A Lunar Retreat
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Craters in Shadow
Section 3: Craters in Shadow Kepler Copernicus Eratosthenes Seen it Clavius Seen it Section 3: Craters in Shadow Visibility: A pair of binoculars is the minimum requirement to see these features. When: Look for them when the terminator’s close by, typically a day before last quarter. Not all craters are best seen when the Sun is high in the lunar sky - in fact most aren’t! If craters aren’t par- ticularly bright or dark, they tend to disappear into the background when the Moon’s phase is close to full. These craters are best seen when the ‘terminator’ is nearby, or when the Sun is low in the lunar sky as seen from the crater. This causes oblique lighting to fall on the crater and create exaggerated shadows. Ultimately, this makes the crater look more dramatic and easier to see. We’ll use this effect for the next section on lunar mountains, but before we do, there are a couple of craters that we’d like to bring to your attention. Actually, the Moon is covered with a whole host of wonderful craters that look amazing when the lighting is oblique. During the summer and into the early autumn, it’s the later phases of the Moon are best positioned in the sky - the phases following full Moon. Unfortunately, this means viewing in the early hours but don’t worry as we’ve kept things simple. We just want to give you a taste of what a shadowed crater looks like for this marathon, so the going here is really pretty easy! First, locate the two craters Kepler and Copernicus which were marathon targets pointed out in Section 2. -
Chapter Fourteen Men Into Space: the Space Race and Entertainment Television Margaret A. Weitekamp
CHAPTER FOURTEEN MEN INTO SPACE: THE SPACE RACE AND ENTERTAINMENT TELEVISION MARGARET A. WEITEKAMP The origins of the Cold War space race were not only political and technological, but also cultural.1 On American television, the drama, Men into Space (CBS, 1959-60), illustrated one way that entertainment television shaped the United States’ entry into the Cold War space race in the 1950s. By examining the program’s relationship to previous space operas and spaceflight advocacy, a close reading of the 38 episodes reveals how gender roles, the dangers of spaceflight, and the realities of the Moon as a place were depicted. By doing so, this article seeks to build upon and develop the recent scholarly investigations into cultural aspects of the Cold War. The space age began with the launch of the first artificial satellite, Sputnik, by the Soviet Union on October 4, 1957. But the space race that followed was not a foregone conclusion. When examining the United States, scholars have examined all of the factors that led to the space technology competition that emerged.2 Notably, Howard McCurdy has argued in Space and the American Imagination (1997) that proponents of human spaceflight 1 Notably, Asif A. Siddiqi, The Rocket’s Red Glare: Spaceflight and the Soviet Imagination, 1857-1957, Cambridge Centennial of Flight (Cambridge: Cambridge University Press, 2010) offers the first history of the social and cultural contexts of Soviet science and the military rocket program. Alexander C. T. Geppert, ed., Imagining Outer Space: European Astroculture in the Twentieth Century (New York: Palgrave Macmillan, 2012) resulted from a conference examining the intersections of the social, cultural, and political histories of spaceflight in the Western European context. -
Announces: the WAR of the WORLDS (LEITH STEVENS) WHEN WORLDS COLLIDE (LEITH STEVENS) the NAKED JUNGLE (DANIELLE AMITHEATROF)
Announces: THE WAR OF THE WORLDS (LEITH STEVENS) WHEN WORLDS COLLIDE (LEITH STEVENS) THE NAKED JUNGLE (DANIELLE AMITHEATROF) CONQUEST OF SPACE (VAN CLEAVE) Intrada Special Collection Volume ISC 202 Before Steven Spielberg, George Lucas and Peter Jackson, one man captivated film audiences with colorful, big-budget science fiction and fantasy spectaculars: George Pal. Pal would produce four highly imaginative films during the period 1951-1955: When Worlds Collide (1951), The War Of The Worlds (1953), The Naked Jungle (1954) and Conquest of Space (1955). These pictures would employ top actors, large casts and the elite of the Paramount special effects and art departments, and each would provide film composers with the opportunity to underscore spectacle, astonishing visual effects, terror and intense human drama. With its world-spanning plot and chaotic scenes of humanity preparing for the threat of approaching planets, When Worlds Collide features by far the busiest and most energetic score of the three sci-fi films represented on this set. Leith Stevens' eerie, foreboding melody for the approaching planets dominates the score, reinforcing both the menace of the looming planets and the boiling cauldron of human emotions that threaten to derail humanity's last hopes. The War Of The Worlds showcased scenes of destruction and mass panic that outdid even When Worlds Collide. Leith Stevens managed to find a fresh way to pay homage to Gustav Holsts' "Mars, The Bringer Of War" from The Planets. Instead of mimicking Holsts' famous rhythms, Stevens overlays driving percussion onto his main title music, which launches from a spiky, startling fanfare through a gloomy yet propulsive dirge for humanity finally brightening into brilliant, spine- chilling major chords. -
Conceptual Human-System Interface Design for a Lunar Access Vehicle
Conceptual Human-System Interface Design for a Lunar Access Vehicle Mary Cummings Enlie Wang Cristin Smith Jessica Marquez Mark Duppen Stephane Essama Massachusetts Institute of Technology* Prepared For Draper Labs Award #: SC001-018 PI: Dava Newman HAL2005-04 September, 2005 http://halab.mit.edu e-mail: [email protected] *MIT Department of Aeronautics and Astronautics, Cambridge, MA 02139 TABLE OF CONTENTS 1 INTRODUCTION..................................................................................................... 1 1.1 THE GENERAL FRAMEWORK................................................................................ 1 1.2 ORGANIZATION.................................................................................................... 2 2 H-SI BACKGROUND AND MOTIVATION ........................................................ 3 2.1 APOLLO VS. LAV H-SI........................................................................................ 3 2.2 APOLLO VS. LUNAR ACCESS REQUIREMENTS ...................................................... 4 3 THE LAV CONCEPTUAL PROTOTYPE............................................................ 5 3.1 HS-I DESIGN ASSUMPTIONS ................................................................................ 5 3.2 THE CONCEPTUAL PROTOTYPE ............................................................................ 6 3.3 LANDING ZONE (LZ) DISPLAY............................................................................. 8 3.3.1 LZ Display Introduction................................................................................. -
Planning a Mission to the Lunar South Pole
Lunar Reconnaissance Orbiter: (Diviner) Audience Planning a Mission to Grades 9-10 the Lunar South Pole Time Recommended 1-2 hours AAAS STANDARDS Learning Objectives: • 12A/H1: Exhibit traits such as curiosity, honesty, open- • Learn about recent discoveries in lunar science. ness, and skepticism when making investigations, and value those traits in others. • Deduce information from various sources of scientific data. • 12E/H4: Insist that the key assumptions and reasoning in • Use critical thinking to compare and evaluate different datasets. any argument—whether one’s own or that of others—be • Participate in team-based decision-making. made explicit; analyze the arguments for flawed assump- • Use logical arguments and supporting information to justify decisions. tions, flawed reasoning, or both; and be critical of the claims if any flaws in the argument are found. • 4A/H3: Increasingly sophisticated technology is used Preparation: to learn about the universe. Visual, radio, and X-ray See teacher procedure for any details. telescopes collect information from across the entire spectrum of electromagnetic waves; computers handle Background Information: data and complicated computations to interpret them; space probes send back data and materials from The Moon’s surface thermal environment is among the most extreme of any remote parts of the solar system; and accelerators give planetary body in the solar system. With no atmosphere to store heat or filter subatomic particles energies that simulate conditions in the Sun’s radiation, midday temperatures on the Moon’s surface can reach the stars and in the early history of the universe before 127°C (hotter than boiling water) whereas at night they can fall as low as stars formed. -
List of Missions Using SPICE (PDF)
1/7/20 Data Restorations Selected Past Users Current/Pending Users Examples of Possible Future Users Apollo 15, 16 [L] Magellan [L] Cassini Orbiter NASA Discovery Program Mariner 2 [L] Clementine (NRL) Mars Odyssey NASA New Frontiers Program Mariner 9 [L] Mars 96 (RSA) Mars Exploration Rover Lunar IceCube (Moorehead State) Mariner 10 [L] Mars Pathfinder Mars Reconnaissance Orbiter LunaH-Map (Arizona State) Viking Orbiters [L] NEAR Mars Science Laboratory Luna-Glob (RSA) Viking Landers [L] Deep Space 1 Juno Aditya-L1 (ISRO) Pioneer 10/11/12 [L] Galileo MAVEN Examples of Users not Requesting NAIF Help Haley armada [L] Genesis SMAP (Earth Science) GOLD (LASP, UCF) (Earth Science) [L] Phobos 2 [L] (RSA) Deep Impact OSIRIS REx Hera (ESA) Ulysses [L] Huygens Probe (ESA) [L] InSight ExoMars RSP (ESA, RSA) Voyagers [L] Stardust/NExT Mars 2020 Emmirates Mars Mission (UAE via LASP) Lunar Orbiter [L] Mars Global Surveyor Europa Clipper Hayabusa-2 (JAXA) Helios 1,2 [L] Phoenix NISAR (NASA and ISRO) Proba-3 (ESA) EPOXI Psyche Parker Solar Probe GRAIL Lucy EUMETSAT GEO satellites [L] DAWN Lunar Reconnaissance Orbiter MOM (ISRO) Messenger Mars Express (ESA) Chandrayan-2 (ISRO) Phobos Sample Return (RSA) ExoMars 2016 (ESA, RSA) Solar Orbiter (ESA) Venus Express (ESA) Akatsuki (JAXA) STEREO [L] Rosetta (ESA) Korean Pathfinder Lunar Orbiter (KARI) Spitzer Space Telescope [L] [L] = limited use Chandrayaan-1 (ISRO) New Horizons Kepler [L] [S] = special services Hayabusa (JAXA) JUICE (ESA) Hubble Space Telescope [S][L] Kaguya (JAXA) Bepicolombo (ESA, JAXA) James Webb Space Telescope [S][L] LADEE Altius (Belgian earth science satellite) ISO [S] (ESA) Armadillo (CubeSat, by UT at Austin) Last updated: 1/7/20 Smart-1 (ESA) Deep Space Network Spectrum-RG (RSA) NAIF has or had project-supplied funding to support mission operations, consultation for flight team members, and SPICE data archive preparation. -
10Great Features for Moon Watchers
Sinus Aestuum is a lava pond hemming the Imbrium debris. Mare Orientale is another of the Moon’s large impact basins, Beginning observing On its eastern edge, dark volcanic material erupted explosively and possibly the youngest. Lunar scientists think it formed 170 along a rille. Although this region at first appears featureless, million years after Mare Imbrium. And although “Mare Orien- observe it at several different lunar phases and you’ll see the tale” translates to “Eastern Sea,” in 1961, the International dark area grow more apparent as the Sun climbs higher. Astronomical Union changed the way astronomers denote great features for Occupying a region below and a bit left of the Moon’s dead lunar directions. The result is that Mare Orientale now sits on center, Mare Nubium lies far from many lunar showpiece sites. the Moon’s western limb. From Earth we never see most of it. Look for it as the dark region above magnificent Tycho Crater. When you observe the Cauchy Domes, you’ll be looking at Yet this small region, where lava plains meet highlands, con- shield volcanoes that erupted from lunar vents. The lava cooled Moon watchers tains a variety of interesting geologic features — impact craters, slowly, so it had a chance to spread and form gentle slopes. 10Our natural satellite offers plenty of targets you can spot through any size telescope. lava-flooded plains, tectonic faulting, and debris from distant In a geologic sense, our Moon is now quiet. The only events by Michael E. Bakich impacts — that are great for telescopic exploring. -
Relative Ages
CONTENTS Page Introduction ...................................................... 123 Stratigraphic nomenclature ........................................ 123 Superpositions ................................................... 125 Mare-crater relations .......................................... 125 Crater-crater relations .......................................... 127 Basin-crater relations .......................................... 127 Mapping conventions .......................................... 127 Crater dating .................................................... 129 General principles ............................................. 129 Size-frequency relations ........................................ 129 Morphology of large craters .................................... 129 Morphology of small craters, by Newell J. Fask .................. 131 D, method .................................................... 133 Summary ........................................................ 133 table 7.1). The first three of these sequences, which are older than INTRODUCTION the visible mare materials, are also dominated internally by the The goals of both terrestrial and lunar stratigraphy are to inte- deposits of basins. The fourth (youngest) sequence consists of mare grate geologic units into a stratigraphic column applicable over the and crater materials. This chapter explains the general methods of whole planet and to calibrate this column with absolute ages. The stratigraphic analysis that are employed in the next six chapters first step in reconstructing -
Astrophysics
National Aeronautics and Space Administration Astrophysics Committee on NASA Science Paul Hertz Mission Extensions Director, Astrophysics Division NRC Keck Center Science Mission Directorate Washington DC @PHertzNASA February 1-2, 2016 Why Astrophysics? Astrophysics is humankind’s scientific endeavor to understand the universe and our place in it. 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? These national strategic drivers are enduring 1972 1982 1991 2001 2010 2 Astrophysics Driving Documents http://science.nasa.gov/astrophysics/documents 3 Astrophysics Programs Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program 1. How did our universe 2. How did galaxies, stars, 3. Are We Alone? begin and evolve? and planets come to be? Astrophysics Explorers Program Astrophysics Research Program James Webb Space Telescope Program (managed outside of Astrophysics Division until commissioning) 4 Astrophysics Programs and Missions Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program Chandra Hubble Spitzer Kepler/K2 XMM-Newton (ESA) Herschel (ESA) WFIRST Fermi SOFIA Planck (ESA) LISA Pathfinder (ESA) Astrophysics Explorers Program Euclid (ESA) NuSTAR Swift Suzaku (JAXA) Athena (ESA) ASTRO-H (JAXA) NICER TESS L3 GW Obs (ESA) 3 SMEX and 2 MO in Phase A James Webb Space Telescope Program: Webb 5 Astrophysics Programs and Missions Physics of the Cosmos Cosmic Origins Exoplanet Exploration Program Program Program Missions in extended phase Chandra Hubble Spitzer Kepler/K2 XMM-Newton (ESA) Herschel (ESA) WFIRST Fermi SOFIA Planck (ESA) LISA Pathfinder (ESA) Astrophysics Explorers Program Euclid (ESA) NuSTAR Swift Suzaku (JAXA) Athena (ESA) ASTRO-H (JAXA) NICER TESS L3 GW Obs (ESA) 3 SMEX and 2 MO in Phase A James Webb Space Telescope Program: Webb 6 Astrophysics Mission Portfolio • NASA Astrophysics seeks to advance NASA’s strategic objectives in astrophysics as well as the science priorities of the Decadal Survey in Astronomy and Astrophysics. -
LRO Makes a Temperature Map of the Lunar South Pole 42
LRO Makes a Temperature Map of the Lunar South Pole 42 The Lunar Reconnaissance Orbiter (LRO) has recently created the first surface temperature map of the south polar region of the moon using date taken between September and October, 2009 when south polar temperatures were close to their annual maximum values. The colorized map shows the locations of several intensely cold impact craters that are potential cold traps for water ice as well as a range of other icy compounds commonly observed in comets. The approximate maximum temperatures at which these compounds would be frozen in place for more than a billion years is shown on the scale to the right. The LCROSS spacecraft was targeted to impact one of the coldest of these craters, and many of these compounds were observed in the ejecta plume. (Courtesy: UCLA/NASA/JPL) Problem 1 - The width of this map is 500 km. What are the diameters of Crater A (Shackleton) and Crater B (Amundsen) in kilometers? Problem 2 - In which colored areas might an astronaut expect to find conditions cold enough to recover all of the elements and molecules indicated in the vertical temperature scale to the right? Problem 3 - The Shackleton Crater (Crater A) is cold enough to trap water and methanol. From Problem 1, and assuming that the thickness of the water deposit is 100 meters, and occupies 10% of the volume of the circular crater, how many cubic meters of water-ice might be present? Space Math http://spacemath.gsfc.nasa.gov Answer Key 42 Problem 1 - The width of this map is 500 km. -
Science Fiction Films of the 1950S Bonnie Noonan Louisiana State University and Agricultural and Mechanical College, [email protected]
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 "Science in skirts": representations of women in science in the "B" science fiction films of the 1950s Bonnie Noonan Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the English Language and Literature Commons Recommended Citation Noonan, Bonnie, ""Science in skirts": representations of women in science in the "B" science fiction films of the 1950s" (2003). LSU Doctoral Dissertations. 3653. https://digitalcommons.lsu.edu/gradschool_dissertations/3653 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. “SCIENCE IN SKIRTS”: REPRESENTATIONS OF WOMEN IN SCIENCE IN THE “B” SCIENCE FICTION FILMS OF THE 1950S A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of English By Bonnie Noonan B.G.S., University of New Orleans, 1984 M.A., University of New Orleans, 1991 May 2003 Copyright 2003 Bonnie Noonan All rights reserved ii This dissertation is “one small step” for my cousin Timm Madden iii Acknowledgements Thank you to my dissertation director Elsie Michie, who was as demanding as she was supportive. Thank you to my brilliant committee: Carl Freedman, John May, Gerilyn Tandberg, and Sharon Weltman. -
Sampling the SPA Basin Some Considerations Based on the Apollo Experience
Sampling the SPA Basin Some Considerations Based on the Apollo Experience Paul D. Spudis Applied Physics Laboratory Workshop on Science Associated with the Lunar Exploration Architecture February 27- March 2, 2007 How do you best sample the Moon? Samples without context have limited value Bulk planet properties, inventory of compositions Context requires either geologic field work or a simple regional setting Robotic missions tend to provide less context than human field study cf. Luna 20 and Apollo 16 Types of Exploratory Targets Reconnaissance Geologically simple sites where a “grab sample” of rocks and regolith can address and solve scientific issues Example: youngest mare lava flow, impact melt floor of fresh crater, regional pyroclastics Field Study Complex, multi-unit sites having a protracted evolution. Require human interaction, sampling, mapping, re-visiting field sites Examples: basin ejecta blanket, Aristarchus plateau, crater central peaks See Ryder et al., 1989, EOS, v. 70, n. 47, p. 1495; 1505-1520 Apollo Highlands Sampling Apollo 14 – Fra Mauro Sent to sample Fra Mauro Fm (Imbrium ejecta) Returned complex breccias; basaltic, KREEP-rich Which samples are Imbrium basin primary ejecta? Apollo 15 – Hadley-Apennines Sample front (deep Imbrium rim material) Anorthosite, KREEP basalts, mafic impact melts Which samples represent Imbrium basin melt? Apollo 16 – Descartes Sent to sample highland volcanic rocks Anorthositic debris, breccias, some mafic melts (VHA) Basin-related? If so, which ones? Apollo 17 – Taurus-Littrow Sample