Artemis: Update on Gateway Power and Propulsion Element

Total Page:16

File Type:pdf, Size:1020Kb

Artemis: Update on Gateway Power and Propulsion Element National Aeronautics and Space Administration Artemis: Update on Gateway Power and Propulsion Element Michele Gates Human Exploration and Operations Mission Directorate NASA Headquarters Michael Barrett Manager, Gateway Power and Propulsion Element NASA Glenn Research Center 24 July, 2019 Space Policy Directive 1: To the Moon, then Mars “Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low- Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations…” 2 Why Go to the Moon? Proves technologies and capabilities for sending humans to Mars Establishes American leadership and strategic presence Inspires a new generation and encourages careers in STEM Leads civilization changing science and technology Expands the U.S. global economic impact Broadens U.S. industry & international partnerships in deep space 3 The Artemis Program Artemis is the twin sister of Apollo and goddess of the Moon in Greek mythology. Now, she personifies our path to the Moon as the name of NASA’s program to return astronauts to the lunar surface by 2024. When they land, Artemis astronauts will step foot where no human has ever been before: the Moon’s South Pole. With the horizon goal of sending humans to Mars, Artemis begins the next era of exploration. 4 5 6 STRATEGIC PRINCIPLES OF HUMAN SPACE EXPLORATION Fiscal Realism | Commercial Partnerships | Scientific Exploration Technology Pull and Push | Gradual Buildup of Capability Architecture Openness and Resilience Global Collaboration and Leadership | Continuity of Human Spaceflight 7 7 Phase 1 & Phase 2 Definitions Phase 1 Gateway Phase 1: Today – 2024 configuration focuses on Human surface landing the minimum systems Missions and systems required to support a 2024 required to achieve landing human lunar landing humans on the surface of the Moon in 2024 Phase 2: Sustainable Presence by 2028 Establish a sustainable long-term presence on and around the Moon 8 Gateway Applicability for Mars IN-SPACE POWER & PROPULSION: • High efficiency, long-life SEP extensible to Mars cargo missions Landing • Power enhancements feed forward to System deep-space habitats and transit vehicles Refuelable LANDING SYSTEM tanks DEPLOYMENT: • Aggregation, automated docking, and deployment of Human Landing System from an orbiting platform High Efficiency OPERATIONS: • Extended operations in lunar orbit in Solar preparation for missions farther into Electric deep space Propulsion • High-efficiency propulsion demonstration for deep space trajectory and navigation techniques TRANSPORTATION & OPERATIONS: • Common rendezvous sensors and Deep-Space docking systems for deep space Rendezvous Sensors & • Transfers and maneuvers in low- Docking Capabilities gravity regimes 9 Gateway Logistics Services U.S. industry to begin delivering cargo, experiments, and supplies to deep space beginning in 2024. June 14 – Draft RFP issued to U.S. industry June 26 – Industry forum with media availability Late summer – final solicitation for firm fixed-price contract 10 NextSTEP Habitat Prototype Testing Five full-sized ground prototypes delivered for testing in 2019. Lockheed Martin Northrop Grumman Boeing Denver, CO Dulles, VA Pasadena, TX Builds on proven Refurbishes cargo spacecraft Leverages existing heritage hardware development technologies “Because of this prototyping exercise, we are Bigelow Aerospace 12-18 months farther along than we would Las Vegas, NV normally be at this stage of concept development. Future programs should go through this approach along with requirements Sierra Nevada iteration with NASA.” Louisville, CO “The NextSTEP approach has been really helpful. The mockup showed us we had more Modular buildup Expandable cargo space in our habitat than we originally believed based on the CAD models.” 11 Lockheed Martin – Testing Complete at KSC 12 Northrop Grumman – Testing Complete at JSC 13 Boeing – Prototype Delivered to MSFC 14 Sierra Nevada Corporation – Prototype Delivered to JSC 15 Bigelow Aerospace – Testing later this summer in North Las Vegas, Nevada 16 Lunar Development Plans Summary • Integrated Human Landing System – 11 companies selected for NextSTEP BAA Appendix E – Descent Element, Transfer Element, and Refueling studies and prototypes – Multiple industry systems will be developed to support a 2024 lunar landing demonstration mission via NextSTEP Appendix H • Launch options to be proposed by offerors • Gateway – May 20, 2019 – released Logistics services RFP Synopsis for Gateway Logistics Services – May 23, 2019, Selected Maxar Technologies to provide the Power and Propulsion Element – Will leverage investments and work performed by NextSTEP-2 Appendix A contractors for the pressurized modules • Surface Suit – Initial Capability Suit will mitigate schedule and mass risk to meet 2024 mission timeline – Sustained Capability Suit will be available for Phase 2 • Refueling Element – Study phase for Refueling Elements already in work as part of NextSTEP Appendix E 17 American Strategic Presence on the Moon – High solar illumination areas within 2 degrees (<50 km) of the lunar south pole. Four highly illuminated areas shown above: High Priorities for Sustained Surface Activities 1. De Gerlache Rim, 2. Shackleton Rim • Long duration access to sunlight: A • Surface roughness and slope: Finding 3. Shackleton – De Gerlache Ridge confirmed resource providing power and the safest locations for multiple landing 4. Plateau near Shackleton minimal temperature variations systems, robotic and astronaut mobility • Direct to Earth communication: • Permanently Shadowed Regions and Repeatable Earth line-of-sight Volatiles: Learning to find and access communication for mission support water ice and other resources for sustainability 18 19 Planned Lunar Orbit for PPE Handover to NASA for Gateway Use • Orbits about the Moon can be used to support missions to the lunar surface and vicinity including as a staging point – Offers long-term stable storage, coverage of lunar North and South poles, ease of access – Ability to avoid lengthy eclipses of the sun by the Earth, maximizing solar energy – Exhibits nearly-stable behavior favorable for station-keeping and nearly-constant communications contact with Earth – Supports surface telerobotics, including lunar farside – Provides a staging point for planetary sample return missions • Additional science – Favorable vantage point for Earth, Sun and deep space observations • Environment – Deep space environment useful for radiation testing and 1,2 experiments in preparation for missions to the lunar surface Representative L1 and L2 Northern and Southern NRHOs and Mars 1. R. Whitley and R. Martinez, “Options for Staging Orbits in Cis-Lunar Space,” Oct. 21, 2015. IEEE Aerospace Conference; 5-12 Mar. 2016; Big Sky, MT, JSC-CN-35647 2. M. L. McGuire, L. M. Burke, S. L. McCarty, K. J. Hack, R. J. Whitley, D. C. Davis, and C. Ocampo, “Low Thrust Cis-Lunar Transfers Using a 40 KW-Class Solar Electric Propulsion Spacecraft,” AAS/AIAA Astrodynamics Specialist Conference, August 2017, AAS 17-583 20 Solar Electric Propulsion Evolution 500 kW 2030’s-2050’s: Mars Class Missions • 150 - 500 kW Class (25 T, 10 T Xe) • Crewed Deep Space Transport • Mars logistics resupply 100 kW 2019-2030’s: Power and Propulsion Element • 60 kW Spacecraft (7T wet mass, 2.5T of xenon propellant) • Launch scheduled for December of 2022 • 1 year demo mission via public-private partnership • 15 year lifetime as foundational element of Gateway 50 kW 10 kW 2015 Boeing 702SP: 8 kW gecomsat 2.3 mT S/C with 300 kg of xenon propellant • First all-electric spacecraft 2010-2011 Advanced EHF: 15 kW DoD comsat 6.2 mT S/C with 3 mT of biprop propellant) • SEP saved $1.6 B asset with full function •2007-2016 Dawn: 2 kW (10 kW @ 1AU) NASA SMD mission, asteroid rendezvous •2008 SMART-1: 1.5 kW ESA Tech demo, lunar science •2003 Hayabusa: 2 kW JAXA Tech demo, asteroid sample/return •1998 Deep Space-1: 2 kW NASA Tech demo, asteroid comet flyby 1990’s – present: Geostationary Communication Satellites: kilowatt-class 1964 -1981: Solar Electric solar electric propulsion used for station keeping by all foreign and Rocket Tests domestic satellite manufacturers 1 kW • 1964 SERT-1: First demo • Using SEP increased operational lifetimes up to 18 years (suborbital) • Substantially increased payload capability • Synergistic use of SEP for a portion of the final orbit insertion • 1970-1981 SERT-2: First • 100’s of spacecraft and hundreds of thousands hours of successful on- demo (orbital) orbit operation 21 SEP System Extensibility to Mars Missions PPE/Gateway Mars class Cargo/ Mars class Crewed (50 kW class SEP) Logistics Transport Hybrid Architecture (150 kW class SEP) (300 kW class SEP) • 400-kW class Solar Array • 60-kW Solar Array System • 190-kW Solar Array • 300-kW class EP System • 2.5-t class Xenon Capacity • 150-kW EP System • 16-t class Xenon Capacity • 12.5-kW electric propulsion • 16-t class Xenon Capacity • 30-kW class EP strings or 13-kW strings systems • 13-kW EP strings Note: Complexity of using multiple EP strings is more like managing multiple electrical loads than employing multiple chemical engines. 22 Scalability to Higher Power Systems for Deep Space Human Exploration • High-power, 50-kW class system would be a step up from current technology
Recommended publications
  • KENNEDY SPACE CENTER – APOLLO to MULTI-USER SPACEPORT Philip J
    THE 2ND GROUND-BASED SPACE FACILITIES SYMPOSIUM 17-19 October 2017, Toulouse, France KENNEDY SPACE CENTER – APOLLO TO MULTI-USER SPACEPORT Philip J. Weber (1), Howard S. Kanner, PhD, CSEP (2) (1) National Aeronautics and Space Administration MS LX, Kennedy Space Center, FL, 32899, USA, [email protected] (2) All Points Logistics, LLC MS LX-C-LCC, Kennedy Space Center, FL, 32899, USA, [email protected] ABSTRACT NASA Kennedy Space Center (KSC) was established as the gateway to exploring beyond earth. Since the establishment of KSC in December 1963, the Center has been critical in the execution of the United States of America’s bold mission to send astronauts beyond the grasp of the terra firma. On May 25, 1961, a few weeks after a Soviet cosmonaut became the first person to fly in space, President John F. Kennedy laid out the ambitious goal “of landing a man on the moon and returning him safely to the Earth” by the end of the decade. The resultant Apollo program was massive endeavor, driven by the Cold War Space Race, and supported with a robust budget. The Apollo program consisted of 18 launches from newly developed infrastructure, including 12 manned missions and six lunar landings, ending with Apollo 17 that launched on December 7, 1972. Continuing to use this infrastructure, the Skylab program launched four missions. During the Skylab program, KSC infrastructure was redesigned to meet the needs of the Space Shuttle program, which launched its first vehicle (STS-1) on April 12, 1981. The Space Shuttle required significant modifications to the Apollo launch pads and assembly facilities, as well as new infrastructure, such as Orbiter and Payload Processing Facilities, as well as the Shuttle Landing Facility.
    [Show full text]
  • Conceptual Human-System Interface Design for a Lunar Access Vehicle
    Conceptual Human-System Interface Design for a Lunar Access Vehicle Mary Cummings Enlie Wang Cristin Smith Jessica Marquez Mark Duppen Stephane Essama Massachusetts Institute of Technology* Prepared For Draper Labs Award #: SC001-018 PI: Dava Newman HAL2005-04 September, 2005 http://halab.mit.edu e-mail: [email protected] *MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139 TABLE OF CONTENTS 1 INTRODUCTION..................................................................................................... 1 1.1 THE GENERAL FRAMEWORK................................................................................ 1 1.2 ORGANIZATION.................................................................................................... 2 2 H-SI BACKGROUND AND MOTIVATION ........................................................ 3 2.1 APOLLO VS. LAV H-SI........................................................................................ 3 2.2 APOLLO VS. LUNAR ACCESS REQUIREMENTS ...................................................... 4 3 THE LAV CONCEPTUAL PROTOTYPE............................................................ 5 3.1 HS-I DESIGN ASSUMPTIONS ................................................................................ 5 3.2 THE CONCEPTUAL PROTOTYPE ............................................................................ 6 3.3 LANDING ZONE (LZ) DISPLAY............................................................................. 8 3.3.1 LZ Display Introduction.................................................................................
    [Show full text]
  • Planning a Mission to the Lunar South Pole
    Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed.
    [Show full text]
  • ESO Call for Proposals – P109 Proposal Deadline: 23 September 2021, 12:00 Noon CEST * Call for Proposals
    ESO Call for Proposals – P109 Proposal Deadline: 23 September 2021, 12:00 noon CEST * Call for Proposals ESO Period 109 Proposal Deadline: 23 September 2021, 12:00 noon Central European Summer Time Issued 26 August 2021 * Preparation of the ESO Call for Proposals is the responsibility of the ESO Observing Programmes Office (OPO). For questions regarding preparation and submission of proposals to ESO telescopes, please submit your enquiries through the ESO Helpdesk. The ESO Call for Proposals document is a fully linked pdf file with bookmarks that can be viewed with Adobe Acrobat Reader 4.0 or higher. Internal document links appear in red and external links appear in blue. Links are clickable and will navigate the reader through the document (internal links) or will open a web browser (external links). ESO Call for Proposals Editor: Dimitri A. Gadotti Approved: Xavier Barcons Director General v Contents I Phase 1 Instructions1 1 ESO Proposals Invited1 1.1 Important recent changes (since Periods 107 and 108)..................2 1.1.1 General.......................................2 1.1.2 Paranal.......................................3 1.1.3 La Silla.......................................5 1.1.4 Chajnantor.....................................5 1.2 Important reminders....................................6 1.2.1 General.......................................6 1.2.2 Paranal.......................................7 1.2.3 La Silla.......................................9 1.2.4 Chajnantor.....................................9 1.3 Changes foreseen in the upcoming Periods........................ 10 2 Getting Started 10 2.1 Support for VLTI programmes.............................. 11 2.2 Exposure Time Calculators................................ 11 2.3 The p1 proposal submission tool............................. 11 2.3.1 Important notes.................................. 12 2.4 Proposal Submission.................................... 13 3 Visitor Instruments 13 II Proposal Types, Policies, and Procedures 14 4 Proposal Types 14 4.1 Normal Programmes...................................
    [Show full text]
  • NASA's Lunar Orbital Platform-Gatway
    The Space Congress® Proceedings 2018 (45th) The Next Great Steps Feb 28th, 9:00 AM NASA's Lunar Orbital Platform-Gatway Tracy Gill NASA/KSC Technology Strategy Manager Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Gill, Tracy, "NASA's Lunar Orbital Platform-Gatway" (2018). The Space Congress® Proceedings. 17. https://commons.erau.edu/space-congress-proceedings/proceedings-2018-45th/presentations/17 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. National Aeronautics and Space Administration NASA’s Lunar Orbital Platform- Gateway Tracy Gill NASA/Kennedy Space Center Exploration Research & Technology Programs February 28, 2018 45th Space Congress Space Policy Directive-1 “Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations.” 2 LUNAR EXPLORATION CAMPAIGN 3 4 STRATEGIC PRINCIPLES FOR SUSTAINABLE EXPLORATION • FISCAL REALISM • ECONOMIC OPPORTUNITY Implementable in the near-term with the buying
    [Show full text]
  • LRO Makes a Temperature Map of the Lunar South Pole 42
    LRO Makes a Temperature Map of the Lunar South Pole 42 The Lunar Reconnaissance Orbiter (LRO) has recently created the first surface temperature map of the south polar region of the moon using date taken between September and October, 2009 when south polar temperatures were close to their annual maximum values. The colorized map shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. The approximate maximum temperatures at which these compounds would be frozen in place for more than a billion years is shown on the scale to the right. The LCROSS spacecraft was targeted to impact one of the coldest of these craters, and many of these compounds were observed in the ejecta plume. (Courtesy: UCLA/NASA/JPL) Problem 1 - The width of this map is 500 km. What are the diameters of Crater A (Shackleton) and Crater B (Amundsen) in kilometers? Problem 2 - In which colored areas might an astronaut expect to find conditions cold enough to recover all of the elements and molecules indicated in the vertical temperature scale to the right? Problem 3 - The Shackleton Crater (Crater A) is cold enough to trap water and methanol. From Problem 1, and assuming that the thickness of the water deposit is 100 meters, and occupies 10% of the volume of the circular crater, how many cubic meters of water-ice might be present? Space Math http://spacemath.gsfc.nasa.gov Answer Key 42 Problem 1 - The width of this map is 500 km.
    [Show full text]
  • Sampling the SPA Basin Some Considerations Based on the Apollo Experience
    Sampling the SPA Basin Some Considerations Based on the Apollo Experience Paul D. Spudis Applied Physics Laboratory Workshop on Science Associated with the Lunar Exploration Architecture February 27- March 2, 2007 How do you best sample the Moon? Samples without context have limited value Bulk planet properties, inventory of compositions Context requires either geologic field work or a simple regional setting Robotic missions tend to provide less context than human field study cf. Luna 20 and Apollo 16 Types of Exploratory Targets Reconnaissance Geologically simple sites where a “grab sample” of rocks and regolith can address and solve scientific issues Example: youngest mare lava flow, impact melt floor of fresh crater, regional pyroclastics Field Study Complex, multi-unit sites having a protracted evolution. Require human interaction, sampling, mapping, re-visiting field sites Examples: basin ejecta blanket, Aristarchus plateau, crater central peaks See Ryder et al., 1989, EOS, v. 70, n. 47, p. 1495; 1505-1520 Apollo Highlands Sampling Apollo 14 – Fra Mauro Sent to sample Fra Mauro Fm (Imbrium ejecta) Returned complex breccias; basaltic, KREEP-rich Which samples are Imbrium basin primary ejecta? Apollo 15 – Hadley-Apennines Sample front (deep Imbrium rim material) Anorthosite, KREEP basalts, mafic impact melts Which samples represent Imbrium basin melt? Apollo 16 – Descartes Sent to sample highland volcanic rocks Anorthositic debris, breccias, some mafic melts (VHA) Basin-related? If so, which ones? Apollo 17 – Taurus-Littrow Sample
    [Show full text]
  • When Artemis Talks, Johannes Kepler Listens 27 January 2011
    When Artemis talks, Johannes Kepler listens 27 January 2011 be shared between Artemis and NASA's Tracking and Data Relay Satellite System (TDRSS). The first ATV mission was also supported by Artemis, in 2008. Working in parallel with TDRSS, Artemis was used as the main relay while ATV was attached to the Station and provided back up for commands and telemetry during rendezvous, docking, undocking and reentry. Artemis will provide communications between Johannes Kepler and the ATV Control Centre (ATV-CC) in Toulouse, France. Hovering some 36 000 km above the equator at 21.4ºE, Artemis will route telemetry and commands to and from the control centre whenever the satellite sees the International Space Station or ATV. During every ATV-2 orbit, there is close to 40 minutes of continuous contact. Credit: ESA Credits: ESA/J.Huart After Ariane 5 lofts ATV Johannes Kepler into Artemis will again provide dedicated support to ATV space on 15 February, ESA's Artemis data relay throughout the free-flying phase of its mission up to satellite will be ready for action. the docking with the Station. TDRSS is the backup to Artemis during the attached phase, while Artemis Artemis will provide communications between will back up TDRSS during the other phases and in Johannes Kepler and the ATV Control Centre (ATV- emergency situations. CC) in Toulouse, France. Hovering some 36 000 km above the equator at 21.4ºE, Artemis will route Such was the case on 11 September 2008, when telemetry and commands to and from the control the Artemis Mission Control Centre provided centre whenever the satellite sees the International emergency support to ATV-1 after Hurricane Ike Space Station or ATV.
    [Show full text]
  • South Pole-Aitken Basin
    Feasibility Assessment of All Science Concepts within South Pole-Aitken Basin INTRODUCTION While most of the NRC 2007 Science Concepts can be investigated across the Moon, this chapter will focus on specifically how they can be addressed in the South Pole-Aitken Basin (SPA). SPA is potentially the largest impact crater in the Solar System (Stuart-Alexander, 1978), and covers most of the central southern farside (see Fig. 8.1). SPA is both topographically and compositionally distinct from the rest of the Moon, as well as potentially being the oldest identifiable structure on the surface (e.g., Jolliff et al., 2003). Determining the age of SPA was explicitly cited by the National Research Council (2007) as their second priority out of 35 goals. A major finding of our study is that nearly all science goals can be addressed within SPA. As the lunar south pole has many engineering advantages over other locations (e.g., areas with enhanced illumination and little temperature variation, hydrogen deposits), it has been proposed as a site for a future human lunar outpost. If this were to be the case, SPA would be the closest major geologic feature, and thus the primary target for long-distance traverses from the outpost. Clark et al. (2008) described four long traverses from the center of SPA going to Olivine Hill (Pieters et al., 2001), Oppenheimer Basin, Mare Ingenii, and Schrödinger Basin, with a stop at the South Pole. This chapter will identify other potential sites for future exploration across SPA, highlighting sites with both great scientific potential and proximity to the lunar South Pole.
    [Show full text]
  • Envisat and MERIS Status
    MERIS US Workshop 14 July 2008 MERIS US Workshop, Silver Spring, July 14th, 2008 MERIS US Workshop Agenda a.m. ENVISAT/MERIS mission status, access to MERIS data 08:10-08:55 H. Laur (ESA) and distribution policy 08:55-09:10 Discussion Examples of the use of MERIS data in marine & land 09:10-09:40 P. Regner (ESA) applications 09:40-10:00 B. Arnone (NRL) Examples of MERIS data use for U.S. applications 10:00-10:20 S. Delwart (ESA) MERIS instrument overview 10:20-10:40 S. Delwart Instrument characterization overview 10:40-10:55 Discussion 10:55-11:10 Coffee break 11:10-11:30 S. Delwart Instrument calibration methods and results 11:30-11:50 Discussion 11:50-13:20 Lunch break MERIS US Workshop, Silver Spring, July 14th, 2008 MERIS US Workshop Agenda p.m. 13:20-13:50 L. Bourg (ACRI) Level 1 processing 13:50-14:10 Discussion 14:10-14:30 S. Delwart Vicarious calibration methods and results 14:30-14:50 Discussion 14:50-15:10 L. Bourg Overview Level 2 products 15:10-15:25 Coffee break 15:25-16:25 L. Bourg Level 2 processing 16:25-17:10 Discussion 17:10-17:25 P. Regner BEAM Toolbox 17:25-17:40 H. Laur Plans and status of the OLCI onboard GMES Sentinel-3 17:40-18:00 Discussion MERIS US Workshop, Silver Spring, July 14th, 2008 MERIS US Workshop, July 14th, 2008, Washington (USA) ENVISAT / MERIS mission status, access to MERIS data and distribution policy Henri LAUR Envisat Mission Manager & Head of EO Missions Management Office MERIS US Workshop, Silver Spring, July 14th, 2008 ESA: the European Space Agency The purpose of ESA: An inter-governmental
    [Show full text]
  • Shackleton's Epic Voyage C
    FCAT Reading Released Test Book Read the passage “Shackleton’s Epic Voyage” before answering Numbers 1 through 7. 80° 75° 70° 65° 60° 55°W 50° 45° 40° 35° Shackleton’s SOUTHSOUTH SSouthou th AAtlantictlan tic 45° AMERICAAMERICA OceanOcean Epic Voyage Whaling station Boat journey Departed 50° APRIL to DEC. 1914 Michael Brown ScotiaSc otia MAY 1916 SeaSea Entered c SouthSouth Pack Ice SEV08.PAR1 c ifi DEC. 1914 55° Pa GeorgiaGeorgia uth n ElephantEle phant I.I. SSoutho cPacificea Marooned on desolate Elephant OceanO Launched boats APRIL 1916 Heavy Island, the British explorer 60° Drifted Pack CLE Endurance crushed, CIR on ice floes crew abandoned ship Ice TIC Shackleton and five other men RC OCT. 1915 ArtCodes TA AN SEV08.PAR1 Heavy make a grim voyage across the 65° WeddellWeddell Pack Ice icy seas to reach a whaling SeaSea settlement after their ship has ° foundered. 70 Endurance beset JAN. 1915 0 mi 500 0 km 500 ANTARCTICA “Stand by to abandon ship!” Slowly the men climbed overboard The command rang out over the with the ship’s stores. Shackleton, a gaunt Antarctic seas, and it meant the end of all bearded figure, gave the order “Hoist out Ernest Shackleton’s plans. He was the the boats!” There were three, and they leader of an expedition which had set out to would be needed if the ice thawed. cross the unknown continent of Antarctica. Two days later, on October 30th, 1915, It was a journey no one before him had ever the Endurance broke up and sank beneath attempted. the ice.
    [Show full text]
  • A Call for a New Human Missions Cost Model
    A Call For A New Human Missions Cost Model NASA 2019 Cost and Schedule Analysis Symposium NASA Johnson Space Center, August 13-15, 2019 Joseph Hamaker, PhD Christian Smart, PhD Galorath Human Missions Cost Model Advocates Dr. Joseph Hamaker Dr. Christian Smart Director, NASA and DoD Programs Chief Scientist • Former Director for Cost Analytics • Founding Director of the Cost and Parametric Estimating for the Analysis Division at NASA U.S. Missile Defense Agency Headquarters • Oversaw development of the • Originator of NASA’s NAFCOM NASA/Air Force Cost Model cost model, the NASA QuickCost (NAFCOM) Model, the NASA Cost Analysis • Provides subject matter expertise to Data Requirement and the NASA NASA Headquarters, DARPA, and ONCE database Space Development Agency • Recognized expert on parametrics 2 Agenda Historical human space projects Why consider a new Human Missions Cost Model Database for a Human Missions Cost Model • NASA has over 50 years of Human Space Missions experience • NASA’s International Partners have accomplished additional projects . • There are around 70 projects that can provide cost and schedule data • This talk will explore how that data might be assembled to form the basis for a Human Missions Cost Model WHY A NEW HUMAN MISSIONS COST MODEL? NASA’s Artemis Program plans to Artemis needs cost and schedule land humans on the moon by 2024 estimates Lots of projects: Lunar Gateway, Existing tools have some Orion, landers, SLS, commercially applicability but it seems obvious provided elements (which we may (to us) that a dedicated HMCM is want to independently estimate) needed Some of these elements have And this can be done—all we ongoing cost trajectories (e.g.
    [Show full text]