Investigations Into the Therapeutic Potential of a Bacterial Cocaine Esterase for the Treatment of Cocaine Toxicity and Cocaine Abuse

Total Page:16

File Type:pdf, Size:1020Kb

Investigations Into the Therapeutic Potential of a Bacterial Cocaine Esterase for the Treatment of Cocaine Toxicity and Cocaine Abuse Investigations into the therapeutic potential of a bacterial cocaine esterase for the treatment of cocaine toxicity and cocaine abuse by Remy Leigh Brim A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Pharmacology) in The University of Michigan 2011 Doctoral Committee: Professor James H. Woods, Co-Chair Associate Professor Roger K. Sunahara, Co-Chair Professor Margaret E. Gnegy Professor Nicholas W. Lukacs Associate Professor John J. G. Tesmer © Remy Leigh Brim 2011 Dedication This thesis is to my parents, Barry and Claudia Brim, for their 25 years of love support and sacrifice that made this work, and all my dreams, possible. ii Acknowledgements Thank you to both of my mentors Drs Jim Woods and Roger Sunahara. I have been privileged to work with two mentors who have given me so many opportunities to succeed. Your support and encouragement have always made the difference. I appreciate your trust in me to take this project to so many new places that only I wanted to go! I have learned not only how to conduct experiments, write papers and grants and give presentations, but more importantly how to be the confident and thoughtful scientist I have become. Thank you to my committee Drs. John Tesmer, Maragret Gnegy, and Nick Lukacs. It has been such a pleasure working with you to shape this project. I appreciate all of the feedback and suggestions over the years and I hope that you enjoy this final product! Dr. Kathleen Noon: Dr. Noon performed and developed all of the mass spectrometry assays presented in this thesis. These assays allowed us to detect the in vivo time course of cocaine hydrolysis by CocE, determine the effect of CocE on cocaine across species, and demonstrate that CocE can hydrolyze the cocaine metabolites norcocaine and cocaethylene. Her hard work and perseverance to set up and conduct these assays made these results possible. Thank you. Dr. Holden Ko: Dr. Ko designed the repeat dosing regimen in Rhesus monkeys that allowed me to compare the efficacy of CocE across species. I appreciate him allowing me to use blood samples from these animals to conduct my studies. Thank you. iii Thank you to the University of Michigan Comprehensive Cancer Center Tissue Core for their work paraffin embedding tissue and performing immunoperoxidase immunohistochemistry. Also thank you to the University of Michigan Microscopy and Image Analysis Laboratory for use of their microscopes and slide scanner to produce images of my immunohistochemisty slides. Thank you to my first mentors in graduate school: Drs. Emily Jutkiewicz, Cheryse Furman and Greg Collins. When I began graduate school you gave me the hands-on training to be able to function in the lab, and had the patience to teach me so many of the things I rely on every day. You gave me the encouragement I needed to gain confidence in myself as a scientist. I am so honored to now call you my peers. Joe Crossno and Kendall Carey….where would I be without you? You have kept the lab running and helped me navigate the world of scientific bureaucracy! Thank you for all the time you have spent keeping me “in compliance” and on track. I would like to acknowledge the incredible technical animal assistance that made this work possible. Davina Barron, Alyssa Cunningham and Adam Kynaston have provided invaluable animal services, including surgeries, and experiment monitoring. I have also had the privilege of working with Daniel Youngstrom, an intelligent and motivated undergraduate student who assisted me in completing toxicity and self-administration studies. Thank you! Thank you to the entire Woods lab past and present: Dr. Gail Winger, Drs. Chad and Tammy Wade Galuska, Dr. Chris Podlesnik, Dr. Corina Jimenez-Gomez, Dr. Micky iv Koffarnus, Jeremiah Bertz, and Nhu Truong. Your companionship has been amazing, and I couldn’t have asked for a better group of people to work with! Thank you Joey Nichols and Dr. Diwa Narasimhan for teaching me all things cocaine esterase. It has been quite a journey together on this project and being alongside both of you has been a great experience. Thank you for all of your help with experiments, writing, and editing, and especially the moral support! Diane Calinski and Gisselle Velez-Ruiz: It has been a true honor to work with two amazing women every day. Thank you for your companionship and support in every way imaginable. Through all the fun times, and all of the tough stuff, you made me look forward to coming into the lab every day: Thank you! Thank you to the entire Sunahara lab past and present: Dr. Matt Whorton, Dr. Adam Kuszak, Dr. Avi Bandyopadhya, Elin Edwald, Brian Devree, Jimmy Chan, and Faiza Haji-Abdi. Thank you for being such a supportive and collaborative group. Thanks to Dr. R. D. Davenport from the University of Michigan Hospital for providing the human plasma that allowed me to conduct many in vitro studies. Thank you to the University of Michigan faculty who know it takes a village to produce a Ph.D. and have contributed to my success: Dr. Helen Baghdoyan, Dr. Asim Beg, Dr. Jill Becker, Dr. Thomas Carey, Dr. Edward Domino, Dr. Paul Hollenberg, Dr. Lori Isom, Dr. Jeffery Martens, Dr. Rick Neubig, Dr. Yoichi Osawa, and Dr. John Traynor. v Thank you finally to my friends and family who have supported me through this process. I am so blessed to have the support system that I do, and could not have made it through without your love and encouragement. vi Table of Contents Dedication ......................................................................................................................... ii Acknowledgements .......................................................................................................... iii List of Figures .................................................................................................................. viii List of Tables ..................................................................................................................... x List of Abbreviations ......................................................................................................... xi Abstract ........................................................................................................................... xii Chapter 1. Introduction ............................................................................................................ 1 2. A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse ........................................................................... 28 3. The Fate of Bacterial Cocaine Esterase in Sprague Dawley Rats: An in vivo Study of CocE-Mediated Cocaine Hydrolysis, CocE Pharmacokinetics, and CocE Elimination ........................................................................................................................................ 55 4. The Capacity of Bacterial Cocaine Esterase to Hydrolyze Cocaine’s Metabolites and the Alteration of the Esterase’s Hydrolytic Activity by Commonly Co-Administered Drugs ............................................................................................................................. 100 5. General Discussion and Conclusions ................................................................ 129 Appendix ....................................................................................................................... 149 vii List of Figures Figure 1.1 Chemical structure of cocaine .......................................................................... 2 Figure 1.2: Crystal structure of bacterial Cocaine Esterase ............................................ 15 Figure 1.3: Comparison of bacterial Cocaine Esterase to human butyrylcholinesterase 16 Figure 1.4: In vitro half-life of CocE compared to in vivo duration of action in mice. ....... 18 Figure 2.1: In vitro stability of KQ-CocE ......................................................................... 47 Figure 2.2: Crystal structure of KQ-CocE ........................................................................ 48 Figure 2.3: In vivo potency and duration of action of KQ-CocE ..................................... 49 Figure 2.4: KQ-CocE protection against cocaine-reinforced operant responding in Sprague Dawley rats ....................................................................................................... 50 Figure 2.5: In vivo CocE plasma half-life ........................................................................ 51 Figure 3.1: In vitro and in vivo cocaine hydrolysis by RQ-CocE..................................... 89 Figure 3.2: RQ-CocE hydrolysis of high-dose cocaine across species .......................... 90 Figure 3.3: Elimination of RQ-CocE in the serum of Sprague Dawley rats .................... 91 Figure 3.4: Kinetics of CocE in serum and urine of Sprague Dawley rats...................... 92 Figure 3.5: Comparison of Western Blot and radiography assessments of [35S]-RQ- CocE ............................................................................................................................... 93 Figure 3.6: Immunohistochemical analysis of RQ-CocE distribution in perfused organs from Sprague Dawley rats ............................................................................................... 94 Figure 3.7: Immunohistochemical analysis of RQ-CocE accumulation the renal papilla 95 viii Figure 3.8: Radiography and imunohistochemistry of organs one day post-CocE injection. .........................................................................................................................
Recommended publications
  • Computational Modeling of Solvent Effects on Protein-Ligand
    Commun. Comput. Phys. Vol. 13, No. 1, pp. 31-60 doi: 10.4208/cicp.130911.121011s January 2013 Computational Modeling of Solvent Effects on Protein-Ligand Interactions Using Fully Polarizable Continuum Model and Rational Drug Design Fang Zheng and Chang-Guo Zhan∗ Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, USA. Received 13 September 2011; Accepted (in revised version) 12 October 2011 Available online 12 June 2012 Abstract. This is a brief review of the computational modeling of protein-ligand in- teractions using a recently developed fully polarizable continuum model (FPCM) and rational drug design. Computational modeling has become a powerful tool in under- standing detailed protein-ligand interactions at molecular level and in rational drug design. To study the binding of a protein with multiple molecular species of a ligand, one must accurately determine both the relative free energies of all of the molecular species in solution and the corresponding microscopic binding free energies for all of the molecular species binding with the protein. In this paper, we aim to provide a brief overview of the recent development in computational modeling of the solvent ef- fects on the detailed protein-ligand interactions involving multiple molecular species of a ligand related to rational drug design. In particular, we first briefly discuss the main challenges in computational modeling of the detailed protein-ligand interactions involving the multiple molecular species and then focus on the FPCM model and its applications. The FPCM method allows accurate determination of the solvent effects in the first-principles quantum mechanism (QM) calculations on molecules in solu- tion.
    [Show full text]
  • September, 2008
    NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports Director's Report to the National Advisory Council on Drug Abuse - September, 2008 Index Research Findings Cross-Divisional Research Basic Neurosciences Research Basic Behavioral Research Behavioral and Brain Development Research Clinical Neuroscience Research Epidemiology and Etiology Research Prevention Research Research on Behavioral and Combined Treatments for Drug Abuse Research on Pharmacotherapies for Drug Abuse Research on Medical Consequences of Drug Abuse and Co-Occurring Infections (HIV/AIDS, HCV) Services Research Clinical Trials Network Research International Research Intramural Research Program Activities Extramural Policy and Review Activities Congressional Affairs International Activities Meetings and Conferences Media and Education Activities Planned Meetings Publications Staff Highlights Grantee Honors https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 Archive Home | Accessibility | Privacy | FOIA (NIH) | Current NIDA Home Page The National Institute on Drug Abuse (NIDA) is part of the National Institutes of Health (NIH) , a component of the U.S. Department of Health and Human Services. Questions? _ See our Contact Information. https://archives.drugabuse.gov/DirReports/DirRep908/Default.html[11/17/16, 11:11:47 PM] NIDA - Director's Report - September, 2008 NIDA Home > Publications > Director's Reports > September, 2008 Index Director's Report to the National
    [Show full text]
  • Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M
    Biochemistry 2002, 41, 12297-12307 12297 Biochemical Characterization and Structural Analysis of a Highly Proficient Cocaine Esterase†,‡ James M. Turner,§,| Nicholas A. Larsen,§,| Amrik Basran,⊥ Carlos F. Barbas, III,§,| Neil C. Bruce,⊥ Ian A. Wilson,*,§,| and Richard A. Lerner*,§,| Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, and Institute of Biotechnology, Cambridge UniVersity, Tennis Court Road, Cambridge CB2 1QT, U.K. ReceiVed May 15, 2002; ReVised Manuscript ReceiVed August 1, 2002 ABSTRACT: The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine -1 esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with kcat ) 7.8 s and KM ) 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (kcat/KM) than the analogous Y473F mutation of prolyl oligopeptidase.
    [Show full text]
  • Enzyme Therapy: Current Challenges and Future Perspectives
    International Journal of Molecular Sciences Review Enzyme Therapy: Current Challenges and Future Perspectives Miguel de la Fuente 1,2 , Laura Lombardero 1, Alfonso Gómez-González 3, Cristina Solari 4, Iñigo Angulo-Barturen 5, Arantxa Acera 2, Elena Vecino 2 , Egoitz Astigarraga 1 and Gabriel Barreda-Gómez 1,* 1 Department of Research and Development, IMG Pharma Biotech S.L., 48160 Derio, Spain; [email protected] (M.d.l.F.); [email protected] (L.L.); [email protected] (E.A.) 2 Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; [email protected] (A.A.); [email protected] (E.V.) 3 Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 4 Department of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; [email protected] 5 The Art of Discovery, 48160 Derio, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-944-316-577 Abstract: In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against Citation: de la Fuente, M.; the enzyme.
    [Show full text]
  • Characterization and Engineering of a Two-Enzyme System for Plastics Depolymerization
    Characterization and engineering of a two-enzyme system for plastics depolymerization Brandon C. Knotta,1, Erika Ericksona,1, Mark D. Allenb,1, Japheth E. Gadoa,c,1, Rosie Grahamb, Fiona L. Kearnsd, Isabel Pardoa, Ece Topuzlua,e, Jared J. Andersona, Harry P. Austinb, Graham Dominicka, Christopher W. Johnsona, Nicholas A. Rorrera, Caralyn J. Szostkiewicza, Valérie Copiée, Christina M. Paynec, H. Lee Woodcockd, Bryon S. Donohoef, Gregg T. Beckhama,2, and John E. McGeehanb,2 aRenewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401; bCentre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom; cDepartment of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506; dDepartment of Chemistry, University of South Florida, Tampa, FL 33620; eDepartment of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717; and fBiosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved August 26, 2020 (received for review April 11, 2020) Plastics pollution represents a global environmental crisis. In re- glycol (EG). Given the prevalence of esterase enzymes in nature, sponse, microbes are evolving the capacity to utilize synthetic PET biodegradation has been studied for nearly two decades, with polymers as carbon and energy sources. Recently, Ideonella sakaien- multiple cutinase enzymes reported to perform depolymerization sis wasreportedtosecreteatwo-enzyme system to deconstruct (17–26). In 2016, Yoshida et al. (10) reported the discovery and polyethylene terephthalate (PET) to its constituent monomers. Spe- characterization of the soil bacterium, Ideonella sakaiensis 201-F6, cifically, the I.
    [Show full text]
  • Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application
    crystals Review Carboxylic Ester Hydrolases in Bacteria: Active Site, Structure, Function and Application Changsuk Oh 1 , T. Doohun Kim 2,* and Kyeong Kyu Kim 1,* 1 Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; [email protected] 2 Department of Chemistry, College of Natural Science, Sookmyung Women’s University, Seoul 04310, Korea * Correspondence: [email protected] (T.D.K.); [email protected] (K.K.K.) Received: 4 October 2019; Accepted: 7 November 2019; Published: 14 November 2019 Abstract: Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.
    [Show full text]
  • An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats
    0022-3565/04/3103-1046–1052$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 310, No. 3 Copyright © 2004 by The American Society for Pharmacology and Experimental Therapeutics 68122/1161154 JPET 310:1046–1052, 2004 Printed in U.S.A. An Engineered Cocaine Hydrolase Blunts and Reverses Cardiovascular Responses to Cocaine in Rats Yang Gao and Stephen Brimijoin Department of Molecular Pharmacology, Mayo Clinic, Rochester, Minnesota Received March 9, 2004; accepted April 16, 2004 ABSTRACT There is increasing evidence that human plasma butyrylcho- baseline within 60 s. These transient pressor responses were Downloaded from linesterase can lower the toxicity of cocaine overdose. Re- prolonged up to 5 min when vagal reflexes were blocked with cently, with structure-based protein engineering, we converted atropine (1 mg/kg). Under such conditions, pretreatment with this enzyme into a more efficient cocaine hydrolase (CocE). CocE (3 mg/kg i.v.) reduced cocaine’s pressor effect, whereas When tested in rats, CocE shortened cocaine’s plasma half-life delayed treatment with CocE rapidly restored normal mean and decreased drug accumulation in heart and brain. Here, we blood pressure. CocE had no hemodynamic effects in control have investigated the potential of CocE to antagonize cardio- animals not treated with cocaine. The finding that CocE can vascular responses to cocaine. Anesthetized rats were instru- oppose pre-established physiologic actions of cocaine sug- jpet.aspetjournals.org mented for continuous recording of blood pressure from the gests that similar or improved hydrolases might help rescue femoral artery. Cocaine (7 mg/kg i.v.) caused blood pressure to patients from the life-threatening toxicity of drug overdose.
    [Show full text]
  • Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design
    Drug Metab. Pharmacokinet. 21 (3): 173–185 (2006). Review Human Carboxylesterase Isozymes: Catalytic Properties and Rational Drug Design Teruko IMAI Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan Full text of this paper is available at http://www.jstage.jst.go.jp/browse/dmpk Summary: Human carboxylesterase 1 (hCE-1, CES1A1, HU1) and carboxylesterase 2 (hCE-2, hiCE, HU3)areaserineesteraseinvolvedinbothdrugmetabolismandactivation.AlthoughbothhCE-1and hCE-2 are present in several organs, the hydrolase activity of liver and small intestine is predominantly attributed to hCE-1 and hCE-2, respectively. The substrate speciˆcity of hCE-1 and hCE-2 is signiˆcant- ly diŠerent. hCE-1 mainly hydrolyzes a substrate with a small alcohol group and large acyl group, but its wide active pocket sometimes allows it to act on structurally distinct compounds of either large or small alcohol moiety. In contrast, hCE-2 recognizes a substrate with a large alcohol group and small acyl group, and its substrate speciˆcity may be restricted by a capability of acyl-hCE-2 conjugate formation due to the presence of conformational interference in the active pocket. Furthermore, hCE-1 shows high transesteriˆcation activity, especially with hydrophobic alcohol, but negligible for hCE-2. Transesteriˆ- cation may be a reason for the substrate speciˆcity of hCE-1 that hardly hydrolyzes a substrate with hydrophobic alcohol group, because transesteriˆcation can progress at the same time when a compound is hydrolyzed by hCE-1. From the standpoint of drug absorption, the intestinal hydrolysis by CES during drug absorption is evaluated in rat intestine and Caco2-cell line. The rat in situ single-pass perfusion shows markedly exten- sive hydrolysis in the intestinal mucosa.
    [Show full text]
  • Long-Lasting Effects of a Pegylated Mutant Cocaine Esterase (Coce) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats
    Neuropsychopharmacology (2012) 37, 1092–1103 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org Long-Lasting Effects of a PEGylated Mutant Cocaine Esterase (CocE) on the Reinforcing and Discriminative Stimulus Effects of Cocaine in Rats Gregory T Collins*,1,2, Diwahar Narasimhan1, Alyssa R Cunningham1, Matthew E Zaks1, Joseph Nichols1, Mei-Chuan Ko1, Roger K Sunahara1 and James H Woods1 1 Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA Recent mutagenesis studies have identified a mutant G4C/S10C/T172R/G173Q cocaine esterase (CCRQ CocE) with an in vitro duration of action of 440 days. Although the in vivo duration of CCRQ CocE’s action was o24 h, modification of this enzyme with polyethylene glycol (PEG) polymers resulted in a CocE (PEG-CCRQ CocE) capable of preventing cocaine-induced lethality for up to 72 h. The current studies were aimed at providing a detailed characterization of the effectiveness, selectivity, and duration of PEG-CCRQ CocE’s actions in cocaine self-administration and discrimination assays in rats. Pretreatment with PEG-CCRQ CocE produced dose-dependent rightward shifts in the dose–response curves for cocaine self-administration and discrimination, with the highest dose of PEG-CCRQ CocE capable of producing an initial shift of cocaine’s reinforcing and interoceptive effects of 430-fold to the right, with significant inhibition of these effects observed for up to 72 h. Although PEG-CCRQ CocE also produced slight reductions in the rates of methylphenidate- and food- reinforced responding, these effects were short-lived, lasting o24 h. Finally, when taken together with the finding that PEG-CCRQ CocE failed to alter the cocaine-like interoceptive effects of either methylphenidate or d-amphetamine, these results suggest that PEG-CCRQ CocE possesses a high degree of pharmacologic specificity for cocaine and a prolonged in vivo duration of action.
    [Show full text]
  • Front Matter
    JOURNAL OF BACTERIOLOGY VOLUME 174 * DECEMBER 1992 * NUMBER 24 Graham C. Walker, Editor in Chief (1996) Dale Kaiser, Minireview Editor (1994) Massachusetts Institute of Technology, Stanford University School of Cambridge, Mass. Susan Gottesman, Editor (1994) Medicine, Stanford, Calif. National Cancer Institute, Editor (1997) Bethesda, Md. A. L. Sonenshein, Editor (1995) Terrance J. Beveridge, Boston, Mass. University of Guelph, Guelph, Canada E. Peter Greenberg, Editor (1996) Tufts University, University ofIowa, Iowa Kenneth N. Timmis, Editor (1997) James G. Ferry, Editor (1996) City, Iowa Virginia Polytechnic Institute and GBF, Braunschweig, Gennany State University, Blacksburg, Va. Carol A. Gross, Editor (1995) Robert A. Weisberg, Editor (1995) University of Wisconsin, National Institute of Child Dan Fraenkel, Editor (1996) Madison, Wis. Health and Human Harvard Medical School, Boston, Mass. Development, Bethesda, Md. EDITORIAL BOARD Sankar Adhya (1993) Susan H. Fisher (1994) Thomas Lessie (1992) H. Steven Seifert (1994) Stuart J. Austin (1993) Patricia L. Foster (1993) Roger C. Levesque (1994) Peter Setlow (1993) Barbara Bachmann (1993) Michael G. Fried (1994) Mary E. Lidstrom (1993) Hideo Shinagawa (1994) Margaret H. Bayer (1992) David I. Friedman (1992) E. C. C. Lin (1994) Howard A. Shuman (1994) Douglas E. Berg (1994) Barbel Friedrich (1993) Lasse Lindahl (1993) Gerald Smith (1994) Robert W. Bernlohr (1994) Clement Furlong (1993) John W. Little (1992) Issar Smith (1993) Volkmar Braun (1992) Robert Gennis (1994) Jack London (1993) G. Dennis Sprott (1992) Richard Calendar (1994) Costa P. Georgopoulos (1993) Sharon Long (1992) Catherine Squires (1993) George M. Carman (1994) Jane Gibson (1994) Paul S. Lovett (1993) Gary Stacey (1994) Sherwood Casjens (1994) Larry Gold (1994) Paul W.
    [Show full text]
  • Benzoic Acid Is Formed Predominantly from the Benzoyl Ester Hydrolysis in the Presence of Cocaine Hydrolase
    LETTER LETTER REPLY TO CURRY AND COOMBS: Benzoic acid is formed predominantly from the benzoyl ester hydrolysis in the presence of cocaine hydrolase Fang Zhenga,b,1 and Chang-Guo Zhana,b,1 As is well known, and also pointed out correctly by the detected highest NC concentration generated by Curry and Coombs (1), cocaine has three metabolic intravenous injection of 5 mg/kg cocaine was 4.9 ng/mL, pathways associated with butyrylcholinesterase (BChE), less than 1% of the highest cocaine concentration carboxylesterase, and microsomal cytochrome P450 of ∼1,700 ng/kg. Hence, the NC concentrations were 3A4, which convert cocaine to ecgonine methyl ester negligible compared with the corresponding co- (EME) + benzoic acid (BA), benzoylecgonine (BE) + caine and BE concentrations under the experimental methanol, and norcocaine (NC), respectively. However, conditions used in our study in rats (2). Therefore, both in contrast to what Curry and Coombs describe, BA BA and EME are formed predominantly and equally cannot be formed from EME. Instead, further hydrolysis from the hydrolysis of the cocaine benzoyl ester group of EME can only produce ecgonine and methanol. (cocaine → EME + BA). It is reasonable to detect either Therefore, further metabolism of EME does not contrib- EME or BA for analyzing the effects of CocH3-Fc(M3) ute to BA formation at all. The questions raised by Curry on cocaine metabolism via the benzoyl ester hydroly- and Coombs (1) are based on a misunderstanding of the sis, though it would not hurt to detect all of the me- metabolic pathway via EME. tabolites individually, as we have done more recently.
    [Show full text]
  • Table Continues on Reverse Perilipin-1 (PLIN1) O60240 Ras Association Domain-Containing Protein 2 (RASSF2) P50749
    5'-AMP-activated protein kinase subunit beta-1 (PRKAB1) Q9Y478 Erythropoietin (EPO) P01588 Adhesion G-protein coupled receptor G1 (ADGRG1) Q9Y653 Fatty acid-binding protein 9 (FABP9) Q0Z7S8 Aldehyde dehydrogenase, dimeric NADP-preferring (ALDH3A1) P30838 Forkhead box protein O1 (FOXO1) Q12778 Anterior gradient protein 2 homolog (AGR2) O95994 Fructose-2,6-bisphosphatase TIGAR (TIGAR) Q9NQ88 Apoptosis-inducing factor 1, mitochondrial (AIFM1) O95831 Hematopoietic prostaglandin D synthase (HPGDS) O60760 B-cell scaffold protein with ankyrin repeats (BANK1) Q8NDB2 Inactive tyrosine-protein kinase 7 (PTK7) Q13308 BH3-interacting domain death agonist (BID) P55957 Integrin beta-1-binding protein 1 (ITGB1BP1) O14713 BMP and activin membrane-bound inhibitor homolog (BAMBI) Q13145 Interferon-inducible double-stranded RNA-dependent protein kinase O75569 activator A (PRKRA) Calcitonin (CALCA) P01258 Kidney Injury Molecule (KIM1) Q96D42 Calreticulin (CALR) P27797 Killer cell immunoglobulin-like receptor 3DL1 (KIR3DL1) P43629 Carbonic anhydrase 12 (CA12) O43570 Leukotriene A-4 hydrolase (LTA4H) P09960 Carbonic anhydrase 14 (CA14) Q9ULX7 Linker for activation of T-cells family member 2 (LAT2) Q9GZY6 Casein kinase I isoform delta (CSNK1D) P48730 Lutropin subunit beta (LHB) P01229 Claspin (CLSPN) Q9HAW4 Macrophage erythroblast attacher (MAEA) Q7L5Y9 CMP-N-acetylneuraminate-beta-galactosamide-alpha-2,3- Q11201 Macrophage-capping protein (CAPG) P40121 sialyltransferase 1 (ST3GAL1) Cocaine esterase (CES2) O00748 Melanoma-associated antigen D1 (MAGED1) Q9Y5V3
    [Show full text]