for many years to come. I look forward to meeting some of you. I am making plans to participate in the AIAA conference to be held in Norfolk, Virginia, from April 7-10, 2003. In addition, my colleague Paul Jackson and I and are planning to offer a three-day seminar called Shock and Vibration Response Spectra and Software Training. I will announce the dates in an upcoming newsletter. Paul Jackson has built a successful environmental test lab called Dynamic Labs in Phoenix, Arizona. Again, I welcome feedback. Thank you for times used as vibration exciters during your support. structural tests of bridges, as reported by Bishop in Reference 1. Sincerely, Introduction Suspension Bridge Resonance The damping in suspension bridges is By Tom Irvine fairly small. A small oscillating are some Space Shuttle Acoustics, Overpressure, Tom Irvine and Vibration page 3 Email: [email protected] 1 Please Subscribe to Vibrationdata.com Software and Tutorials Subscribers receive a password to download over one hundred tutorial papers and dozens of software programs on the following topics: Accelerometers Rayleigh’s Method Acoustics Rocket Vehicle Vibration Beam Vibration Shock Response Spectrum Butterworth Filter Signal Processing Sine Vibration Damping Spacecraft Dynamics Fourier Transforms Speed of Sound Strength of Materials Helmholtz Resonators Structural Dynamics – Classical Methods Structural Dynamics – Finite Element Method Isolation Tacoma Narrows Bridge Laplace Transforms Testing Standards Modal Testing Vibration Response Spectrum Vibroacoustics Overpressure Waves Pogo Wind Engineering Power Spectral Density Pyrotechnic Shock Subscription Instructions The cost is $24.00.
    [Show full text]
  • STS-113 Shuttle Press Kit
    STS-113 Shuttle Press Kit Station Crew Exchange, Port Truss Segment Installation Highlight Endeavour's Mission WWW.SHUTTLEPRESSKIT.COM Updated October 25, 2002 STS-113 Shuttle Press Kit National Aeronautics and Space Administration Table of Contents Mission Overview ..................................................................................................... 1 Timeline Overview ................................................................................................... 9 Mission Objectives ................................................................................................ 13 Mission Factoids .................................................................................................... 14 Mission Profile ....................................................................................................... 17 Crewmembers ........................................................................................................ 19 Rendezvous and Docking ..................................................................................... 45 Spacewalks STS-113 Extravehicular Activities ............................................................................ 49 Payloads Payload Overview..................................................................................................... 56 P1 Truss .................................................................................................................. 59 International Space Station S1 and P1 Truss Summary .........................................
    [Show full text]