Evaluation of Bio Active Compounds of Aloe Vera Extract Using Subcritical

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Bio Active Compounds of Aloe Vera Extract Using Subcritical id7145703 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com BBiiooTTISSNee : 09c7c4 - 7hh435 nnooVlloluoome 1g2g Issuyye 3 An Indian Journal FULL PAPER BTAIJ, 12(3), 2016 [113-120] Evaluation of bioactive compounds of aloe vera extract using sub- critical water method Narsih*, Agato Department of Agriculture Technology, Pontianak State Polytechnic, West Kalimantan, 78124, (INDONESIA) E-mail: [email protected] ABSTRACT KEYWORDS The Aloe vera peel extraction of 10 minutes at 1150C gave the best effect of Aloe vera skin; its chemical composition. Whilst Aloe vera skin using subcritical water Bioactive compounds; method was obtained from extracted with water at 125oC for 60 minutes. It Time and temperature. had following properties: mineral content of 20.654 mg/g; protein content of 120.114 mg/g; vitamin C content of 161.431 mg/g; aloin content of 10.251 mg/g; saponin content of 9.71 mg/g; total phenolic content of 39.851 mg/g; antioxidant activity of 87.651 %. The FTIR analysis showed that CH Stretch in alkana vibration at 2941.24 cm-1 to 2991.39 cm-1 wave was found for the methilene compound as antioxidant agent. 2016 Trade Science Inc. - INDIA INTRODUCTION tection to the bioactive compound on Aloe vera can be conducted by subcritical water method, such as Aloe vera have been attributed to the extraction process using water with temperature be- polysaccarides contained in the gel and skin. Re- tween boiling point and critical point. Subcritical cently, Aloe vera gel have been diversification into water extraction has several advantages of being processing product mostly from gel[1]. Although there readily available, cheap and efficient[5]. The result is a high interest in gel, the interest of skin into a of subcritical water exctraction, extraction water processing is very limited information. However, become short time, cheap and safe for health[6] and the Aloe vera skin has a big potention to developed subcritical water at 100 to 1100C appears to be an into a diversification productAloe vera (L.) skin con- alternative to organic solvent due to efficiency at tained organic and bioactive compound that act as low polarity condition[7]. However, there is limited antioxidant[1-2]. information on the effect of time and temperature of phenolic compound (flavonoid, phenolic acid, extraction on subcritical water to decrease and phenolic deterpene) and antroquinon compound antinutritive compound and bioactive compound of (aloin)[3]. Aloe vera also contained alkoloid and also Aloe vera keep protected. saponin that act as antinutrive[4]. The objectives of current study was to find out The reduction of antinutritive compound and pro- the bioactive compound from the effect of time and 114 Evaluation of bioactive compounds of aloe vera extract using subcritical water method BTAIJ, 12(3) 2016 FULL PAPER temperature of subcritical water which result from acid solution which has been in the mixed indicator. the previous study. Subsequently titrated with a solution of HCl 0.1 N. Blank determination is also performed. MATERIALS AND METHODS Sample (1 g) was dissolved in 1 mL chloroform: µL was drop on TLC methanol 95:5 (v/v) and 10 Aloe vera of 10 months old and weight of 3 kg plat distance of 2 cm. Poured TLC plat to the glass were obtained from Kalimantan Barat, Indonesia. beaker for 40 minutes. Measured the top edge and After harvesting the Aloe vera peel were then washed the plats need to dried for 10 minutes. Plat was heated by aquades, weight, peeled and separated from the at 900C for 10 minutes. To visualize the spots, plat gel. Blended raw materials were extracted with was sprayed with the solution mixed between 25 water at 125oC for 60 minutes. Sample was filtered mL concentrated sulfate acid and 25 mL aquadest using vacuum filtration until produce filtrate and resi- (1:1), then heated at 1400C for 40 minutes. The due. amount of spot were counted and measured by the Evaporator rotary vacuum was used to disap- Rf value. pearance solvent in filtrate at 40oC for 1 h. Filtrate The Aloe vera (L.) skin were analyzed for its was centrifuged with a speed of 5500 rpm for 10 antioxidant activity using the DPPH (2,2-diphenyl- minutes. The supernatant obtained was used to con- 2-picrylhydrazyl) radical scavenging assay. Sample –HCl buffer cerned parameter analysis. (200 g) was dissolved in 100 mM Tris ìl, Total phenolic content was determined using 0.5 (800 pH 7.4) followed by the addition of 1 mL ìM mg/g of gallic acid as a standard. Briefly, 1 mL 500 DPPH. The solution was homogenized us- sample extract in methanol solution was transferred ing a shaker and storage in dark room for 20 min. ’s reagent in tubes containing 5 mL Folin-Ciocalteu Spectrophotometry was used to determine the ab- and also 4 mL Na2CO3 (75% w/v) was transferred sorbance at 517 nm. in tubes. The tubes were then mixed and then al- The Aloe vera (L.) skin was analyzed for its func- lowed to stand at room temperature for 30 min be- tional compounds using FTIR (Fourier Transform fore absorbance at 765 nm was measured. The total Infra Red). The IR spectra were recorded on FTIR- phenolic content was expressed as gallic acid 8400S (Shimadzu Deutchland GmbH) spectropho- equivalents (GAE) in mg/100 mL of sample. tometer in KBr and polyethylene pellets. Samples Extract of Aloe vera skin was weight of 2 g into were weigh-in at 0.01 g and homogenized with 0.01 the vitresile crucible overnight in an electric muffle g KBr anhydrous by mortar agate. The sample and furnace maintaining the temperature between 400- KBr mixture were pressed by vacuum hydrolic 410 0C until obtain the ash. This ashing destroys all (Graseby Specac) at 1.2 psi to obtained transpar- the organic material from the sample. The ash was ency pellet. Scanned sample passed through infra removed from crucible and allowed to dry in red, where its continuing wave by detector connected desicator. The yield of ash was approximately 5 g/ to computer with set values of tested sample spec- 100 g. trum. Samples were usually scanned in the absorp- Sample was weight of 3.5 g and entered into tion area of 500-4000 cm-1. The results of analysis Kjeldahl apparatus. 10 g of Na2SO4 anhydrate and consisted of chemical structure, molecular binding 15-25 mL of H2S04 concentrated were added and form and certain functional group of tested sample then heated on burner flame until obtain clear green- as basic of spectrum type. ish. Cooled, then diluted and put into a 200 mL volu- metric flask, matched to the dash. A total of 5 mL of RESULTS AND DISCUSSION solution pipetted and introduced into the distillation device, add 5 mL 45% NaOH and several drops of Mineral content phenolphthalein indicator. Distilled for about 10 Minerals found in Aleo vera are calcium (118,77 mBiniiuoteTs,e acsh thneo rlleosgeryvoir using 10 mL of 2% boric ppm), zinc (0,45 ppm), chromium (0,28 ppm), po- An Indian Journal BTAIJ, 12(3) 2016 Narsih and Agato 115 FULL PAPER tassium (640,51 ppm), copper (1,28 ppm), manga- in Aloe vera is known as tocopherol[17]. Vitamin C nese (0,36 ppm) and iron (0,23 ppm) (extract by and E are two important nutrients that may reduce Atomic Absorption Spectrophotometer (AAS))[8]. free radicals and a strong line of defense to slow They are essential for the proper functioning of vari- Reactive Oxygen Species (ROS)-induced cellular ous enzyme systems in different metabolic pathways damage. Vitamin C prevents the prooxidant activity [9] and few are antioxidants . of vitamin E by decreasing the activity of Mineral content of Aloe vera skin was 20.654 tocopheroxyl radical to tocopherol, thereby contrib- mg/g. Minerals are not affected significantly by uting to increased total antioxidant status and reduc- chemical and physical treatment during processing ing oxidative stress[18]. as a presence of oxygen. Some minerals lead an oxi- Vitamin C content of Aloe vera skin was 161.431 dized become a higher valent. Although several com- mg/g, which is similar to the one reported by[19], who ponents damaged as a heating process, this method found vitamin C content from Aloe vera extracted at was not affected to the amount of mineral and also 0 the value of its nutrition. Heat treatment had no sig- 80 C for 60 min was 154.64 mg/g. Properties of nificant effect on the ash content[10]. vitamin C is easily changed due to oxidation yet if a stable crystalline (pure)[15]. Degradation of vitamin Protein content C depends upon many factors such as oxygen, heat, Aloe vera gel provides 20 of the 22 necessary light storage temperature and storage time[20]. Anti- amino acids required by the human body, there are 7 oxidant compound such as vitamin C may occur the of the 8 non-essential amino acids and 12 essential degradation at 35 0C. Antioxidant such as vitamin C [8] amino acids . Protein of Aloe vera consist of lectins will lead the degradation about 38% during contact [11] and lectin-like substance . with a high heat[21] and decrease of vitamin C about Protein content of Aloe vera skin was 120.114 40 to 60% may occured due to heating at 82-92 0C[22]. mg/g. The protein content was increase with the in- Vitamin C was decrease about 15% affected both 0 crease in extractio n temperature up to 240 C by increasing temperature and duration of storage[23] and showed no obvious degradation to the extracted and Pi noted that the long duration of extraction may [12] 0 material .
Recommended publications
  • Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites
    nutrients Review Natural Sources, Pharmacokinetics, Biological Activities and Health Benefits of Hydroxycinnamic Acids and Their Metabolites Matej Sova 1,* and Luciano Saso 2 1 Faculty of Pharmacy, University of Ljubljana, Aškerˇceva7, 1000 Ljubljana, Slovenia 2 Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] * Correspondence: matej.sova@ffa.uni-lj.si; Tel.: +386-1-476-9556 Received: 24 June 2020; Accepted: 22 July 2020; Published: 23 July 2020 Abstract: Hydroxycinnamic acids (HCAs) are important natural phenolic compounds present in high concentrations in fruits, vegetables, cereals, coffee, tea and wine. Many health beneficial effects have been acknowledged in food products rich in HCAs; however, food processing, dietary intake, bioaccessibility and pharmacokinetics have a high impact on HCAs to reach the target tissue in order to exert their biological activities. In particular, metabolism is of high importance since HCAs’ metabolites could either lose the activity or be even more potent compared to the parent compounds. In this review, natural sources and pharmacokinetic properties of HCAs and their esters are presented and discussed. The main focus is on their metabolism along with biological activities and health benefits. Special emphasis is given on specific effects of HCAs’ metabolites in comparison with their parent compounds. Keywords: diet; natural compounds; phenolic acids; hydroxycinnamic acids; metabolites; pharmacokinetic properties; biological activities; health effects 1. Introduction Our diet rich in plant food contains several health-beneficial ingredients. Among such ingredients, polyphenols represent one of the most important natural compounds. Phenolic compounds are members of probably the largest group of plant secondary metabolites and have the main function to protect the plants against ultraviolet radiation or invasion by pathogens [1,2].
    [Show full text]
  • Dose-Dependent Increase in Unconjugated Cinnamic Acid Concentration in Plasma Following Acute Consumption of Polyphenol Rich Curry in the Polyspice Study
    nutrients Article Dose-Dependent Increase in Unconjugated Cinnamic Acid Concentration in Plasma Following Acute Consumption of Polyphenol Rich Curry in the Polyspice Study Sumanto Haldar 1,† ID , Sze Han Lee 2,† ID , Jun Jie Tan 2, Siok Ching Chia 1, Christiani Jeyakumar Henry 1,3,* ID and Eric Chun Yong Chan 1,2,* 1 Clinical Nutrition Research Centre, Agency for Science, Technology and Research, Singapore Institute for Clinical Sciences, Singapore 117599, Singapore; [email protected] (S.H.); [email protected] (S.C.C.) 2 Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; [email protected] (S.H.L.); [email protected] (J.J.T.) 3 Department of Biochemistry, National University of Singapore, Singapore 117596, Singapore * Correspondence: [email protected] (C.J.H.); [email protected] (E.C.Y.C.); Tel.: +65-6407-0793 (C.J.H.); +65-6516-6137 (E.C.Y.C.) † Contributed equally to this work. Received: 25 June 2018; Accepted: 18 July 2018; Published: 20 July 2018 Abstract: Spices that are rich in polyphenols are metabolized to a convergent group of phenolic/aromatic acids. We conducted a dose-exposure nutrikinetic study to investigate associations between mixed spices intake and plasma concentrations of selected, unconjugated phenolic/aromatic acids. In a randomized crossover study, 17 Chinese males consumed a curry meal containing 0 g, 6 g, and 12 g of mixed spices. Postprandial blood was drawn up to 7 h at regular intervals and plasma phenolic/aromatic acids were quantified via liquid chromatography tandem mass spectrometry (LC-MS/MS).
    [Show full text]
  • Journal of Pharmaceutical and Biomedical Analysis 83 (2013) 108–121
    Journal of Pharmaceutical and Biomedical Analysis 83 (2013) 108–121 Contents lists available at SciVerse ScienceDirect Journal of Pharmaceutical and Biomedical Analysis jou rnal homepage: www.elsevier.com/locate/jpba The profiling and identification of the absorbed constituents and metabolites of Paeoniae Radix Rubra decoction in rat plasma and urine by the n HPLC–DAD–ESI-IT-TOF-MS technique: A novel strategy for the systematic screening and identification of absorbed constituents and metabolites from traditional Chinese medicines 1 1 Jing Liang , Feng Xu , Ya-Zhou Zhang, Shuai Huang, Xin-Yu Zang, Xin Zhao, Lei Zhang, ∗ Ming-Ying Shang, Dong-Hui Yang, Xuan Wang, Shao-Qing Cai State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38 Xueyuan Road, Beijing 100191, China a r t i c l e i n f o a b s t r a c t Article history: Paeoniae Radix Rubra (PRR, the dried roots of Paeonia lactiflora) is a commonly used traditional Chinese Received 23 January 2013 medicine (TCM). A clear understanding of the absorption and metabolism of TCMs is very important Received in revised form 13 April 2013 in their rational clinical use and pharmacological research. To find more of the absorbed constituents Accepted 16 April 2013 and metabolites of TCMs, a novel strategy was proposed. This strategy was characterized by the fol- Available online 9 May 2013 lowing: the establishment and utilization of the databases of parent compounds, known metabolites and characteristic neutral losses; the comparison of base peak chromatograms and ClogPs; and the use Keywords: n of the HPLC–DAD–ESI-IT-TOF-MS technique.
    [Show full text]
  • Studies on Betalain Phytochemistry by Means of Ion-Pair Countercurrent Chromatography
    STUDIES ON BETALAIN PHYTOCHEMISTRY BY MEANS OF ION-PAIR COUNTERCURRENT CHROMATOGRAPHY Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Thu Tran Thi Minh aus Vietnam 1. Referent: Prof. Dr. Peter Winterhalter 2. Referent: apl. Prof. Dr. Ulrich Engelhardt eingereicht am: 28.02.2018 mündliche Prüfung (Disputation) am: 28.05.2018 Druckjahr 2018 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Tagungsbeiträge T. Tran, G. Jerz, T.E. Moussa-Ayoub, S.K.EI-Samahy, S. Rohn und P. Winterhalter: Metabolite screening and fractionation of betalains and flavonoids from Opuntia stricta var. dillenii by means of High Performance Countercurrent chromatography (HPCCC) and sequential off-line injection to ESI-MS/MS. (Poster) 44. Deutscher Lebensmittelchemikertag, Karlsruhe (2015). Thu Minh Thi Tran, Tamer E. Moussa-Ayoub, Salah K. El-Samahy, Sascha Rohn, Peter Winterhalter und Gerold Jerz: Metabolite profile of betalains and flavonoids from Opuntia stricta var. dilleni by HPCCC and offline ESI-MS/MS. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). Thu Tran Thi Minh, Binh Nguyen, Peter Winterhalter und Gerold Jerz: Recovery of the betacyanin celosianin II and flavonoid glycosides from Atriplex hortensis var. rubra by HPCCC and off-line ESI-MS/MS monitoring. (Poster) 9. Countercurrent Chromatography Conference, Chicago (2016). ACKNOWLEDGEMENT This PhD would not be done without the supports of my mentor, my supervisor and my family.
    [Show full text]
  • LC-MS Resource Guide a Comprehensive Portfolio for Consistent Results in Routine and Advanced LC-MS Applications
    LC-MS Resource Guide A Comprehensive Portfolio for Consistent Results in Routine and Advanced LC-MS applications The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the U.S. and Canada. LC-MS Resource Guide Maximize the Performance of Your LC-MS Using Proven Consumables In this guide, we provide a premier selection of proven Supelco® tools and consumables that meet the requirements of scientists who primarily use the LC-MS technique for analysis of drugs, biomolecules separation and analytical assays. • Ascentis® Express Fused-Core® HPLC/ • Supel™-Select SPE Tubes and Well UHPLC Columns improve throughput Plates for sample prep needs and sensitivity, process more samples • SeQuant® ZIC-HILIC™ technique for and get drugs to market faster separation of polar and hydrophilic • BIOshell columns with Fused-Core® compounds technology for faster peptide, protein, • Samplicity® G2 filtration system for glycan, ADC and MAb Separations HPLC samples • Chromolith® HPLC columns with • Clean, low background LiChrosolv® revolutionary monolithic silica solvents and LiChropur® mobile phase technology for fast separation at low additives specifically designed for backpressure and long column life time UHPLC and LC-MS analysis even for Matrix-rich samples • Standards & Certified Reference • Purospher™ STAR columns with Materials for Accurate LC-MS Analyses outstanding batch-to-batch reproducibility and extended pH stability • LC-MS Accessories that maximize performance • Astec® CHIROBIOTIC® chiral stationary phases for
    [Show full text]
  • Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues
    International Journal of Molecular Sciences Article Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues Eva Heˇrmánková-Vavˇríková, Alena Kˇrenková, Lucie Petrásková, Christopher Steven Chambers, Jakub Zápal, Marek Kuzma, KateˇrinaValentová * and Vladimír Kˇren Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeˇnská 1083, CZ-142 20 Prague, Czech Republic; [email protected] (E.H.-V.); [email protected] (A.K.); [email protected] (L.P.); [email protected] (C.S.C.); [email protected] (J.Z.); [email protected] (M.K.); [email protected] (V.K.) * Correspondence: [email protected]; Tel.: +420-296-442-509 Academic Editor: Yujiro Hayashi Received: 27 April 2017; Accepted: 13 May 2017; Published: 17 May 2017 Abstract: Isoquercitrin, (IQ, quercetin-3-O-β-D-glucopyranoside) is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of IQ derivatives at the C-600. IQ benzoate, phenylacetate, phenylpropanoate and cinnamate were prepared from respective vinyl esters using Novozym 435 (Lipase B from Candida antarctica immobilized on acrylic resin). The enzymatic procedure gave no products with “hydroxyaromatic” acids, their vinyl esters nor with their benzyl-protected forms. A chemical protection/deprotection method using Steglich reaction yielded IQ 4-hydroxybenzoate, vanillate and gallate. In case of p-coumaric, caffeic, and ferulic acid, the deprotection lead to the saturation of the double bonds at the phenylpropanoic moiety and yielded 4-hydroxy-, 3,4-dihydroxy- and 3-methoxy-4-hydroxy-phenylpropanoates.
    [Show full text]
  • Structure-Activity Relationships of Phenolic and Nonphenolic Aromatic
    Use of pheromones and other semiochemicals in integrated production IOBC wprs Bulletin Vol. 25(•) 2002 pp. •-• Structure-activity relationships of phenolic and nonphenolic aromatic acids as oviposition stimuli for the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae) G. G. Grant and D. Langevin Canadian Forest Service, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7 Abstract - In a study of carboxylic acids affecting oviposition preference of the spruce budworm, a major defoliator of conifers in North America, nonphenolic aromatic acids and phenolic acids were compared in a dual-choice bioassay to assess structure-activity relationships. Among a series of nonphenolic aromatic acids with a C1 - C6 alkanoic, C3 - C4 alkenoic or C3 alkynoic side chain, females displayed the greatest preference for acids with a saturated C3 - C4 side chain (MW = 150 -164) at dosages of 78.6 and 786 nmol/cm2. This behavioral activity was consistent with the pre- viously reported strong oviposition preference of female budworm for aliphatic acids of similar molecular weight; that is, for C8 - C10 straight chain carboxylic acids (MW = 144 - 172) and cy- clohexyl carboxylic acids (MW = 142 -170). In contrast, comparable phenolic acids at the same dosages acted as oviposition deterrents. In general, the deterrent effect of phenolic acids was greatest when the length of the acid side chain consisted of 3 carbons and the number of hydrox- yl and/or methoxy groups on the aromatic ring was greater than one. Ferulic and sinapic acids exemplified this trend and were the strongest deterrents among the phenolic acids tested. Appar- ently, the presence or absence of an hydroxyl (or methoxy) group on the aromatic ring accounts for the difference in the observed behavioral effects between the two groups of aromatic com- pounds.
    [Show full text]
  • Characterization of Sedimentary Humic Matter by Alkaline Hydrolysis
    Org. Geochem. Vol. 5, No. 3, pp. 131 142, 1983 0146-6380/83 $3.00+0.00 Printed in Great Britain. All rights reserved Copyright (6 1983 Pergamon Press Ltd Characterization of sedimentary humic matter by alkaline hydrolysis RICHARD A. BOURBONNIERE National Water Research Institute, Canada Centre for Inland Waters, P.O. Box 5050, Burlington, Ontario, Canada L7R 4A6 and PHILIP A. MEYERS Oceanography Program, Department of Atmospheric and Oceanic Science, The University of Michigan Ann Arbor, MI 48109, U.S.A. (Received 7 April 1983; accepted 16 August 1983) Abstract--Humic matter fractions from modern sediments of Lake Huron and Lake Michigan have been compared. Large yields of saccharinic acids from alkaline hydrolysis suggest that these fractions contain large portions of carbohydrate materials. Evidence for contributions of aquatic lipid (C-16 fatty acids) and of liginin (phenolic acids) to these sediments is also present in the hydrolysis products. Qualitative differences among fulvic acid, humic acid and humin from the same lake are minor, suggesting common (or similar) organic sources for these fractions. The lability of sedimentary humic matter to alkaline hydrolysis is inversely related to its degree of exposure to oxidative weathering. Lability may also be related to diagenetic state as fulvic acids generally yield greater quantities of hydrolysis components than humic acids which in turn yield more than humin. INTRODUCTION Michigan. The focus of this paper is on products released by alkaline hydrolysis of humic matter frac- Humic matter comprises the bulk of organic matter tions. These are compared to hydrolysis products in natural systems. Although much research effort from a number of locally derived materials which are has gone into the study of soil humic matter, com- potential sources of, or precursors to, the sedimen- paratively few studies have focused on sedimentary tary humic matter.
    [Show full text]
  • Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials 2 3 4 K
    1 Phenolic acid sorption to biochars from mixtures of feedstock materials 2 3 4 K. E. Hall1, M. J. Calderon2, K. A. Spokas3*, L. Cox2, W. C. Koskinen3, J. Novak4, K. Cantrell4 5 6 1 Department of Soil Water & Climate, University of Minnesota, 1991 Upper Buford Circle; St. 7 Paul, MN USA 55108 8 2 CSIC-IRNAS, Avda. María Luisa s/n. Pabellón de Perú; 41013 Sevilla, Spain 9 3 USDA-Agricultural Research Service, 1991 Upper Buford Circle; St. Paul, MN USA 55108 10 4 USDA-Agricultural Research Service, 2611 West Lucas Street; Florence, SC USA 29501 11 12 *Corresponding author: 13 K. A. Spokas 14 USDA-ARS, Soil and Water Management Unit 15 1991 Upper Buford Circle, 439 Borlaug Hall, St. Paul, MN 55108 16 Email: [email protected] ; phone 612-626-2834 17 18 19 Abstract 20 21 In an effort to customize biochars for soil amendments, multiple feedstocks have been combined 22 in various ratios prior to pyrolysis at 350°C. The resulting variation in the chemistry and structure 23 can affect the adsorption capacity of biochar and thus influence the bioavailability of many 24 chemical compounds in the soil system including phenolic acids. This study examines the 25 sorption of 14C-labeled ferulic acid, syringic acid, and chlorocatechol to four biochars prepared 26 from individual feedstocks and four biochars produced from mixed feedstocks using batch 27 equilibration. Pure feedstock biochar sorption followed switchgrass< swine solids< poultry litter< -1 -1 28 pine chip for both ferulic (Kd= 1.4-75 L kg ) and syringic acid (Kd = 0.07-6.03 L kg ).
    [Show full text]
  • Nutritional Flavonoids Impact on Nuclear and Extranuclear Estrogen Receptor Activities
    Genes & Nutrition Vol. 1, No. 3/4, pp. 161-176, 2006 ISSN 1555-8932 print, Copyright © 2006 by New Century Health Publishers, LLC www.newcenturyhealthpublishers.com All rights of reproduction in any form reserved NUTRITIONAL FLAVONOIDS IMPACT ON NUCLEAR AND EXTRANUCLEAR ESTROGEN RECEPTOR ACTIVITIES Paola Galluzzo and Maria Marino Department of Biology, University “Roma Tre”, Viale G. Marconi 446, I-00146 Roma, Italy [Received March 14, 2006; Accepted April 30, 2006] ABSTRAABSTRAABSTRACTCTCT: Flavonoids are a large group of non-nutrient important are the plant secondary metabolites flavonoids. They compounds naturally produced from plants as part of their are present in all terrestrial vascular plants whereas, in mammals, defence mechanisms against stresses of different origins. They they occur only through dietary intake (Birt et al., 2001; Dixon, emerged from being considered an agricultural oddity only after 2004). More than 4,000 different flavonoids have been it was observed that these compounds possess a potential protective described and categorized into 6 subclasses as a function of function against several human degenerative diseases. This has the type of heterocycle involved: flavonols, flavones, flavanols, led to recommending the consumption of food containing high flavanonols, flavanones, and isoflavones (Table 1) (Birt et al., concentrations of flavonoids, which at present, especially as soy 2001; Manach et al., 2004). isoflavones, are even available as over-the-counter nutraceuticals. The increased use of flavonoids has occurred even though their mechanisms are not completely understood, in particular those TABLE 11:1TABLE Chemical structures of certain commonly occurring plant involving the flavonoid impact on estrogen signals. In fact, most flavonoid aglycones of the human health protective effects of flavonoids are described either as estrogen-mimetic, or as anti-estrogenic, while others do not involve estrogen signaling at all.
    [Show full text]
  • Colonic Metabolites of Berry Polyphenols: the Missing Link to Biological Activity?
    Downloaded from British Journal of Nutrition (2010), 104, S48–S66 doi:10.1017/S0007114510003946 q The Authors 2010 https://www.cambridge.org/core Colonic metabolites of berry polyphenols: the missing link to biological activity? Gary Williamson1* and Michael N. Clifford2 . IP address: 1School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK 2Division of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK 170.106.202.8 (Received 26 January 2010 – Accepted 16 March 2010) , on The absorption of dietary phenols, polyphenols and tannins (PPT) is an essential step for biological activity and effects on health. Although a 28 Sep 2021 at 22:35:02 proportion of these dietary bioactive compounds are absorbed intact, depending on their chemical structure and the nature of any attached moiety (e.g. sugar, organic acid), substantial amounts of lower molecular weight catabolites are absorbed after biotransformation by the colon microflora. The main products in the colon are (a) benzoic acids (C6 –C1), especially benzoic acid and protocatechuic acid; (b) phenylacetic acids (C6 –C2), especially phenylacetic acid per se; (c) phenylpropionic acids (C6 –C3), where the latter are almost entirely in the dihydro form, notably dihydrocaffeic acid, dihydroferulic acid, phenylpropionic acid and 3-(30-hydroxyphenyl)-propionic acid. As a result of this biotrans- formation, some of these compounds can each reach mM concentrations in faecal water. Many of these catabolites are efficiently absorbed in the , subject to the Cambridge Core terms of use, available at colon, appear in the blood and are ultimately excreted in the urine.
    [Show full text]
  • Cranberry Proanthocyanidins and Dietary Oligosaccharides Synergistically Modulate Lactobacillus Plantarum Physiology
    microorganisms Article Cranberry Proanthocyanidins and Dietary Oligosaccharides Synergistically Modulate Lactobacillus plantarum Physiology Ezgi Özcan 1 , Michelle R. Rozycki 1 and David A. Sela 1,2,* 1 Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; [email protected] (E.Ö.); [email protected] (M.R.R.) 2 Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01003, USA * Correspondence: [email protected]; Tel.: +1-(413)-545-1010 Abstract: Plant-based foods contain bioactive compounds such as polyphenols that resist digestion and potentially benefit the host through interactions with their resident microbiota. Based on previ- ous observations, we hypothesized that the probiotic Lactobacillus plantarum interacts with cranberry polyphenols and dietary oligosaccharides to synergistically impact its physiology. In this study, L. plantarum ATCC BAA-793 was grown on dietary oligosaccharides, including cranberry xyloglucans, fructooligosaccharides, and human milk oligosaccharides, in conjunction with proanthocyanidins (PACs) extracted from cranberries. As a result, L. plantarum exhibits a differential physiological re- sponse to cranberry PACs dependent on the carbohydrate source and polyphenol fraction introduced. Of the two PAC extracts evaluated, the PAC1 fraction contains higher concentrations of PACs and increased growth regardless of the oligosaccharide, whereas PAC2 positively modulates its growth during xyloglucan metabolism. Interestingly, fructooligosaccharides (FOS) are efficiently utilized Citation: Özcan, E.; Rozycki, M.R.; in the presence of PAC1, as this L. plantarum strain does not utilize this substrate typically. Relative Sela, D.A. Cranberry to glucose, oligosaccharide metabolism increases the ratio of secreted acetic acid to lactic acid. The Proanthocyanidins and Dietary PAC2 fraction differentially increases this ratio during cranberry xyloglucan fermentation compared Oligosaccharides Synergistically with PAC1.
    [Show full text]