ON the PARADOXES of SET THEORY a Tiles IS SUBMITTED
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set Theory, by Thomas Jech, Academic Press, New York, 1978, Xii + 621 Pp., '$53.00
BOOK REVIEWS 775 BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 3, Number 1, July 1980 © 1980 American Mathematical Society 0002-9904/80/0000-0 319/$01.75 Set theory, by Thomas Jech, Academic Press, New York, 1978, xii + 621 pp., '$53.00. "General set theory is pretty trivial stuff really" (Halmos; see [H, p. vi]). At least, with the hindsight afforded by Cantor, Zermelo, and others, it is pretty trivial to do the following. First, write down a list of axioms about sets and membership, enunciating some "obviously true" set-theoretic principles; the most popular Hst today is called ZFC (the Zermelo-Fraenkel axioms with the axiom of Choice). Next, explain how, from ZFC, one may derive all of conventional mathematics, including the general theory of transfinite cardi nals and ordinals. This "trivial" part of set theory is well covered in standard texts, such as [E] or [H]. Jech's book is an introduction to the "nontrivial" part. Now, nontrivial set theory may be roughly divided into two general areas. The first area, classical set theory, is a direct outgrowth of Cantor's work. Cantor set down the basic properties of cardinal numbers. In particular, he showed that if K is a cardinal number, then 2", or exp(/c), is a cardinal strictly larger than K (if A is a set of size K, 2* is the cardinality of the family of all subsets of A). Now starting with a cardinal K, we may form larger cardinals exp(ic), exp2(ic) = exp(exp(fc)), exp3(ic) = exp(exp2(ic)), and in fact this may be continued through the transfinite to form expa(»c) for every ordinal number a. -
Redalyc.Sets and Pluralities
Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica Gustavo Fernández Díez Sets and Pluralities Revista Colombiana de Filosofía de la Ciencia, vol. IX, núm. 19, 2009, pp. 5-22, Universidad El Bosque Colombia Available in: http://www.redalyc.org/articulo.oa?id=41418349001 Revista Colombiana de Filosofía de la Ciencia, ISSN (Printed Version): 0124-4620 [email protected] Universidad El Bosque Colombia How to cite Complete issue More information about this article Journal's homepage www.redalyc.org Non-Profit Academic Project, developed under the Open Acces Initiative Sets and Pluralities1 Gustavo Fernández Díez2 Resumen En este artículo estudio el trasfondo filosófico del sistema de lógica conocido como “lógica plural”, o “lógica de cuantificadores plurales”, de aparición relativamente reciente (y en alza notable en los últimos años). En particular, comparo la noción de “conjunto” emanada de la teoría axiomática de conjuntos, con la noción de “plura- lidad” que se encuentra detrás de este nuevo sistema. Mi conclusión es que los dos son completamente diferentes en su alcance y sus límites, y que la diferencia proviene de las diferentes motivaciones que han dado lugar a cada uno. Mientras que la teoría de conjuntos es una teoría genuinamente matemática, que tiene el interés matemático como ingrediente principal, la lógica plural ha aparecido como respuesta a considera- ciones lingüísticas, relacionadas con la estructura lógica de los enunciados plurales del inglés y el resto de los lenguajes naturales. Palabras clave: conjunto, teoría de conjuntos, pluralidad, cuantificación plural, lógica plural. Abstract In this paper I study the philosophical background of the relatively recent (and in the last few years increasingly flourishing) system of logic called “plural logic”, or “logic of plural quantifiers”. -
The Logic of Brouwer and Heyting
THE LOGIC OF BROUWER AND HEYTING Joan Rand Moschovakis Intuitionistic logic consists of the principles of reasoning which were used in- formally by L. E. J. Brouwer, formalized by A. Heyting (also partially by V. Glivenko), interpreted by A. Kolmogorov, and studied by G. Gentzen and K. G¨odel during the first third of the twentieth century. Formally, intuitionistic first- order predicate logic is a proper subsystem of classical logic, obtained by replacing the law of excluded middle A ∨¬A by ¬A ⊃ (A ⊃ B); it has infinitely many dis- tinct consistent axiomatic extensions, each necessarily contained in classical logic (which is axiomatically complete). However, intuitionistic second-order logic is inconsistent with classical second-order logic. In terms of expressibility, the intu- itionistic logic and language are richer than the classical; as G¨odel and Gentzen showed, classical first-order arithmetic can be faithfully translated into the nega- tive fragment of intuitionistic arithmetic, establishing proof-theoretical equivalence and clarifying the distinction between the classical and constructive consequences of mathematical axioms. The logic of Brouwer and Heyting is effective. The conclusion of an intuitionistic derivation holds with the same degree of constructivity as the premises. Any proof of a disjunction of two statements can be effectively transformed into a proof of one of the disjuncts, while any proof of an existential statement contains an effec- tive prescription for finding a witness. The negation of a statement is interpreted as asserting that the statement is not merely false but absurd, i.e., leads to a contradiction. Brouwer objected to the general law of excluded middle as claim- ing a priori that every mathematical problem has a solution, and to the general law ¬¬A ⊃ A of double negation as asserting that every consistent mathematical statement holds. -
On Families of Mutually Exclusive Sets
ANNALS OF MATHEMATICS Vol. 44, No . 2, April, 1943 ON FAMILIES OF MUTUALLY EXCLUSIVE SETS BY P . ERDÖS AND A. TARSKI (Received August 11, 1942) In this paper we shall be concerned with a certain particular problem from the general theory of sets, namely with the problem of the existence of families of mutually exclusive sets with a maximal power . It will turn out-in a rather unexpected way that the solution of these problems essentially involves the notion of the so-called "inaccessible numbers ." In this connection we shall make some general remarks regarding inaccessible numbers in the last section of our paper . §1. FORMULATION OF THE PROBLEM . TERMINOLOGY' The problem in which we are interested can be stated as follows : Is it true that every field F of sets contains a family of mutually exclusive sets with a maximal power, i .e . a family O whose cardinal number is not smaller than the cardinal number of any other family of mutually exclusive sets contained in F . By a field of sets we understand here as usual a family F of sets which to- gether with every two sets X and Y contains also their union X U Y and their difference X - Y (i.e. the set of those elements of X which do not belong to Y) among its elements . A family O is called a family of mutually exclusive sets if no set X of X of O is empty and if any two different sets of O have an empty inter- section. A similar problem can be formulated for other families e .g . -
Arxiv:1804.02439V1
DATHEMATICS: A META-ISOMORPHIC VERSION OF ‘STANDARD’ MATHEMATICS BASED ON PROPER CLASSES DANNY ARLEN DE JESUS´ GOMEZ-RAM´ ´IREZ ABSTRACT. We show that the (typical) quantitative considerations about proper (as too big) and small classes are just tangential facts regarding the consistency of Zermelo-Fraenkel Set Theory with Choice. Effectively, we will construct a first-order logic theory D-ZFC (Dual theory of ZFC) strictly based on (a particular sub-collection of) proper classes with a corresponding spe- cial membership relation, such that ZFC and D-ZFC are meta-isomorphic frameworks (together with a more general dualization theorem). More specifically, for any standard formal definition, axiom and theorem that can be described and deduced in ZFC, there exists a corresponding ‘dual’ ver- sion in D-ZFC and vice versa. Finally, we prove the meta-fact that (classic) mathematics (i.e. theories grounded on ZFC) and dathematics (i.e. dual theories grounded on D-ZFC) are meta-isomorphic. This shows that proper classes are as suitable (primitive notions) as sets for building a foundational framework for mathematics. Mathematical Subject Classification (2010): 03B10, 03E99 Keywords: proper classes, NBG Set Theory, equiconsistency, meta-isomorphism. INTRODUCTION At the beginning of the twentieth century there was a particular interest among mathematicians and logicians in finding a general, coherent and con- sistent formal framework for mathematics. One of the main reasons for this was the discovery of paradoxes in Cantor’s Naive Set Theory and related sys- tems, e.g., Russell’s, Cantor’s, Burati-Forti’s, Richard’s, Berry’s and Grelling’s paradoxes [12], [4], [14], [3], [6] and [11]. -
Completeness
Completeness The strange case of Dr. Skolem and Mr. G¨odel∗ Gabriele Lolli The completeness theorem has a history; such is the destiny of the impor- tant theorems, those for which for a long time one does not know (whether there is anything to prove and) what to prove. In its history, one can di- stinguish at least two main paths; the first one covers the slow and difficult comprehension of the problem in (what historians consider) the traditional development of mathematical logic canon, up to G¨odel'sproof in 1930; the second path follows the L¨owenheim-Skolem theorem. Although at certain points the two paths crossed each other, they started and continued with their own aims and problems. A classical topos of the history of mathema- tical logic concerns the how and the why L¨owenheim, Skolem and Herbrand did not discover the completeness theorem, though they proved it, or whe- ther they really proved, or perhaps they actually discovered, completeness. In following these two paths, we will not always respect strict chronology, keeping the two stories quite separate, until the crossing becomes decisive. In modern pre-mathematical logic, the notion of completeness does not appear. There are some interesting speculations in Kant which, by some stretching, could be realized as bearing some relation with the problem; Kant's remarks, however, are probably more related with incompleteness, in connection with his thoughts on the derivability of transcendental ideas (or concepts of reason) from categories (the intellect's concepts) through a pas- sage to the limit; thus, for instance, the causa prima, or the idea of causality, is the limit of implication, or God is the limit of disjunction, viz., the catego- ry of \comunance". -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives . -
From Von Mises' Impossibility of a Gambling System to Probabilistic
From von Mises' Impossibility of a Gambling System to Probabilistic Martingales MSc Thesis (Afstudeerscriptie) written by Francesca Zaffora Blando (born January 27th, 1988 in Chivasso, Italy) under the supervision of Prof. Dr. Paul Vit´anyi and Prof. Dr. Michiel van Lambalgen, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: September 16th, 2015 Prof. Dr. Johan van Benthem Prof. Dr. Michiel van Lambalgen (supervisor) Dr. Piet Rodenburg Dr. Leen Torenvliet Prof. Dr. Paul Vit´anyi (supervisor) Prof. Dr. Ronald de Wolf (chair) Per Si´sPi`uOtto! Abstract Algorithmic randomness draws on computability theory to offer rigorous formulations of the notion of randomness for mathematical objects. In addition to having evolved into a highly technical branch of mathematical logic, algorithmic randomness prompts numerous methodological questions. This thesis aims at addressing some of these questions, together with some of the technical challenges that they spawn. In the first part, we discuss the work on randomness and the foundations of probability of the Austrian mathematician Richard von Mises [1919], whose theory of collectives constitutes the first attempt at providing a formal definition of randomness. Our main objective there is to ascertain the reasons that led to the demise of von Mises' approach in favour of algorithmic randomness. Then, we turn to the myriad definitions of randomness that have been proposed within the algorithmic paradigm, and we focus on the issue of whether any of these definitions can be said to be more legitimate than the others. -
Set Theory for Computer Science by Prof Glynn Winskel
Notes on Set Theory for Computer Science by Prof Glynn Winskel c Glynn Winskel 2 i A brief history of sets A set is an unordered collection of objects, and as such a set is determined by the objects it contains. Before the 19th century it was uncommon to think of sets as completed objects in their own right. Mathematicians were familiar with properties such as being a natural number, or being irrational, but it was rare to think of say the collection of rational numbers as itself an object. (There were exceptions. From Euclid mathe- maticians were used to thinking of geometric objects such as lines and planes and spheres which we might today identify with their sets of points.) In the mid 19th century there was a renaissance in Logic. For thousands of years, since the time of Aristotle and before, learned individuals had been familiar with syllogisms as patterns of legitimate reasoning, for example: All men are mortal. Socrates is a man. Therefore Socrates is mortal. But syllogisms involved descriptions of properties. The idea of pioneers such as Boole was to assign a meaning as a set to these descriptions. For example, the two descriptions \is a man" and \is a male homo sapiens" both describe the same set, viz. the set of all men. It was this objectification of meaning, understanding properties as sets, that led to a rebirth of Logic and Mathematics in the 19th century. Cantor took the idea of set to a revolutionary level, unveiling its true power. By inventing a notion of size of set he was able compare different forms of infinity and, almost incidentally, to shortcut several traditional mathematical arguments. -
1. Life • Father, Georg Waldemar Cantor, Born in Den- Mark, Successful Merchant, and Stock Broker in St Petersburg
Georg Cantor and Set Theory 1. Life • Father, Georg Waldemar Cantor, born in Den- mark, successful merchant, and stock broker in St Petersburg. Mother, Maria Anna B¨ohm, was Russian. • In 1856, because of father's poor health, family moved to Germany. • Georg graduated from high school in 1860 with an outstanding report, which mentioned in par- ticular his exceptional skills in mathematics, in particular trigonometry. • “H¨ohereGewerbeschule" in Darmstadt from 1860, Polytechnic of Z¨urich in 1862. Cantor's father wanted Cantor to become:- ... a shining star in the engineering firmament. • 1862: Cantor got his father's permission to study mathematics. • Father died. 1863 Cantor moved to the Uni- versity of Berlin where he attended lectures by Weierstrass, Kummer and Kronecker. • Dissertation on number theory in 1867. • Teacher in a girls' school. • Professor at Halle in 1872. • Friendship with Richard Dedekind. 2 • 1874: marriage with Vally Guttmann, a friend of his sister. Honeymoon in Interlaken in Switzer- land where Cantor spent much time in mathe- matical discussions with Dedekind. • Starting in 1877 papers in set theory. \Grund- lagen einer allgemeinen Mannigfaltigkeitslehre". Theory of sets not finding the acceptance hoped for. • May 1884 Cantor had the first recorded attack of depression. He recovered after a few weeks but now seemed less confident. • Turned toward philosophy and tried to show that Francis Bacon wrote the Shakespeare plays. • International Congress of Mathematicians 1897. Hurwitz openly expressed his great admiration of Cantor and proclaimed him as one by whom the theory of functions has been enriched. Jacques Hadamard expressed his opinion that the no- tions of the theory of sets were known and in- dispensable instruments. -
What Is Mathematics: Gödel's Theorem and Around. by Karlis
1 Version released: January 25, 2015 What is Mathematics: Gödel's Theorem and Around Hyper-textbook for students by Karlis Podnieks, Professor University of Latvia Institute of Mathematics and Computer Science An extended translation of the 2nd edition of my book "Around Gödel's theorem" published in 1992 in Russian (online copy). Diploma, 2000 Diploma, 1999 This work is licensed under a Creative Commons License and is copyrighted © 1997-2015 by me, Karlis Podnieks. This hyper-textbook contains many links to: Wikipedia, the free encyclopedia; MacTutor History of Mathematics archive of the University of St Andrews; MathWorld of Wolfram Research. Are you a platonist? Test yourself. Tuesday, August 26, 1930: Chronology of a turning point in the human intellectua l history... Visiting Gödel in Vienna... An explanation of “The Incomprehensible Effectiveness of Mathematics in the Natural Sciences" (as put by Eugene Wigner). 2 Table of Contents References..........................................................................................................4 1. Platonism, intuition and the nature of mathematics.......................................6 1.1. Platonism – the Philosophy of Working Mathematicians.......................6 1.2. Investigation of Stable Self-contained Models – the True Nature of the Mathematical Method..................................................................................15 1.3. Intuition and Axioms............................................................................20 1.4. Formal Theories....................................................................................27 -
Absoluteness Results in Set Theory
Absoluteness Results in Set Theory Peter Holy Juli 2007 Diplomarbeit eingereicht zur Erlangung des akademischen Grades Magister der Naturwissenschaften an der Fakult¨atf¨urNaturwissenschaften und Mathematik der Universit¨atWien Abstract We investigate the consistency strength of various absoluteness 1 principles. Following S. Friedman, we show that Σ3-absoluteness for arbitrary set-forcing has the consistency strength of a reflecting car- dinal. Following J. Bagaria, we show that Σ1(Hω2 )-absoluteness for ω1-preserving forcing is inconsistent and that for any partial ordering P ,Σ1(Hω2 )-absoluteness for P is equivalent to BFA(P ), the bounded forcing axiom for P - and hence Σ1(Hω2 )-absoluteness for ccc forcing is equiconsistent with ZFC. Then, following S. Shelah and M. Goldstern, we show that BPFA, the forcing axiom for the class of proper posets, is equiconsistent with the existence of a reflecting cardinal. We review that for any partial ordering P ,Σ1(Hω2 )-absoluteness for P implies 1 Σ3-absoluteness for P and finally, following S. Friedman, we turn back 1 to investigate the consistency strength of Σ3-absoluteness for various 1 classes of forcings: We show that Σ3-absoluteness for proper (or even 1 semiproper) forcing is equiconsistent with ZFC, that Σ3-absoluteness for ω1-preserving forcing is equiconsistent with the existence of a re- 1 flecting cardinal, that Σ3-absoluteness for ω1-preserving class forcing is inconsistent, that, under the additional assumption that ω1 is inac- 1 cessible to reals, Σ3-absoluteness for proper forcing has the consistency 1 strength of a reflecting cardinal and finally that Σ3-absoluteness for stationary-preserving forcing has the consistency strength of a reflect- ing cardinal.