Structure and Function of Visual Area MT

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Function of Visual Area MT AR245-NE28-07 ARI 16 March 2005 1:3 V I E E W R S First published online as a Review in Advance on March 17, 2005 I E N C N A D V A Structure and Function of Visual Area MT Richard T. Born1 and David C. Bradley2 1Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115-5701; email: [email protected] 2Department of Psychology, University of Chicago, Chicago, Illinois 60637; email: [email protected] Annu. Rev. Neurosci. Key Words 2005. 28:157–89 extrastriate, motion perception, center-surround antagonism, doi: 10.1146/ magnocellular, structure-from-motion, aperture problem by HARVARD COLLEGE on 04/14/05. For personal use only. annurev.neuro.26.041002.131052 Copyright c 2005 by Abstract Annual Reviews. All rights reserved The small visual area known as MT or V5 has played a major role in 0147-006X/05/0721- our understanding of the primate cerebral cortex. This area has been 0157$20.00 historically important in the concept of cortical processing streams and the idea that different visual areas constitute highly specialized Annu. Rev. Neurosci. 0.0:${article.fPage}-${article.lPage}. Downloaded from arjournals.annualreviews.org representations of visual information. MT has also proven to be a fer- tile culture dish—full of direction- and disparity-selective neurons— exploited by many labs to study the neural circuits underlying com- putations of motion and depth and to examine the relationship be- tween neural activity and perception. Here we attempt a synthetic overview of the rich literature on MT with the goal of answering the question, What does MT do? www.annualreviews.org · Structure and Function of Area MT 157 AR245-NE28-07 ARI 16 March 2005 1:3 pathway. Finally, MT neurons are concerned Contents with visual motion, which is of obvious etho- logical importance, which has been exten- INTRODUCTION ..................158 sively characterized psychophysically, and for MT WAS A KEY PART OF THE which there are well-defined mathematical EARLY EXPLORATION OF descriptions. Much of the work on MT has EXTRASTRIATE CORTEX ......158 focused on its role in visual motion process- CONNECTIONS....................159 ing, though, as we hope to make clear in what FUNCTIONAL ORGANIZATION . 162 follows, MT plays a richer and more varied BASIC TUNING PROPERTIES . 164 role in vision. SURROUND MECHANISMS .......165 THE COMPUTATION OF VELOCITY.......................168 MT WAS A KEY PART OF THE NOISE REDUCTION ...............173 EARLY EXPLORATION OF SEGMENTATION ..................173 EXTRASTRIATE CORTEX THE COMPUTATION OF Part of MT’s significance is historical; it STRUCTURE ....................174 played an important role in the discovery of EXTRARETINAL EFFECTS ........176 new extrastriate visual areas (Felleman & Van PERCEPTUAL CORRELATES Essen 1991) and in the idea that they consti- AND POPULATION CODES . 177 tute specialized representations of the visual Single-Neuron Sensitivity ..........177 world (Zeki 1978, Barlow 1986). Vector Summation versus At the beginning of the twentieth cen- Winner-Take-All ...............178 tury, primate visual cortex was thought to Distributed Speed and Acceleration consist of only three architectonically distinct Codes ..........................179 fields (Brodmann 1909). Beginning in the late CONCLUSIONS ....................179 1940s, however, it became clear that consid- erably more of the cortex was involved in vision. The first demonstration came from temporal lobe lesions that produced visual im- INTRODUCTION pairment (Mishkin 1954, Mishkin & Pribram The middle temporal visual area (MT or V5) 1954) unaccompanied by deficits in other sen- of the macaque monkey possesses a number of sory modalities (Weiskrantz & Mishkin 1958, attributes that have made it particularly attrac- Brown 1963). Mapping studies using sur- by HARVARD COLLEGE on 04/14/05. For personal use only. tive to systems neuroscientists. This region is face electrodes also revealed visually respon- typical of extrastriate cortex but is still readily sive regions well anterior to those tradition- identifiable both anatomically and function- ally associated with vision (Talbot& Marshall ally. Though extrastriate, it is still quite close 1941, Clare & Bishop 1954, Woolsey et al. to the retina—its principle inputs as few as five 1955). In addition, new anatomical techniques synapses from the photoreceptors—a feature (Nauta & Gygax 1954) permitted the label- Annu. Rev. Neurosci. 0.0:${article.fPage}-${article.lPage}. Downloaded from arjournals.annualreviews.org which means, among other things, that the ing of connections after lesions of striate cor- mechanisms by which its receptive field prop- tex (Kuypers et al. 1965, Cragg & Ainsworth erties arise can be profitably studied. And, al- 1969, Zeki 1969), which revealed a direct stri- though MT neurons are near enough to the ate (V1) projection zone situated on the pos- inputs to be mechanistically tractable, they are terior bank of the superior temporal sulcus also close enough to some outputs—in par- (STS). ticular, those involved in eye movements— MT was discovered at roughly the same to provide an easily measurable, continuous time by two different groups. In England, readout of computations performed in this Dubner & Zeki (1971) were able to record 158 Born · Bradley AR245-NE28-07 ARI 16 March 2005 1:3 Figure 1 First demonstration of direction selectivity in macaque MT/V5 by Dubner & Zeki (1971). (a)Neuronal responses to a bar of light swept across the receptive field in different directions (modified from figure 1 of Dubner & Zeki 1971). Each trace shows the spiking activity of the neuron as the bar was swept in the direction indicated by the arrow. The neuron’s preferred direction was up and to the right. (b) Oblique penetration through MT (modified from Figure 3 of Dubner & Zeki 1971) showing the shifts in preferred direction indicative of the direction columns subsequently demonstrated by Albright et al. (1984). See also Figure 4. visual responses from the V1-projection zone Following the first studies, a series of pa- in anesthetized macaques, in so doing es- pers confirmed that MT contained a high tablishing a number of physiological hall- concentration of direction-selective neurons marks, particularly their direction-selective in several species of both New and Old preferred direction: the direction of responses (Figure 1a). Quite presciently, they World monkeys (Zeki 1974, 1980; Baker et al. motion eliciting the also suggested a columnar organization for 1981; Van Essen et al. 1981; Maunsell & Van greatest response direction-selective neurons (Figure 1b) and Essen 1983a,b; Felleman & Kaas 1984). These from a given neuron a role for MT signals in guiding pursuit studies indicated that MT was both unique eye movements, both subsequently confirmed as a cortical area highly specialized for visual (Albright et al. 1984, Lisberger et al. 1987). motion and, at the same time, common to a Around the same time, Allman & Kaas (1971) number of different primate species. were recording from owl monkeys and using a different approach. They made systematic rows of microelectrode penetrations across CONNECTIONS the entire cortex, mapping receptive fields as Like every other cortical area, MT has a rich by HARVARD COLLEGE on 04/14/05. For personal use only. they went, thus discovering a large number of set of interconnections with other regions of retinotopically organized maps. One of these, the cortex as well as with numerous subcor- which they named MT for middle temporal, tical structures. These connections have been mapped onto a well-defined region of dense discussed in previous publications (Felleman myelination in the lower layers and contained &Van Essen 1991, Orban 1997, Lewis & neurons that responded better to drifting bars Van Essen 2000), so we do not recapitulate Annu. Rev. Neurosci. 0.0:${article.fPage}-${article.lPage}. Downloaded from arjournals.annualreviews.org than to flashed spots. The myelination was them here. From a broad perspective, MT’s also later shown to be characteristic of the corticocortical connections identify it as one macaque motion area (Van Essen et al. 1981), of the main inputs into the dorsal or poste- which Zeki subsequently named V5. This his- rior parietal processing stream (Ungerleider tochemical feature has been an underappreci- & Mishkin 1982, Maunsell & Newsome ated factor in contributing to the detail with 1987), and its key outputs target structures which MT has been studied because it has per- that are implicated in the analysis of optic flow mitted reliable comparisons across different (e.g., MST, VIP) and the generation of eye studies. movements (e.g., LIP, FEF, SC, dorsolateral www.annualreviews.org · Structure and Function of Area MT 159 AR245-NE28-07 ARI 16 March 2005 1:3 Figure 2 Gestalt map of major routes into MT in the manner of Felleman & Van Essen (1991). Line thickness is roughly proportional to the magnitude of the inputs, on the basis of a combination of projection neuron numbers and, where data are available, the characteristics of their axon terminals (see Figure 3). The thickest lines represent the direct cortical pathway emphasized in the text. Following are important caveats: The pathways shown are those discussed in the text and omit a number of known feedforward cortical inputs that appear lesser in magnitude (V3A, VP, PIP) as well as many subcortical inputs. The sources of the direct and indirect projections from V1 are probably not defined purely by cell morphology (i.e., spiny stellate versus pyramidal; see Elston & Rosa 1997), though they are largely distinct; the largest 4B cells contribute to the direct pathway (Sincich & Horton 2003). The precise nature of the retinal inputs to K1,2 is not known, though their response properties are W-like in the galago (Irvin et al. 1986). Also, the proposed input to MT from the SC via the pulvinar is rendered problematic by the finding that, in owl monkey pulvinar, the principle target of SC terminals (PICM)is by HARVARD COLLEGE on 04/14/05. For personal use only. different from the main source of MT projections (PIM) (see Stepniewska et al.
Recommended publications
  • Cerebral Cortex Structure, Function, Dysfunction Reading Ch 10 Waxman Dental Neuroanatomy Lecture Suzanne Stensaas, Ph.D
    Cerebral Cortex Structure, Function, Dysfunction Reading Ch 10 Waxman Dental Neuroanatomy Lecture Suzanne Stensaas, Ph.D. March 15, 2011 Anatomy Review • Lobes and layers • Brodmann’s areas • Vascular Supply • Major Neurological Findings – Frontal, Parietal, Temporal, Occipital, Limbic • Quiz Questions? Types of Cortex • Sensory • Motor • Unimodal association • Multimodal association necessary for language, reason, plan, imagine, create Structure of neocortex (6 layers) The general pattern of primary, association and mulimodal association cortex (Mesulam) Brodmann, Lateral Left Hemisphere MCA left hemisphere from D.Haines ACA and PCA -Haines Issues of Functional Localization • Earliest studies -Signs, symptoms and note location • Electrical discharge (epilepsy) suggested function • Ablation - deficit suggest function • Reappearance of infant functions suggest loss of inhibition (disinhibition), i.e. grasp, suck, Babinski • Variabilities in case reports • Linked networks of afferent and efferent neurons in several regions working to accomplish a task • Functional imaging does not always equate with abnormal function associated with location of lesion • fMRI activation of several cortical regions • Same sign from lesions in different areas – i.e.paraphasias • Notion of the right hemisphere as "emotional" in contrast to the left one as "logical" has no basis in fact. Limbic System (not a true lobe) involves with cingulate gyrus and the • Hippocampus- short term memory • Amygdala- fear, agression, mating • Fornix pathway to hypothalamus •
    [Show full text]
  • Visual Cortex in Humans 251
    Author's personal copy Visual Cortex in Humans 251 Visual Cortex in Humans B A Wandell, S O Dumoulin, and A A Brewer, using fMRI, and we discuss the main features of the Stanford University, Stanford, CA, USA V1 map. We then summarize the positions and proper- ties of ten additional visual field maps. This represents ã 2009 Elsevier Ltd. All rights reserved. our current understanding of human visual field maps, although this remains an active field of investigation, with more maps likely to be discovered. Finally, we Human visua l cortex comprises 4–6 billion neurons that are organ ized into more than a dozen distinct describe theories about the functional purpose and functional areas. These areas include the gray matter organizing principles of these maps. in the occi pital lobe and extend into the temporal and parietal lobes . The locations of these areas in the The Size and Location of Human Visual intact human cortex can be identified by measuring Cortex visual field maps. The neurons within these areas have a variety of different stimulus response proper- The entirety of human cortex occupies a surface area 2 ties. We descr ibe how to measure these visual field on the order of 1000 cm and ranges between 2 and maps, their locations, and their overall organization. 4 mm in thickness. Each cubic millimeter of cortex contains approximately 50 000 neurons so that neo- We then consider how information about patterns, objects, color s, and motion is analyzed and repre- cortex in the two hemispheres contain on the order of sented in these maps.
    [Show full text]
  • Brain Maps – the Sensory Homunculus
    Brain Maps – The Sensory Homunculus Our brains are maps. This mapping results from the way connections in the brain are ordered and arranged. The ordering of neural pathways between different parts of the brain and those going to and from our muscles and sensory organs produces specific patterns on the brain surface. The patterns on the brain surface can be seen at various levels of organization. At the most general level, areas that control motor functions (muscle movement) map to the front-most areas of the cerebral cortex while areas that receive and process sensory information are more towards the back of the brain (Figure 1). Motor Areas Primary somatosensory area Primary visual area Sensory Areas Primary auditory area Figure 1. A diagram of the left side of the human cerebral cortex. The image on the left shows the major division between motor functions in the front part of the brain and sensory functions in the rear part of the brain. The image on the right further subdivides the sensory regions to show regions that receive input from somatosensory, auditory, and visual receptors. We then can divide these general maps of motor and sensory areas into regions with more specific functions. For example, the part of the cerebral cortex that receives visual input from the retina is in the very back of the brain (occipital lobe), auditory information from the ears comes to the side of the brain (temporal lobe), and sensory information from the skin is sent to the top of the brain (parietal lobe). But, we’re not done mapping the brain.
    [Show full text]
  • Network Centrality in Patients with Acute Unilateral Open Globe Injury: a Voxel‑Wise Degree Centrality Study
    MOLECULAR MEDICINE REPORTS 16: 8295-8300, 2017 Network centrality in patients with acute unilateral open globe injury: A voxel‑wise degree centrality study HUA WANG1, TING CHEN1, LEI YE2, QI-CHEN YANG3, RONG WEI2, YING ZHANG2, NAN JIANG2 and YI SHAO1,2 1Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan 410008; 2Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute and Oculopathy Research Centre, Nanchang, Jiangxi 330006; 3Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, Fujian 361102, P.R. China Received January 12, 2017; Accepted August 1, 2017 DOI: 10.3892/mmr.2017.7635 Abstract. The present study aimed to investigate functional Introduction networks underlying brain-activity alterations in patients with acute unilateral open globe injury (OGI) and associations with Open globe injury (OGI) is a severe eye disease that frequently their clinical features using the voxel-wise degree centrality causes unilateral visual loss. Ocular trauma is a public health (DC) method. In total, 18 patients with acute OGI (16 males and problem in developing countries (1,2). A previous study indicated 2 females), and 18 healthy subjects (16 males and 2 females), that the annual prevalence of ocular trauma was 4.9 per 100,000 closely matched in age, sex and education, participated in the in the Western Sicily Mediterranean area, which investigated a present study. Each subject underwent a resting-state functional 5 year period from January 2001 to December 2005 (3). In addi- magnetic resonance imaging scan. The DC method was used tion, the incidence of OGI is increased in men compared with to assess local features of spontaneous brain activity.
    [Show full text]
  • Eye Fields in the Frontal Lobes of Primates
    Brain Research Reviews 32Ž. 2000 413±448 www.elsevier.comrlocaterbres Full-length review Eye fields in the frontal lobes of primates Edward J. Tehovnik ), Marc A. Sommer, I-Han Chou, Warren M. Slocum, Peter H. Schiller Department of Brain and CognitiÕe Sciences, Massachusetts Institute of Technology, E25-634, Cambridge, MA 02139, USA Accepted 19 October 1999 Abstract Two eye fields have been identified in the frontal lobes of primates: one is situated dorsomedially within the frontal cortex and will be referred to as the eye field within the dorsomedial frontal cortexŽ. DMFC ; the other resides dorsolaterally within the frontal cortex and is commonly referred to as the frontal eye fieldŽ. FEF . This review documents the similarities and differences between these eye fields. Although the DMFC and FEF are both active during the execution of saccadic and smooth pursuit eye movements, the FEF is more dedicated to these functions. Lesions of DMFC minimally affect the production of most types of saccadic eye movements and have no effect on the execution of smooth pursuit eye movements. In contrast, lesions of the FEF produce deficits in generating saccades to briefly presented targets, in the production of saccades to two or more sequentially presented targets, in the selection of simultaneously presented targets, and in the execution of smooth pursuit eye movements. For the most part, these deficits are prevalent in both monkeys and humans. Single-unit recording experiments have shown that the DMFC contains neurons that mediate both limb and eye movements, whereas the FEF seems to be involved in the execution of eye movements only.
    [Show full text]
  • The Human Brain Hemisphere Controls the Left Side of the Body and the Left What Makes the Human Brain Unique Is Its Size
    About the brain Cerebrum (also known as the The brain is made up of around 100 billion nerve cells - each one cerebral cortex or forebrain) is connected to another 10,000. This means that, in total, we The cerebrum is the largest part of the brain. It is split in to two have around 1,000 trillion connections in our brains. (This would ‘halves’ of roughly equal size called hemispheres. The two be written as 1,000,000,000,000,000). These are ultimately hemispheres, the left and right, are joined together by a bundle responsible for who we are. Our brains control the decisions we of nerve fibres called the corpus callosum. The right make, the way we learn, move, and how we feel. The human brain hemisphere controls the left side of the body and the left What makes the human brain unique is its size. Our brains have a hemisphere controls the right side of the body. The cerebrum is larger cerebral cortex, or cerebrum, relative to the rest of the The human brain is the centre of our nervous further divided in to four lobes: frontal, parietal, occipital, and brain than any other animal. (See the Cerebrum section of this temporal, which have different functions. system. It is the most complex organ in our fact sheet for further information.) This enables us to have abilities The frontal lobe body and is responsible for everything we do - such as complex language, problem-solving and self-control. The frontal lobe is located at the front of the brain.
    [Show full text]
  • Function of Cerebral Cortex
    FUNCTION OF CEREBRAL CORTEX Course: Neuropsychology CC-6 (M.A PSYCHOLOGY SEM II); Unit I By Dr. Priyanka Kumari Assistant Professor Institute of Psychological Research and Service Patna University Contact No.7654991023; E-mail- [email protected] The cerebral cortex—the thin outer covering of the brain-is the part of the brain responsible for our ability to reason, plan, remember, and imagine. Cerebral Cortex accounts for our impressive capacity to process and transform information. The cerebral cortex is only about one-eighth of an inch thick, but it contains billions of neurons, each connected to thousands of others. The predominance of cell bodies gives the cortex a brownish gray colour. Because of its appearance, the cortex is often referred to as gray matter. Beneath the cortex are myelin-sheathed axons connecting the neurons of the cortex with those of other parts of the brain. The large concentrations of myelin make this tissue look whitish and opaque, and hence it is often referred to as white matter. The cortex is divided into two nearly symmetrical halves, the cerebral hemispheres . Thus, many of the structures of the cerebral cortex appear in both the left and right cerebral hemispheres. The two hemispheres appear to be somewhat specialized in the functions they perform. The cerebral hemispheres are folded into many ridges and grooves, which greatly increase their surface area. Each hemisphere is usually described, on the basis of the largest of these grooves or fissures, as being divided into four distinct regions or lobes. The four lobes are: • Frontal, • Parietal, • Occipital, and • Temporal.
    [Show full text]
  • Study of Extra-Visual Resting-State Networks in Pituitary Adenoma Patients with Vision Restoration
    Study of Extra-visual Resting-state Networks in Pituitary Adenoma Patients With Vision Restoration Fuyu Wang ( [email protected] ) Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China https://orcid.org/0000- 0003-2232-5423 Peng Wang PLAGH: Chinese PLA General Hospital Ze Li PLAGH: Chinese PLA General Hospital Tao Zhou Chinese PLA General Hospital Xianghui Meng Chinese PLA General Hospital Jinli Jiang Chinese PLA General Hospital Research article Keywords: cross-modal plasticity, default mode network, resting-state functional magnetic resonance imaging, salience network, visual improvement Posted Date: December 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-133978/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background: Pituitary adenoma(PA) may compress the optic apparatus and cause impaired vision. Some patients can get improved vision rapidly after surgery. During the early time after surgery, however, the change of neurofunction in extra-visual cortex and higher cognitive cortex is still yet to be explored so far. Objective: Our study is focused on the changes in the extra-visual resting-state networks in PA patients after vision restoration. Methods:We recruited 14 PA patients with visual improvement after surgery. The functional connectivity (FC) of 6 seeds (auditory cortex (A1), Broca's area, posterior cingulate cortex (PCC)for default mode network (DMN), right caudal anterior cingulate cortex for salience network(SN) and left dorsolateral prefrontal cortex for excecutive control network (ECN)) were evaluated. A paired t-test was conducted to identify the differences between two groups.
    [Show full text]
  • Neocortex: Consciousness Cerebellum
    Grey matter (chips) White matter (the wiring: the brain mainly talks to itself) Neocortex: consciousness Cerebellum: unconscious control of posture & movement brains 1. Golgi-stained section of cerebral cortex 2. One of Ramon y Cajal’s faithful drawings showing nerve cell diversity in the brain cajal Neuropil: perhaps 1 km2 of plasma membrane - a molecular reaction substrate for 1024 voltage- and ligand-gated ion channels. light to Glia: 3 further cell types 1. Astrocytes: trophic interface with blood, maintain blood brain barrier, buffer excitotoxic neurotransmitters, support synapses astros Oligodendrocytes: myelin insulation oligos Production persists into adulthood: radiation myelopathy 3. Microglia: resident macrophages of the CNS. Similarities and differences with Langerhans cells, the professional antigen-presenting cells of the skin. 3% of all cells, normally renewed very slowly by division and immigration. Normal Neurosyphilis microglia Most adult neurons are already produced by birth Peak synaptic density by 3 months EMBRYONIC POSTNATAL week: 0 6 12 18 24 30 36 Month: 0 6 12 18 24 30 36 Year: 4 8 12 16 20 24 Cell birth Migration 2* Neurite outgrowth Synaptogenesis Myelination 1* Synapse elimination Modified from various sources inc: Andersen SL Neurosci & Biobehav Rev 2003 Rakic P Nat Rev Neurosci 2002 Bourgeois Acta Pediatr Suppl 422 1997 timeline 1 Synaptogenesis 100% * Rat RTH D BI E A Density of synapses in T PUBERTY primary visual cortex H at different times post- 0% conception. 100% (logarithmic scale) RTH Cat BI D E A T PUBERTY H The density values equivalent 0% to 100% vary between species 100% but in Man the peak value is Macaque 6 3 RTH 350 x10 synapses per mm BI D E PUBERTY A T The peak rate of synapse H formation is at birth in the 0% macaque: extrapolating to 100% the entire cortex, this Man RTH BI amounts to around 800,000 D E synapses formed per sec.
    [Show full text]
  • Short- and Long-Term Deficits After Unilateral Ablation Andthe Effects of Subsequent Callosal Section’
    0270.6474/84/0404-0918$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 4, pp. 918-929 Printed in U.S.A. April 1984 SUPPLEMENTARY MOTOR AREA OF THE MONKEY’S CEREBRAL CORTEX: SHORT- AND LONG-TERM DEFICITS AFTER UNILATERAL ABLATION ANDTHE EFFECTS OF SUBSEQUENT CALLOSAL SECTION’ COBIE BRINKMAN Experimental Neurology Unit, The John Curtin School of Medical Research, Australian National University, Canberra, Australia 2601 Received March 7, 1983; Revised November 11, 1983; Accepted November 15, 1983 Abstract The short-term and long-term behavioral effects of unilateral lesions of the supplementary motor area (SMA) were studied in five monkeys (Mczcaca fascicularis ssp). A monkey with a unilateral lesion of the premotor area (PM) served as a control. In all animals, general behavior was unaffected by the lesions. For a few weeks postoperatively, all monkeys showed a clumsiness of forelimb movements, bilaterally, which involved both the distal and proximal muscles. Two SMA-lesioned monkeys (but not the PM-lesioned one), studied for up to 1 year postoperatively, showed a characteristic deficit of bimanual coordination where the two hands tended to behave in a similar manner instead of sharing the task between them. This deficit was more pronounced after a lesion contralateral to the nonpreferred hand. The deficit was interpreted as indicating that the intact SMA now influenced the motor outflow of both the ipsilateral hemisphere and the contralateral one through the corpus callosum. Callosal section immediately abolished the bimanual deficit, although the clumsiness returned transiently. The results imply that SMA may give rise normally to discharges informing the contralateral hemisphere of intended and/or ongoing movements via the corpus callosum.
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]
  • Neurogenesis in Adult Mammals: Some Progress and Problems
    The Journal of Neuroscience, February 1, 2002, 22(3):619–623 Neurogenesis in Adult Mammals: Some Progress and Problems Elizabeth Gould and Charles G. Gross Department of Psychology, Princeton University, Princeton, New Jersey 08544 Approximately 40 years after its first report, the addition of addition, the growing evidence that glia communicate among neurons to the brains of adult mammals has now been generally themselves electrically and have many functional properties that accepted. We now know that several endocrine and experiential interact and overlap with neurons (Rose and Konnerth, 2001; variables modulate adult neurogenesis. However, several meth- Bezzi and Volterra, 2001) suggests that new glia may play a odological problems in its quantitative study remain. One is the significant role. use of low doses of the exogenous marker of cell proliferation, In the 1990s there were several developments that finally es- bromodeoxyuridine (BrdU). A second is the transient lifetime of tablished neurogenesis in the adult rodent. The first was the most of the adult-generated cells. A third is that the survival of introduction of cell type-specific markers for immunohistochem- new neurons may depend on stimuli that are lacking in standard ical identification of the phenotype of newly generated cells laboratory conditions. This review considers these issues as well (Cameron et al., 1993; Okano et al., 1993; Seki and Arai, 1993). as the possible functions of new neurons. These could be combined with 3H-thymidine labeling to deter- From the beginnings of modern neuroscience in the late 19th mine the identity of the new cells. The second was the introduc- century, it was assumed that the mammalian CNS became struc- tion of the thymidine analog BrdU as another in vivo marker of turally stable soon after birth and remained that way throughout proliferating cells (Miller and Nowakowski, 1988; Seki and Arai life.
    [Show full text]