Copyrighted Material

Total Page:16

File Type:pdf, Size:1020Kb

Copyrighted Material Index Acanthostega, 4, 16, 22, 28, 28–29, 83, Plates 1, 16 arcus palatini, 111, 112 Acanthostomatops, 54, 90 Ariekanerpeton, 36, 38 Acceleration, 174 Asaphestera, 41, 43, 88 Acheloma, 50, 94 atavism, 237 Acherontiscidae, 46 autecology, 194 Acroplous, 54 autochthonous, 193 Actinopterygii, 14 autopod, 20 adaptive radiation, 248 Autun, 87 Adductor mandibulae, 110, 111 axolotl, 174, 175 Adelogyrinus, 41 Adelospondyli, 41, 46 Balanerpeton, 53–4, 85 Airdrie, 86 Baphetes, 26, 32 Aïstopoda, 41, 45–6 Baphetidae, 32 Albanerpeton, 58 Basibranchial, 113 Albanerpetontidae, 58–9, 229 Batrachia, 62–8 allochthonous, 193 batrachian operculum, 120 allometry, 158, 171, 172 Batrachichnus, 148 allopatry, 246 Batrachiderpeton, 45 Ambystoma, 155–6 Batrachosauroides, 68 Amniota, 47–8, 47 Batropetes, 41, 43, Plate 11 Amphibamidae, 55 Beelzebufo, 65 Amphibamus, 55, 88, Plate 11 Beiyanerpeton, 68, 101 Amphibia, 2 body plan, 179 Amphisauropus, 148 body size, 240 Andrias, 17, Plate 12 Boscovice, 87 Angara, 84 Brachydectes, 41, 44 anocleithrum, 20, 132 braincase, 15, 16 Anthracosauria, 33–7, 35, Plate 2 branchial arch, 115 Anthracosaurus, 35, 37 Branchierpeton, 90 Anura, 62 COPYRIGHTEDBranchiosauridae, MATERIAL 56, Plates 8, 10 Apateon, 55, 89, 90, 108, Plates 8, 10 Broomistega, 96 Apoda, 70 Bystrowiella, 39, 40 Apodops, 70 Apomorphy, 8 Cacops, 50, 52, 92, 94, Plate 5 Archaeothyris, 89 caecilians, 68 Archegosaurus, 49, 57, Plate 11 Calligenethlon, 37 Archeria, 35, 37, 91, Plate 2 Callistomordax, 97, 98 Amphibian Evolution: The Life of Early Land Vertebrates, First Edition. Rainer R. Schoch. © 2014 Rainer R. Schoch. Published 2014 by John Wiley & Sons, Ltd. 0002071972.INDD 260 1/18/2014 11:32:06 AM Callobatrachus, 101 Diplocaulus, 41, 45, 91, 92, Plate 3 canalization, 209 direct development, 158 cannibalism, Plate 7 Discosauriscidae, 36, 38 Capitosauria, 57 Discosauriscus, 36, 38, 90, Plate 2 Capitosauroides, 147 disparity, 249–52 carpus, 20 Dissorophidae, 55 Carrolla, 41 Dissorophoidea, 54 Casineria, 48 Dissorophus, 92 Caudata, 67–8 diversity, 249–52 cell volume, 245 Döhlen, 87 Celtedens, 58, 99, 101 Dolese, 87 Cephalerpeton, 88 Doleserpeton, 50, 55, 94 ceratobranchial, 113, 116 Dvinosauria, 54 characters, 8 Dvinosaurus, 50, 54 Cheese Bay, 86 Chelotriton, 101, 108, Plate 12 ear, 119–122, 120 Chroniosaurus, 39, 40, Plate 2 inner, 119, 120 Chroniosuchia, 38–9, 40, Plate 2 middle, 119, 120 Chroniosuchus, 40 East Kirkton, 85 Choana, 24 Ecolsonia, Plate 4 Chunerpeton, 68, 101 Eldeceeon, 85 chytridiomycosis, 252 electroreception, 118 clade, 8 Elgin, 84 cladistics, 8, 222 Ellesmere Island, 84 clavicle, 20 Embolomeri, 33, 35 cleithrum, 20 endocranium, 14, 15, 16 Cochleosaurus, 52, 88 Eocaecilia, 70, 99, Plate 12 Colosteidae, 31 Eodiscoglossus, 65 Colosteus, 32 Eoherpeton, 37 community, 193 Eopelobates, 101 constraints, 240 epibranchial, 113 Cope’s rule, 243 Erpetosaurus, 54 Crassigyrinus, 30, 32 Eryopoidea, 56–7 Crinodon, 43, 89 Eryops, 50, 52, 56–7, 92 Czatkobatrachus, 65 ethmoid unit, 15 Czatkowice, 96 Eucritta, 32, 85 Eudibamus, 93 death assemblage, 193 Euramerica, 83, 84, 86, 87 deceleration, 174 Euryodus, 92 Delta, 86 Eusthenopteron, 15, 16, 26, 28, 158, Plate 16 Dendrerpeton, 50, 52, 53–4, 88 evo-devo, 179 depressor mandibulae, 111, 112 eye pigments, fossil, 108 dermal skull, 15, 16 excavation, Plate 14 developmental trajectory, 163, 164, 166 extant phylogenetic bracket,107, 127 developmental rate, 245 extinction, 249–52 Developmental evolution, 245 extrascapular, 15 Diadectes, 93 Diadectidae, 48 feeding, 127, 143 Diagenesis, 193 aquatic, 129–130 Dicamptodon, 18, 60, 156 femur, 20 Dimetrodon, 93 fibula, 20 diphyly hypothesis, 227 Fort Sill, 93 Diplocaulidae, 45 fossil calibration, 230 INDEX 261 0002071972.INDD 261 1/18/2014 11:32:06 AM fossil record, 249 Jarilinus, 40 frogs, 62 Jarrow, 86 functional scenario, 127 Jeckenbach, 90 Jehol Biota, 100 Gaildorf, 203 Jeholotriton, 101 gene regulation, 179 Joggins, 88 genome size, 245 Georgenthalia, 93 Karaurus, 17, 66, 67, 100 Gephyrostegida, 46, 47 Karoo, 95 Gephyrostegus, 47, 89 Karpinskiosaurus, 36, 38 Gerobatrachus, 62, 55 Kayenta Formation, 99 Gerrothorax, 58, 97, 98, Plate 11 Keraterpeton, 45 gigantism, 241, 243, Plate 9 Keuper, 98, 199–200 gill arches, 15, 17, 114 key innovation, 236 gill lamellae, 115, 116 Kokartus, 67 gill raker, 115 Koolasuchus, 100 gill septum, 116 Kupferzell, 199 gills, 113 Kupferzellia, 97, Plate 11 external, 115, 116 Kyrinion, 32 internal, 114, 115, 116 fossil, 108 Lagerstätten, 82, 94, 97, 99, 100, Gnathostomata, 14 101, 250 Gondwana, 83, 84, 86, 87 Laccotriton, 101 Goniorhynchiade, 43 larvae, 217 Grave assemblage, 193 Las Hoyas, 101 Greer, 86 lateral line, 118, 119 Greererpeton, 4, 26, 32 Lebach, 90, 198, 199 Guimarota, 99 lepospondyl hypothesis, 226–7 Gymnarthridae, 43 Lepospondyli, 40–7, 41 Gymnarthrus, 92 Lethiscus, 45 Gymnophiona, 68–70 levator palatoquadrati, 111, 112 Liaoxitriton, 101 Hapsidopareion, 43 life assemblage, 193 heterochrony, 158, 174, 174–178, 244, 245 life cycle, 209–219 heterotopy, 178 life history evolution, 209 histology, 167–170, Plate 10 limbs, 19, 20, 144, 145 Horton Bluff, 86 limb development, 182, 183 humerus, 20 Limnogyrinus, 88 hybridization, 246–7 Limnopus, 148 Hylerpeton, 88 Linton, 86, 88 Hylonomus, 48, 88 Lissamphibia, 2, 59–70 hyobranchial apparatus, 119 extant, Plate 13 hyoid arch, 131, 132, 133 fossil, Plate 12 hyomandibula, 136, 137 origin, 224, 225, 226 hypermorphosis, 174 live-bearing, 246 Llistrofus, 43 Ichthyosaura, 156, Plate 12 locomotion, 146–7 Ichthyophis, 157 Loxomma, 32 Ichthyostega, 22, 26, 28, 29, 83, Plates 1, 16 lung, 119 ilium, 20 reduction, 240 intercentrum, 21 Lydekkerina, 96 ischium, 20 Lysorophia, 41, 44 Isodectes, 54, 88 Lysorophus, 92 262 INDEX 0002071972.INDD 262 1/18/2014 11:32:07 AM macroevolution, 235 Pangea, 87 Madygenerpeton, 39, 40 Pantylus, 41, 43, 92 Makowskia, 38 papilla amphibiorum, 120 Marmorerpeton, 67 papilla basilaris, 120 mass extinction, 251 Pasawioops, 94 Mastodonsaurus, 97, 98, Plates 9, 14, 16 Pederpes, 31, 85 Mazon Creek, 86, 88 pedicely, 60 Megalocephalus, 32 pedomorphosis, 158, 174, Mesophryne, 101 Pelodosotis, 41, 43 Messel, 101 pelvis, 24 metamorphosis, 154, 158, 214, 216 pentadactyly, 146 Miguasha, 84 peramorphosis, 174 Micraroter, 43 peripatry, 246 Micromelerpetidae, 55 pharyngobranchial, 113 Micromelerpeton, 89 Phlegethontia, 41, 46, 89 Microsauria, 41, 42 Pholiderpeton, 35, 37 Microbrachis, 41, 43 Phonerpeton, Plate 4 Micropholis, 96 phylogeny, 222–231 miniaturization, 240–44, 241, 242 Plagiosauridae, 57–8 modularity, 135 Plagiosuchus, 97 molecular clock, 230 Plagiosternum, 98 Mordex, 55, 89 plasticity, 158, 209, 212 Platyhistrix, 92 Nectridea, 41, 44–5 pleurocentrum, 21 neoteny, 154, 158, 214, 216–17 polydactyly, 145 neural arch, 21 postdisplacement, 174 Newsham, 86 predisplacement, 174 Niederhäslich, 89, 90 preoperculum, 115 Niederkirchen, 199 prey capture, 129–130 nomenclature, 10 Procera, 227 Notobatrachus, 65 progenesis, 174 novelty, 235 Prosalirus, 65, 99 Nýrany,̌ 82, 86, 88, 196–7 Proterogyrinus, 18, 26, 35, 37 Protopterus, 246 Odernheim, 89, 197–9, 198 pubis, 20 Oestocephalus, 46, 88 Puertollano, 87 Onchiodon, 57, 90 punctuated equilibria, 238 opercular muscle (Batrachia), 120 opercular muscles (fishes), 112 Quasicaecilia, 43 operculum, 15, 115 Ophiderpeton, 46, 85 Radius, 20 Organizer, 179 reaction norm, 158, 209–211, 212 Orobates, 93 red beds, 91, 92 ossification sequence, 163–7, 166, 180 reproduction, 246 Ossinodus, 31 Reptiliomorpha, 224 Osteichthyes, 14 respiration, 141 Ostodolepidae, 43 respiratory organs, 119 otoccipital unit, 15 Rhinesuchus, 96 Rhynchonkos, 41, 43 Palaeoherpeton, 35, 37 ribs, 22, 23 palatoquadrate, 15, 131 Romer’s gap, 30 paleoecology, 191, 193–196 Rotliegend, 90 Panderichthys, 27, 28 Rubricacaecilia, 70 INDEX 263 0002071972.INDD 263 1/18/2014 11:32:07 AM Saar-Nahe, 87 Tersomius, 94 sacrum, 24 Tethys, 89, 94 salamanders, 67–8 Tetrapoda, 9–11, 14–23 Salamandra, 155 Tetrapodomorpha, 25–31 Salientia, 63–5 Thabanchuia, 54, 96 salinity, 89, 96 tibia, 20 Sarcopterygii, 14 Tiktaalik, 27, 28 Sauropleura, 41, 88 time averaging, 193 Sauravus, 45 total evidence, 222 Saxonerpeton, 43 Trachystegos, 43 Scapherpeton, 68 Trematolestes, 52, Plate 16 scapula, 20, 120 Trematopidae, 55 Scincosauridae, 45 Trematops, 92 Scincosaurus, 45, 88 Trematosauria, 57 Sclerocephalus, 17, 18, 20, 57, 89, 108, Plates 6, 7, 16 Triadobatrachus, 64, 65 Seymouria, 36, 38, 93, Plate 2 Triassurus, 67 Seymouriamorpha, 36, 37, Plate 2 Trimerorhachis, 52, 54, 91, 92 Seymouriidae, 37 Triturus, 156 Shomronella, 65 trophic level, 204 Shpinarerpeton, 38 Tuditanus, 43 Sinerpeton, 101 Tula, 84 skin breathing, 119, 240 Tulerpeton, 29 skin, fossil, 108 Tupilakosaurus, 54 skull, 14–19 tympanum, 120, 139–40 skull mobility, 133 Silvanerpeton, 35, 37, 85 ulna, 20 Solenodonsaurus, 89 Uranocentrodon, 96 Sparodus, 43, 89 Urocordylidae, 44 speciation, 246–48 Urodela, 67 species, 246 Urumqia, 38 spiracle, 120, 122, 132, 136 Urupia, 67 Spitsbergen, 96 Utegenia, 36, 38 stapedial muscle, 120 stapes, 120, 137 Valdotriton, 68, 101 stasis, 238–40, 239 Variscan mountains, 87 stem-amphibians, 48 Vellberg, 200, 201–3, stem-tetrapods, 25–31 Ventastega, 27, 28 Stereospondyli, 57 vertebrae, 20, 21 subcranial muscle, 112 Viaerella, 65 sympatry, 246 vicariance, 248 synecology, 194 visceral muscles, 112 visceral skeleton, 14 tadpole, 153, 154, 157 viviparity, 246 Tambach, 87, 93 Tambachia, 93 Westlothiana, 48, 85 taphocenosis, 194 Whatcheeria, 26, 85 taphonomy, 193, 195 Whatcheeriidae, 31 tarsus, 20 temnospondyl hypothesis, 224–5 Zatracheidae, 54 Temnospondyli, 48 Zatrachys, 54, 92 terrestriality, 252 zygapophysis, 21 264 INDEX 0002071972.INDD 264 1/18/2014 11:32:07 AM.
Recommended publications
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Physical and Environmental Drivers of Paleozoic Tetrapod Dispersal Across Pangaea
    ARTICLE https://doi.org/10.1038/s41467-018-07623-x OPEN Physical and environmental drivers of Paleozoic tetrapod dispersal across Pangaea Neil Brocklehurst1,2, Emma M. Dunne3, Daniel D. Cashmore3 &Jӧrg Frӧbisch2,4 The Carboniferous and Permian were crucial intervals in the establishment of terrestrial ecosystems, which occurred alongside substantial environmental and climate changes throughout the globe, as well as the final assembly of the supercontinent of Pangaea. The fl 1234567890():,; in uence of these changes on tetrapod biogeography is highly contentious, with some authors suggesting a cosmopolitan fauna resulting from a lack of barriers, and some iden- tifying provincialism. Here we carry out a detailed historical biogeographic analysis of late Paleozoic tetrapods to study the patterns of dispersal and vicariance. A likelihood-based approach to infer ancestral areas is combined with stochastic mapping to assess rates of vicariance and dispersal. Both the late Carboniferous and the end-Guadalupian are char- acterised by a decrease in dispersal and a vicariance peak in amniotes and amphibians. The first of these shifts is attributed to orogenic activity, the second to increasing climate heterogeneity. 1 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK. 2 Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany. 3 School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK. 4 Institut
    [Show full text]
  • Bones, Molecules, and Crown- Tetrapod Origins
    TTEC11 05/06/2003 11:47 AM Page 224 Chapter 11 Bones, molecules, and crown- tetrapod origins Marcello Ruta and Michael I. Coates ABSTRACT The timing of major events in the evolutionary history of early tetrapods is discussed in the light of a new cladistic analysis. The phylogenetic implications of this are com- pared with those of the most widely discussed, recent hypotheses of basal tetrapod interrelationships. Regardless of the sequence of cladogenetic events and positions of various Early Carboniferous taxa, these fossil-based analyses imply that the tetrapod crown-group had originated by the mid- to late Viséan. However, such estimates of the lissamphibian–amniote divergence fall short of the date implied by molecular studies. Uneven rates of molecular substitutions might be held responsible for the mismatch between molecular and morphological approaches, but the patchy quality of the fossil record also plays an important role. Morphology-based estimates of evolutionary chronology are highly sensitive to new fossil discoveries, the interpreta- tion and dating of such material, and the impact on tree topologies. Furthermore, the earliest and most primitive taxa are almost always known from very few fossil localities, with the result that these are likely to exert a disproportionate influence. Fossils and molecules should be treated as complementary approaches, rather than as conflicting and irreconcilable methods. Introduction Modern tetrapods have a long evolutionary history dating back to the Late Devonian. Their origins are rooted into a diverse, paraphyletic assemblage of lobe-finned bony fishes known as the ‘osteolepiforms’ (Cloutier and Ahlberg 1996; Janvier 1996; Ahlberg and Johanson 1998; Jeffery 2001; Johanson and Ahlberg 2001; Zhu and Schultze 2001).
    [Show full text]
  • A New Discosauriscid Seymouriamorph Tetrapod from the Lower Permian of Moravia, Czech Republic
    A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Republic JOZEF KLEMBARA Klembara, J. 2005. A new discosauriscid seymouriamorph tetrapod from the Lower Permian of Moravia, Czech Repub− lic. Acta Palaeontologica Polonica 50 (1): 25–48. A new genus and species, Makowskia laticephala gen. et sp. nov., of seymouriamorph tetrapod from the Lower Permian deposits of the Boskovice Furrow in Moravia (Czech Republic) is described in detail, and its cranial reconstruction is pre− sented. It is placed in the family Discosauriscidae (together with Discosauriscus and Ariekanerpeton) on the following character states: short preorbital region; rounded to oval orbits positioned mainly in anterior half of skull; otic notch dorsoventrally broad and anteroposteriorly deep; rounded to oval ventral scales. Makowskia is distinguished from other Discosauriscidae by the following characters: nasal bones equally long as broad; interorbital region broad; prefrontal− postfrontal contact lies in level of frontal mid−length (only from D. pulcherrimus); maxilla deepest at its mid−length; sub− orbital ramus of jugal short and dorsoventrally broad with long anterodorsal−posteroventral directed lacrimal−jugal su− ture; postorbital anteroposteriorly short and lacks elongated posterior process; ventral surface of basioccipital smooth; rows of small denticles placed on distinct ridges and intervening furrows radiate from place immediately laterally to artic− ular portion on ventral surface of palatal ramus of pterygoid (only from D. pulcherrimus);
    [Show full text]
  • 1 1 Appendix S1: Complete List of Characters And
    1 1 Appendix S1: Complete list of characters and modifications to the data matrix of RC07, with 2 reports of new observations of specimens. 3 The names, the abbreviations and the order of all characters and their states are 4 unchanged from RC07 unless a change is explained. We renumbered the characters we did 5 not delete from 1 to 277, so the character numbers do not match those of RC07. However, 6 merged characters retain the abbreviations of all their components: PREMAX 1-2-3 (our 7 character 1) consists of the characters PREMAX 1, PREMAX 2 and PREMAX 3 of RC07, 8 while MAX 5/PAL 5 (our ch. 22) is assembled from MAX 5 and PAL 5 of RC07. We did not 9 add any characters, except for splitting state 1 of INT FEN 1 into the new state 1 of INT FEN 10 1 (ch. 84) and states 1 and 2 of the new character MED ROS 1 (ch. 85), undoing the merger 11 of PIN FOR 1 and PIN FOR 2 (ch. 91 and 92) and splitting state 0 of TEETH 3 into the new 12 state 0 of TEETH 3 (ch. 183) and the entire new character TEETH 10 (ch. 190). A few 13 characters have additional states or are recoded in other ways. Deleted characters are retained 14 here, together with the reasons why we deleted them and the changes we made to their scores. 15 All multistate characters mention in their names whether they are ordered, unordered, 16 or treated according to a stepmatrix.
    [Show full text]
  • Of Modern Amphibians: a Commentary
    The origin(s) of modern amphibians: a commentary. D. Marjanovic, Michel Laurin To cite this version: D. Marjanovic, Michel Laurin. The origin(s) of modern amphibians: a commentary.. Journal of Evolutionary Biology, Wiley, 2009, 36, pp.336-338. 10.1007/s11692-009-9065-8. hal-00549002 HAL Id: hal-00549002 https://hal.archives-ouvertes.fr/hal-00549002 Submitted on 7 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The origin(s) of modern amphibians: a commentary By David Marjanović1 and Michel Laurin1* 1Address: UMR CNRS 7207 “Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements”, Muséum National d’Histoire Naturelle, Département Histoire de la Terre, Bâtiment de Géologie, case postale 48, 57 rue Cuvier, F-75231 Paris cedex 05, France *Corresponding author tel/fax. (+33 1) 44 27 36 92 E-mail: [email protected] Number of words: 1884 Number of words in text section only: 1378 2 Anderson (2008) recently reviewed the controversial topic of extant amphibian origins, on which three (groups of) hypotheses exist at the moment. Anderson favors the “polyphyly hypothesis” (PH), which considers the extant amphibians to be polyphyletic with respect to many Paleozoic limbed vertebrates and was most recently supported by the analysis of Anderson et al.
    [Show full text]
  • Application of Micro-Computed Tomography Towards
    Application of micro-computed tomography towards a taxonomic and palaeobiological reassessment of Huxley and Wright’s (1867) tetrapods from the Jarrow Assemblage (Langsettian, Pennsylvanian), Co. Kilkenny, Ireland. Ph.D. Thesis 2020 Aodhán Ó Gogáin I declare that this thesis has not been submitted as an exercise for a degree at this or any other university and it is entirely my own work. I agree to deposit this thesis in the University’s open access institutional repository or allow the library to do so on my behalf, subject to Irish Copyright Legislation and Trinity College Library conditions of use and acknowledgement. Aodhán Ó Gogáin Signature i ii Summary. The Jarrow assemblage of Co. Kilkenny, Ireland preserves a diverse assortment of fish and tetrapods from the earliest Pennsylvanian (Langsettian). The Pennsylvanian was an important period in tetrapod evolution, during which many forms were evolving to occupy new ecological niches. This makes the Jarrow assemblage an important fossil site for investigating early tetrapod evolution and ecology as it preserves the earliest example of a coal swamp assemblage. But despite its importance, it is relatively poorly understood compared to later similar assemblages at Linton, Ohio, Nýřany, Czech Republic and Newsham, England. While fossils from all four assemblages are highly compressed, specimens from Jarrow stand out as being poorer in appearance. In unprepared specimens, the boundary between the body fossil and the matrix is difficult to make out. Even in manually prepared specimens this is the case. Additionally, many specimens have been degraded as a result of pyrite disease. The application of micro-computed tomography (µCT) has become the normal method for aiding in descriptive palaeontology.
    [Show full text]
  • Reptile Family Tree Peters 2021 1909 Taxa, 235 Characters
    Turinia Enoplus Chondrichtyes Jagorina Gemuendina Manta Chordata Loganellia Ginglymostoma Rhincodon Branchiostoma Tristychius Pikaia Tetronarce = Torpedo Palaeospondylus Craniata Aquilolamna Tamiobatis Myxine Sphyrna Metaspriggina Squalus Arandaspis Pristis Poraspis Rhinobatos Drepanaspis Cladoselache Pteromyzon adult Promissum Chlamydoselachus Pteromyzon hatchling Aetobatus Jamoytius Squatina Birkenia Heterodontus Euphanerops Iniopteryx Drepanolepis Helodus Callorhinchus Haikouichthys Scaporhynchus Belantsea Squaloraja Hemicyclaspis Chimaera Dunyu CMNH 9280 Mitsukurina Rhinochimaera Tanyrhinichthys Isurus Debeerius Thelodus GLAHM–V8304 Polyodon hatchling Cetorhinus Acipenser Yanosteus Oxynotus Bandringa PF8442 Pseudoscaphirhynchus Isistius Polyodon adult Daliatus Bandringa PF5686 Gnathostomata Megachasma Xenacanthus Dracopristis Akmonistion Ferromirum Strongylosteus Ozarcus Falcatus Reptile Family Tree Chondrosteus Hybodus fraasi Hybodus basanus Pucapampella Osteichthyes Orodus Peters 2021 1943 taxa, 235 characters Gregorius Harpagofututor Leptolepis Edestus Prohalecites Gymnothorax funebris Doliodus Gymnothorax afer Malacosteus Eurypharynx Amblyopsis Lepidogalaxias Typhlichthys Anableps Kryptoglanis Phractolaemus Homalacanthus Acanthodes Electrophorus Cromeria Triazeugacanthus Gymnotus Gorgasia Pholidophorus Calamopleurus Chauliodus Bonnerichthys Dactylopterus Chiasmodon Osteoglossum Sauropsis Synodus Ohmdenia Amia Trachinocephalus BRSLI M1332 Watsonulus Anoplogaster Pachycormus Parasemionotus Aenigmachanna Protosphyraena Channa Aspidorhynchus
    [Show full text]
  • (Lepospondyli: Nectridea) Ze Svrchního Karbonu Lokality Nýřany, Česká Republika
    PŘÍRODOVĚDECKÁ FAKULTA Redeskripce druhu Sauropleura scalaris (Lepospondyli: Nectridea) ze svrchního karbonu lokality Nýřany, Česká republika Rešerše k diplomové práci Pavel Barták Vedoucí práce: doc. Mgr. Martin Ivanov, Dr. Ústav geologických věd Obsah Úvod ............................................................................................................................... 3 Lokality svrchnokarbonského stáří České republiky s doklady skupin Temnospondyli Zittel, 1888 a Lepospondyli Zittel, 1888 .......................................... 3 Nýřany ................................................................................................................................................. 4 Třemošná ............................................................................................................................................. 5 Kounov ................................................................................................................................................. 6 Systematika svrchnokarbonských tetrapodů: Lepospondyli Zittel, 1888 & Temnospondyli Zittel, 1888 .......................................................................................... 8 Lepospondyli Zittel, 1888 .................................................................................................................... 8 Temnospondyli Zittel, 1888 ................................................................................................................. 9 Chronologický přehled výzkumů bazálních tetrapodů ze svrchního
    [Show full text]
  • Synopsis of the Extinct Batrachia, Reptilia and Aves of North America
    1 841 CT8s 1Rfi9 Vert.Pal sd*4 6^f>?^(£^u^ (oc&ok^VJ}. 'A^L^r^*2^UC>&<4~7t42S S&o-c^lA /cCy 1 SYNOPSIS OF THE E X T I ILST OT BATRACHIA AND REPTILIA OF NORTH AMERICA,. V-' PART I. By EDWAED D. COPE, CORRESPONDING SECRETARY OF THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA. ( APR 1 9 1935 PHILADELPHIA: McCalla & Stavely, Printers, 237-9 Dock Street. Auojust, 1869. ™ik TRANSACTIONS AMERICAN PHILOSOPHICAL SOCIETY SYNOPSIS OF THE EXTINCT BATRACHIA, REPTILIA AND AVES OP NORTH AMERICA. BY EDWARD D. COPE. Head September 18, 1868, and April 2, 1869. PREFACE. It is not designed in the present essay, to give descriptions of the known remains of the Batrachia, Reptiles and Birds, which have been more or less fully made known by others. This is left for the day when our knowledge shall more nearly approach complete- ness. While the subject is in its infancy, I have thought best to describe only those species and types which are new, and those portions of imperfectly known forms which will throw additional light on their relations and affinities. In adhering to this plan, I have been able to add no little to the history of the Reptiles already described by my predecessors, Leidy, Owen, Dawson, Wyman, Lea, etc. Where, however, I have had nothing to add, I have referred to their published descriptions, which are numerous and well-known. The literature of the subject will then be found under the respective specific heads. The present Memoir was originally prepared under the title of " Contributions to the History of the Vertebrates of the Mesozoic Periods in New Jersey and Pennsylvania," and presented to the Academy of Natural Sciences of Philadelphia, for publication, Fifth Month, 14, 1867.
    [Show full text]
  • An Overview of the Upper Carboniferous Fossil Deposit at Linton, Ohio1
    Ohio J. Science 7-11 MINE, PENNSYLVANIAN FAUNA, OHIO 55 An Overview of the Upper Carboniferous Fossil Deposit at Linton, Ohio1 ROBERT W. HOOK2 and DONALD BAIRD, Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 and Museum of Natural History, Princeton University, Princeton, NJ 08544 ABSTRACT. The cannel coal that underlies the Upper Freeport coal (Westphalian D, Upper Carboniferous) at Linton in Jefferson County, Ohio, has yielded a remarkable fossil assemblage of at least 10 invertebrate taxa and nearly 40 vertebrate taxa. Spirorbid worms, crustaceans (primarily syncarids and conchostracans), and fishes (coelacanths, haplolepid palaeoniscoids, and xenacanth sharks) are the most abundant fossils in the deposit; small aquatic amphibians (including nectridean, temnospondyl, and aistopod species) are also common. Other arthropod and tetrapod taxa are exceedingly rare and possess obvious adaptations for terres- trial existence. The fossiliferous cannel originated as the sapropelic filling of an approximately 15-m-deep abandoned river meander within an alluviated delta plain setting. Remains of animals that lived in and near the freshwater oxbow accumulated in this anaerobic, scavenger-free lake bottom. The assemblage is autochthonous at the scale of the floodplain lake and its margins and represents a lowland biocoenose. Previous paleoecological interpretations of the Linton assemblage and similar Westphalian vertebrate deposits cannot be upheld because they are based largely on paleontological inferences and incorrect paleoenvironmental diagnoses. OHIO J. SCI. 88 (1): 55-60, 1988 INTRODUCTION setting. The purpose of this overview is to summarize The remarkable abundance and diversity of fossil ver- paleontological and geological information pertaining tebrates from a once-active underground coal mine at to the Linton locality.
    [Show full text]
  • Katedra Geologie a Paleontologie Přírodovědecká Fakulta Univerzity Karlovy V Praze
    Katedra geologie a paleontologie Přírodovědecká fakulta Univerzity Karlovy v Praze DIPLOMOVÁ PRÁCA Variabilita stavcov permokarbónskych lepospondylných obojživelníkov Pavel Danko Školiteľ: Doc. RNDr. Zbyněk Roček, DrSc. september 2004 2 POĎAKOVANIE Chcem poďakovať predovšetkým svojmu školiteľovi a konzultantovi pánu doc. RNDr. Zbyňkovi Ročkovi DrSc. z katedry zoológie PřF – UK v Prahe za odborné vedenie, cenné rady a pripomienky pri písaní diplomovej práce. Ďakujem RNDr. Martinovi Košťakovi z katedry geologie a paleontologie PřF – UK v Prahe za poskytnutie fosilného materiálu z paleontologických zbierok, Mgr. Borisovi Ekrtovi z paleontologického oddelenia Národního muzea v Prahe a doc. RNDr. Jaroslavovi Kraftovi CSc. zo Západočeského muzea v Plzni za sprístupnenie fosilného materiálu a poskytnutie techniky (digitálny fotoaparát, optický mikroskop, binokulárna lupa) k ďalšiemu spracovaniu získaných informácii počas výskumu. Na záver chcem poďakovať svojim rodičom a kolegom z katedry geológie a paleontológie PřF – UK v Prahe za podporu a uznanie v mojej vedeckej práci. Prehlasujem, že som diplomovú prácu vypracoval samostatne s použitím odbornej literatúry a súhlasím s jej zapožičiavaním. ________________________ 3 Obsah 1. Úvod 5 1.0. Deskriptívna terminológia definitívneho stavca 2.0. Embryonálny pôvod stavca 3.0. Fylogenetická diferenciácia stavca u raných obojživelníkov 4.0. Problém lepospondylného stavca 1.4.1 Historický prehľad názorov na charakter a vznik lepospondylného stavca 2. Materiál a metodika 26 3. Výsledky 27 Labyrinthodontia Discosauriscus pulcherrimus (Fritsch, 1879) Discosauriscus potamites (Steen, 1938) Discosauriscus sp. Letoverpeton austriacum (Makowsky, 1876) Letoverpeton moravicum (Fritsch, 1879) Lepospondyli Microbrachis pelikani Frič, 1876 Hyloplesion longicostatum (Frič, 1876) Sauropleura scalaris (Frič, 1876) Scincosaurus crassus Frič, 1876 4 Phlegethontia longissima (Frič, 1876) (partim) + Oestocephalus amphiuminum (Cope, 1868) (partim) podľa Andersona, Carrolla & Roweho (2003) Oestocephalus granulosum (Frič, 1879) 4.
    [Show full text]