Exploring Diversity in the Midbrain Dopamine System with Emphasis on the Ventral Tegmental Area

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Diversity in the Midbrain Dopamine System with Emphasis on the Ventral Tegmental Area Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1985 Exploring Diversity in the Midbrain Dopamine System with Emphasis on the Ventral Tegmental Area BIANCA VLCEK ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1057-2 UPPSALA urn:nbn:se:uu:diva-423730 2020 Dissertation presented at Uppsala University to be publicly examined in Ekmanssalen, Evolutionsbiologiskt centrum, Norbyvägen 16, Uppsala, Wednesday, 16 December 2020 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Eva Hedlund. Abstract Vlcek, B. 2020. Exploring Diversity in the Midbrain Dopamine System with Emphasis on the Ventral Tegmental Area. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1985. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1057-2. Midbrain dopamine neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) are important for motor, cognitive and limbic functions through substantial projections to forebrain structures. Dysfunction of the midbrain dopamine system is associated with several disorders, including Parkinson´s disease (PD) and substance use disorder. PD is characterized by the loss of dopaminergic neurons leading to severe motor dysfunction and by the brain distribution of aggregated α-Synuclein protein. Mutations in the α-Synuclein gene (SNCA) have been associated with PD. The overall aim of this thesis was to increase the understanding of anatomical and histological features of dopamine neurons by identifying and characterizing gene expression differences between dopamine neurons, primarily those located within VTA but also the SNc. This knowledge should help towards increased understanding of the roles exerted by different dopamine neurons in behavior during healthy conditions and in disease. For this purpose, unbiased microarray analysis was first performed to identify genes that are differentially expressed in the VTA and SNc. Identified genes, e.g. Trpv1, NeuroD6, Calbindin and Grp, were analyzed on mRNA level primarily in mouse brain sections to determine their distribution patterns. Several were found to localize only in restricted neurons within the VTA, thus defining subpopulations of dopamine neurons in the mouse VTA. Further analysis revealed several interesting findings. For example, in clinical samples of PD biopsies, most dopamine neurons were degenerated, but those remaining were positive for Grp. VTA dopamine neurons positive for NeuroD6 or Calbindin2 were investigated using optogenetics. Activation of the NeuroD6-neurons, but not Calbindin2-neurons, was unexpectedly revealed as sufficient to drive place preference. To address the integrity of midbrain dopamine neurons in mouse models of PD, fluorescent in situ hybridization analyses was performed in two transgenic mouse lines expressing the human SNCA gene and in one dopamine degeneration lesion model, the 6- OHDA method. Despite near-ubiquitous presence of SNCA mRNA, all markers for midbrain dopamine cells remained intact in both transgenic models. Dopamine neurons thus showed an unanticipated robustness towards α-Synuclein pathology not described before. In contrast, most dopamine neurons were lost in the lesion model. In summary, by identifying and characterizing dopamine neurons using established and new markers, histological analyses revealed the presence of distinct gene expression patterns within the VTA that allowed anatomical and functional assessments of discrete subpopulations of midbrain neurons. The thesis contributes new knowledge of the midbrain dopamine system. Bianca Vlcek, Department of Organismal Biology, Comparative Physiology, Norbyv 18 A, Uppsala University, SE-75236 Uppsala, Sweden. © Bianca Vlcek 2020 ISSN 1651-6214 ISBN 978-91-513-1057-2 urn:nbn:se:uu:diva-423730 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-423730) “Most people say that it is the intellect which makes a great scientist. They are wrong, it is character” Albert Einstein Till min familj Para a minha família To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Viereckel, T., Dumas, S., Smith-Anttila, C.J.A., Vlcek, B., Bimpisidis Z., Lagerström, M. C., Konradsson-Geuken, Å., Wal- lén-Mackenzie, Å. (2016): Midbrain gene screening identifies a new mesoaccumbal glutamatergic pathway and a marker for do- pamine cells neuroprotected in Parkinson’s disease. Scientific Reports, 6: 35203. II Bimpisidis, Z., König, N., Stagkourakis, S., Zell, V., Vlcek, B., Dumas, S., Giros, B., Broberger, C., Hnasko, S., T., Wallén-Mac- kenzie, Å. (2019): The NeuroD6 subtype of VTA neurons con- tributes to psychostimulant sensitization and behavioral rein- forcement. eNeuro, 6 (3). III Vlcek, B., Dumas, S., Ekmark-Lewén, S., Ingelsson, M., Wallén- Mackenzie, Å. (2020): Preserved gene expression patterns in midbrain dopamine neurons of two different transgenic mouse lines expressing the human α-synuclein (SNCA) gene Manuscript. IV Vlcek, B., Guillaumin, A., Wallén-Mackenzie, Å. (2020): Ven- tral tegmental area neuronal subpopulations are strongly affected in a 6-OHDA mouse model. Manuscript. Reprints were made with permission from the respective publisher. Additional Paper My work has also contributed to the following paper that is beyond the focus of this thesis: Wallén-Mackenzie, Å., Dumas, S., Papathanou, M., Martis Thiele, M.M., Vlcek, B., König, N., Björklund, ÅK. (2020): Spatio-molecular domains iden- tified in the mouse subthalamic nucleus and neighboring glutamatergic and GABAergic brain structures. Communications Biology - Nature, 3 (338). Contents Introduction ................................................................................................... 11 The Midbrain Dopamine System ............................................................. 12 Dopamine Neurons .............................................................................. 12 Anatomical Organization ..................................................................... 13 The Substantia Nigra (SN) ................................................................... 15 The Ventral Tegmental Area (VTA) ................................................... 16 Functions of the Midbrain Dopamine System .......................................... 18 The Basal Ganglia ............................................................................... 18 Motor Loop .......................................................................................... 19 Limbic Loop ......................................................................................... 20 Diversity within Circuitries of the Midbrain Dopamine System .............. 21 Dysfunction in the Midbrain Dopamine System ...................................... 22 Substance Use Disorder (Drug addiction) ........................................... 22 Parkinson’s Disease (PD) .................................................................... 23 Animal models of PD .......................................................................... 27 Toxin-induced models .......................................................................... 27 6-OHDA mouse model ......................................................................... 28 Genetic models .................................................................................... 29 Diversity within the VTA .................................................................... 31 Dopamine and Glutamate Co-phenotype ............................................. 31 GABA and GABA/Dopamine Co-phenotype ...................................... 32 Gene Expression Diversity .................................................................. 33 Overall Aim .............................................................................................. 37 Materials and Methods .................................................................................. 38 Mice .......................................................................................................... 38 Stereotaxic 6-OHDA injection ................................................................. 39 Post-operative care ................................................................................... 40 Tissue preparation for histology ............................................................... 40 In Situ Hybridizzzation ............................................................................. 40 Synthesis of PCR Products and Riboprobes ............................................. 41 Fluorescent In Situ Hybridization (FISH) ................................................ 43 Immunohistochemistry ............................................................................. 45 Study I ........................................................................................................... 47 Study II ......................................................................................................... 50 Study III ........................................................................................................ 53 Study IV ........................................................................................................ 56 Concluding Remarks ..................................................................................... 58 Acknowledgements ......................................................................................
Recommended publications
  • ATAP00021-Recombinant Human ALDH1A1 Protein
    ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein Product Details Summary English name Recombinant Human ALDH1A1 protein Purity >90% as determined by SDS-PAGE Endotoxin level Please contact with the lab for this information. Construction A DNA sequence encoding the human ALDH1A1 (Met1-Ser501) was fused with His tag Accession # P00352 Host E.coli Species Homo sapiens (Human) Predicted Molecular Mass 52.58 kDa Formulation Supplied as solution form in PBS pH 7.5 or lyophilized from PBS pH 7.5. Shipping In general, proteins are provided as lyophilized powder/frozen liquid. They are shipped out with dry ice/blue ice unless customers require otherwise. Stability &Storage Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8 °C for one week . Store at -20 to -80 °C for twelve months from the date of receipt. Reconstitution Reconstitute in sterile water for a stock solution.A copy of datasheet will be provided with the products, please refer to it for details. Background Background Aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), also known as Aldehyde dehydrogenase 1 (ALDH1), or Retinaldehyde Dehydrogenase 1 (RALDH1), is an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. The retinaldehyde dehydrogenase (RALDH) subfamily of ALDHs, composed of ALDH1A1, ALDH1A2, ALDH1A3, and ALDH8A1, regulate development by catalyzing retinoic acid biosynthesis. The ALDH1A1 protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. ALDH1A1 also belongs to the group of corneal crystallins that Web:www.atagenix.com E-mail: [email protected] Tel: 027-87433958 ATAGENIX LABORATORIES Catalog Number:ATAP00021 Recombinant Human ALDH1A1 protein help maintain the transparency of the cornea.
    [Show full text]
  • Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia
    Open Access Annals of Hematology & Oncology Research Article Identify Distinct Prognostic Impact of ALDH1 Family Members by TCGA Database in Acute Myeloid Leukemia Yi H, Deng R, Fan F, Sun H, He G, Lai S and Su Y* Department of Hematology, General Hospital of Chengdu Abstract Military Region, China Background: Acute myeloid leukemia is a heterogeneous disease. Identify *Corresponding author: Su Y, Department of the prognostic biomarker is important to guide stratification and therapeutic Hematology, General Hospital of Chengdu Military strategies. Region, Chengdu, 610083, China Method: We detected the expression level and the prognostic impact of Received: November 25, 2017; Accepted: January 18, each ALDH1 family members in AML by The Cancer Genome Atlas (TCGA) 2018; Published: February 06, 2018 database. Results: Upon 168 patients whose expression level of ALDH1 family members were available. We found that the level of ALDH1A1correlated to the prognosis of AML by the National Comprehensive Cancer Network (NCCN) stratification but not in other ALDH1 members. Moreover, we got survival data from 160 AML patients in TCGA database. We found that high ALDH1A1 expression correlated to poor Overall Survival (OS), mostly in Fms-like Tyrosine Kinase-3 (FLT3) mutated group. HighALDH1A2 expression significantly correlated to poor OS in FLT3 wild type population but not in FLT3 mutated group. High ALDH1A3 expression significantly correlated to poor OS in FLT3 mutated group but not in FLT3 wild type group. There was no relationship between the OS of AML with the level of ALDH1B1, ALDH1L1 and ALDH1L2. Conclusion: The prognostic impacts were different in each ALDH1 family members, which needs further investigation.
    [Show full text]
  • Mapping Aldehyde Dehydrogenase 1A1 Activity Using an [18F]Substrate-Based Approach Raul Pereira,[A] Thibault Gendron,[B] Chandan Sanghera,[A] Hannah E
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Birkbeck Institutional Research Online DOI: 10.1002/chem.201805473 Full Paper & Biochemistry Mapping Aldehyde Dehydrogenase 1A1 Activity using an [18F]Substrate-Based Approach Raul Pereira,[a] Thibault Gendron,[b] Chandan Sanghera,[a] Hannah E. Greenwood,[a] Joseph Newcombe,[b, c] Patrick N. McCormick,[a] Kerstin Sander,[b] Maya Topf,[c] Erik rstad,[b] and Timothy H. Witney*[a] Abstract: Aldehyde dehydrogenases (ALDHs) catalyze the focused library of compounds evaluated, N-ethyl-6-(fluoro)- oxidation of aldehydes to carboxylic acids. Elevated ALDH N-(4-formylbenzyl)nicotinamide 4b was found to have excel- expression in human cancers is linked to metastases and lent affinity and isozyme selectivity for ALDH1A1 in vitro. poor overall survival. Despite ALDH being a poor prognostic Following 18F-fluorination, [18F]4b was taken up by colorectal factor, the non-invasive assessment of ALDH activity in vivo tumor cells and trapped through the conversion to its 18F-la- has not been possible due to a lack of sensitive and transla- beled carboxylate product under the action of ALDH. In vivo tional imaging agents. Presented in this report are the syn- positron emission tomography revealed high uptake of thesis and biological evaluation of ALDH1A1-selective chemi- [18F]4b in the lungs and liver, with radioactivity cleared cal probes composed of an aromatic aldehyde derived from through the urinary tract. Oxidation of [18F]4b, however, was N,N-diethylamino benzaldehyde (DEAB) linked to a fluorinat- observed in vivo, which may limit the tissue penetration of ed pyridine ring either via an amide or amine linkage.
    [Show full text]
  • Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing
    cells Review Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing Alessandro Fiorenzano * , Edoardo Sozzi, Malin Parmar and Petter Storm Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; [email protected] (E.S.); [email protected] (M.P.); [email protected] (P.S.) * Correspondence: alessandro.fi[email protected]; Tel.: +46-462220549 Abstract: Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsy- chiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are Citation: Fiorenzano, A.; Sozzi, E.; not amenable to being reproduced in animal models. The establishment of human cell-based systems Parmar, M.; Storm, P. Dopamine combined with advanced computational single-cell transcriptomics holds great promise for decoding Neuron Diversity: Recent Advances the mechanisms underlying maturation and diversification of human DA neurons, and linking their and Current Challenges in Human Stem Cell Models and Single Cell molecular heterogeneity to functions in the midbrain.
    [Show full text]
  • Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G
    Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G. Jamieson, M.D. Weill Cornell Medicine, New York, NY The patient who presents with either acute or subacute confusion, in the absence of a clearly defined speech disorder and focality on neurological examination that would indicate an underlying mass lesion, needs to be evaluated for a multitude of neurological conditions. Many of the conditions that produce the recent onset of alteration in mental status, that ranges from mild confusion to florid delirium, may be due to infectious or inflammatory conditions that warrant acute intervention such as antimicrobial drugs, steroids or plasma exchange. However, some patients with recent onset of confusion have an underlying toxic-metabolic disorders indicating a specific diagnosis with need for appropriate treatment. The clinical presentations of some patients may indicate the diagnosis (e.g. hypoglycemia, chronic alcoholism) while the imaging patterns must be recognized to make the diagnosis in other patients. Toxic-metabolic disorders constitute a group of diseases and syndromes with diverse causes and clinical presentations. Many toxic-metabolic disorders have no specific neuroimaging correlates, either at early clinical stages or when florid symptoms develop. However, some toxic-metabolic disorders have characteristic abnormalities on neuroimaging, as certain areas of the central nervous system appear particularly vulnerable to specific toxins and metabolic perturbations. Areas of particular vulnerability in the brain include: 1) areas of high-oxygen demand (e.g. basal ganglia, cerebellum, hippocampus), 2) the cerebral white matter and 3) the mid-brain. Brain areas of high-oxygen demand are particularly vulnerable to toxins that interfere with cellular respiratory metabolism.
    [Show full text]
  • Hemispheric Differences in the Mesostriatal Dopaminergic System
    REVIEW ARTICLE published: 11 June 2014 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2014.00110 Hemispheric differences in the mesostriatal dopaminergic system Ilana Molochnikov and Dana Cohen* The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel Edited by: The mesostriatal dopaminergic system, which comprises the mesolimbic and the Ahmed A. Moustafa, University of nigrostriatal pathways, plays a major role in neural processing underlying motor and limbic Western Sydney, Australia functions. Multiple reports suggest that these processes are influenced by hemispheric Reviewed by: differences in striatal dopamine (DA) levels, DA turnover and its receptor activity. Here, Rachel Tomer, University of Haifa, Israel we review studies which measured the concentration of DA and its metabolites to Reuben Ruby Shamir, Case Western examine the relationship between DA imbalance and animal behavior under different Reserve University, USA conditions. Specifically, we assess evidence in support of endogenous, inter-hemispheric *Correspondence: DA imbalance; determine whether the known anatomy provides a suitable substrate for Dana Cohen, The Gonda Brain this imbalance; examine the relationship between DA imbalance and animal behavior; and Research Center, Bar Ilan University, Building number 901, Ramat Gan characterize the symmetry of the observed inter-hemispheric laterality in the nigrostriatal 52900, Israel and the mesolimbic DA systems. We conclude that many studies provide supporting e-mail: [email protected] evidence for the occurrence of experience-dependent endogenous DA imbalance which is controlled by a dedicated regulatory/compensatory mechanism. Additionally, it seems that the link between DA imbalance and animal behavior is better characterized in the nigrostriatal than in the mesolimbic system.
    [Show full text]
  • Microstimulation of the Midbrain Tegmentum Creates Learning Signals for Saccade Adaptation
    The Journal of Neuroscience, April 4, 2007 • 27(14):3759–3767 • 3759 Behavioral/Systems/Cognitive Microstimulation of the Midbrain Tegmentum Creates Learning Signals for Saccade Adaptation Yoshiko Kojima, Kaoru Yoshida, and Yoshiki Iwamoto Department of Neurophysiology, Doctoral Program in Kansei Behavioral and Brain Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8574, Japan Error signals are vital to motor learning. However, we know little about pathways that transmit error signals for learning in voluntary movements. Here we show that microstimulation of the midbrain tegmentum can induce learning in saccadic eye movements in mon- keys. Weak electrical stimuli delivered ϳ200 ms after saccades in one horizontal direction produced gradual and marked changes in saccade gain. The spatial and temporal characteristics of the produced changes were similar to those of adaptation induced by real visual error. When stimulation was applied after saccades in two different directions, endpoints of these saccades gradually shifted in the same direction in two dimensions. We conclude that microstimulation created powerful learning signals that dictate the direction of adaptive shift in movement endpoints. Our findings suggest that the error signals for saccade adaptation are conveyed in a pathway that courses through the midbrain tegmentum. Key words: motor learning; electrical stimulation; midbrain; saccade; adaptation; macaque; monkey Introduction superior colliculus, a key midbrain structure that issues saccade Motor learning ensures the accuracy of the movements we exe- signals to the premotor reticular circuitry (Scudder et al., 2002). cute daily. Vital to learning is the information about the error that The colliculus also has indirect access to the cerebellum via both results from executed movements.
    [Show full text]
  • Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde
    DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 SHORT COMMUNICATION 2 Age-dependent protein abundance of cytosolic alcohol and aldehyde 3 dehydrogenases in human liver 4 5 Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder and Bhagwat 6 Prasad 7 Downloaded from 8 Department of Pharmaceutics, University of Washington, Seattle, WA (D.K.B and B.P.) 9 Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s 10 Mercy-Kansas City, MO and School of Medicine, University of Missouri-Kansas City, Kansas dmd.aspetjournals.org 11 City, MO (R.E.P., A.G., J.S.L.) 12 at ASPET Journals on September 23, 2021 1 DMD Fast Forward. Published on June 12, 2017 as DOI: 10.1124/dmd.117.076463 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 76463 1 Running title: Hepatic age-dependent ADH and ALDH abundance 2 3 Corresponding author: Bhagwat Prasad, Ph.D.; Department of Pharmaceutics, University 4 of Washington, Seattle, WA 98195, Phone: (206) 221-2295, E-mail: [email protected] 5 Number of text pages: 9 6 Number of tables: 0 7 Number of figures: 2 8 Number of references: 32 Downloaded from 9 Number of words in Abstract: 205 (250) 10 Number of words in Introduction: 419 11 Number of words in Results and Discussion: 1113 dmd.aspetjournals.org 12 13 Abbreviations: Alcohol dehydrogenases (ADHs), aldehyde dehydrogenase (ALDH), 14 multiple reaction monitoring (MRM), liquid-chromatography coupled with tandem mass at ASPET Journals on September 23, 2021 15 spectrometry (LC-MS/MS), drug-metabolizing enzyme (DME) and human liver cytosol (HLC) 16 17 2 DMD Fast Forward.
    [Show full text]
  • Brain Structure and Function Related to Headache
    Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms
    [Show full text]
  • Transcriptional Silencing of ALDH2 Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia
    Author Manuscript Published OnlineFirst on April 23, 2021; DOI: 10.1158/2159-8290.CD-20-1542 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Transcriptional silencing of ALDH2 confers a dependency on Fanconi anemia proteins in acute myeloid leukemia Zhaolin Yang1, Xiaoli S. Wu1,2, Yiliang Wei1, Sofya A. Polyanskaya1, Shruti V. Iyer1,2, Moonjung Jung3, Francis P. Lach3, Emmalee R. Adelman4, Olaf Klingbeil1, Joseph P. Milazzo1, Melissa Kramer1, Osama E. Demerdash1, Kenneth Chang1, Sara Goodwin1, Emily Hodges5, W. Richard McCombie1, Maria E. Figueroa4, Agata Smogorzewska3, and Christopher R. Vakoc1,6* 1Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA 2Genetics Program, Stony Brook University, Stony Brook, New York 11794, USA 3Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA 4Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 5Department of Biochemistry and Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA 6Lead contact *Correspondence: [email protected]; Christopher R. Vakoc, 1 Bungtown Rd, Cold Spring Harbor, NY 11724. 516-367-5030 Running title: Fanconi anemia pathway dependency in AML Category: Myeloid Neoplasia Keywords: CONFLICT OF INTEREST DISCLOSURES C.R.V. has received consulting fees from Flare Therapeutics, Roivant Sciences, and C4 Therapeutics, has served on the scientific advisory board of KSQ Therapeutics and Syros Pharmaceuticals, and has received research funding from Boehringer-Ingelheim. W.R.M. is a founder and shareholder of Orion Genomics and has received research support from Pacific Biosciences and support for attending meetings from Oxford Nanopore.
    [Show full text]
  • A Novel ALDH1A1 Inhibitor Targets Cells with Stem Cell Characteristics in Ovarian Cancer
    cancers Article A Novel ALDH1A1 Inhibitor Targets Cells with Stem Cell Characteristics in Ovarian Cancer Nkechiyere G. Nwani 1, Salvatore Condello 2 , Yinu Wang 1, Wendy M. Swetzig 1, Emma Barber 1, Thomas Hurley 3,4 and Daniela Matei 1,5,6,* 1 Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA; [email protected] (N.G.N.); [email protected] (Y.W.); [email protected] (W.M.S.); [email protected] (E.B.) 2 Department of Obstetrics and Gynecology, Indiana University, Indianapolis, IN 46202, USA; [email protected] 3 Department of Biochemistry and molecular Biology, Indiana University, Indianapolis, IN 46202, USA; [email protected] 4 Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA 5 Robert H Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA 6 Jesse Brown VA Medical Center, Chicago, IL 60612, USA * Correspondence: [email protected] Received: 8 February 2019; Accepted: 3 April 2019; Published: 8 April 2019 Abstract: A small of population of slow cycling and chemo-resistant cells referred to as cancer stem cells (CSC) have been implicated in cancer recurrence. There is emerging interest in developing targeted therapeutics to eradicate CSCs. Aldehyde-dehydrogenase (ALDH) activity was shown to be a functional marker of CSCs in ovarian cancer (OC). ALDH activity is increased in cells grown as spheres versus monolayer cultures under differentiating conditions and in OC cells after treatment with platinum. Here, we describe the activity of CM37, a newly identified small molecule with inhibitory activity against ALDH1A1, in OC models enriched in CSCs. Treatment with CM37 reduced OC cells’ proliferation as spheroids under low attachment growth conditions and the expression of stemness-associated markers (OCT4 and SOX2) in ALDH+ cells fluorescence-activated cell sorting (FACS)-sorted from cell lines and malignant OC ascites.
    [Show full text]
  • Isoenzymes in Gastric Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 18 Mining distinct aldehyde dehydrogenase 1 (ALDH1) isoenzymes in gastric cancer Jia-Xin Shen1,*, Jing Liu2,3,*, Guan-Wu Li4, Yi-Teng Huang5, Hua-Tao Wu1 1Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China 2Chang Jiang Scholar’s Laboratory, Shantou University Medical College, Shantou, PR China 3Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, PR China 4Open Laboratory for Tumor Molecular Biology/Department of Biochemistry, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, PR China 5Health Care Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, PR China *These authors contributed equally to this work Correspondence to: Hua-Tao Wu, email: [email protected] Keywords: ALDH1, gastric cancer, prognosis, KM plotter, hazard ratio (HR) Received: October 27, 2015 Accepted: March 10, 2016 Published: March 23, 2016 ABSTRACT Aldehyde dehydrogenase 1 (ALDH1) consists of a family of intracellular enzymes, highly expressed in stem cells populations of leukemia and some solid tumors. Up to now, 6 isoforms of ALDH1 have been reported. However, the expression patterns and the identity of ALDH1 isoenzymes contributing to ALDH1 activity, as well as the prognostic values of ALDH1 isoenzymes in cancers all remain to be elucidated. Here, we studied the expressions of ALDH1 transcripts in gastric cancer (GC) compared with the normal controls using the ONCOMINE database. Through the Kaplan-Meier plotter database, which contains updated gene expression data and survival information of 876 GC patients, we also investigated the prognostic values of ALDH1 isoenzymes in GC patients.
    [Show full text]