The Time Domain for Brown Dwarfs and Directly Imaged Giant Exoplanets: the Power of Variability Monitoring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												Extrasolar Planets
Extrasolar Planets to appear in Encyclopedia of Time, Sage Publishing, in preparation, H.J. Birx (Ed.) The term extrasolar planets or exoplanets stands for planets outside our Solar System, i.e. not orbiting the Sun, but other stars. Planets in our Solar System are defined as objects with enough mass to be spherical and round by their own gravity and to be alone on their orbit around the Sun, i.e. to be the dominant object in a particular orbit, and not to be a moon or asteroid (see the entry Planet in this encyclopedia for the official definition, the historical debate, and a discussion of the planets of our Solar System). Most exoplanets are discovered by observing the stellar motion around the common center of mass of the star+planet system, i.e. by observing somehow the motion of the objects in orbit around each other, i.e. by measuring precisely the periodic variation of certain values, e.g. radial velocity or brightness, with time, e.g. the first extrasolar planets were found with the timing technique around a pulsating neutron star. The recent definition of Planets of our Solar System by the International Astronomical Union deals mainly with the question of the minimum mass for an object to qualify as planet and excludes Pluto. This matter was raised by the fact that more and more objects similar to Pluto were discovered by larger and larger telescopes. The questions of maximum mass and formation of planets were left out in this new definition, possibly partly because there is not yet a consensus in the international community. - 
												
												The Slow Spin of the Young Sub-Stellar Companion GQ Lupi B and Its Orbital Configuration Henriette Schwarz1?, Christian Ginski1, Remco J
Astronomy & Astrophysics manuscript no. AA-2016-28908-preprint c ESO 2016 July 4, 2016 The slow spin of the young sub-stellar companion GQ Lupi b and its orbital configuration Henriette Schwarz1?, Christian Ginski1, Remco J. de Kok1; 2, Ignas A. G. Snellen1, Matteo Brogi3; 5, and Jayne L. Birkby4; 6 1 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 3 Center for Astrophysics and Space Astronomy, University of Colorado at Boulder, CO 80309 Boulder, USA 4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MA 02138 Cambridge, USA 5 NASA Hubble Fellow 6 NASA Sagan Fellow ABSTRACT The spin of a planet or brown dwarf is related to the accretion process, and therefore studying spin can help promote our understand- ing of the formation of such objects. We present the projected rotational velocity of the young sub-stellar companion GQ Lupi b, along with its barycentric radial velocity. The directly imaged exoplanet or brown dwarf companion joins a small but growing en- semble of wide-orbit sub-stellar companions with a spin measurement. The GQ Lupi system was observed at high spectral resolution (R ∼100 000), and in the analysis we made use of both spectral and spatial filtering to separate the signal of the companion from that of the host star. We detect both CO (S/N=11.6) and H2O (S/N=7.7) in the atmosphere of GQ Lupi b by cross-correlating with model +0:9 −1 spectra, and we find it to be a slow rotator with a projected rotational velocity of 5:3−1:0 km s . - 
												
												Curriculum Vitae - 24 March 2020
Dr. Eric E. Mamajek Curriculum Vitae - 24 March 2020 Jet Propulsion Laboratory Phone: (818) 354-2153 4800 Oak Grove Drive FAX: (818) 393-4950 MS 321-162 [email protected] Pasadena, CA 91109-8099 https://science.jpl.nasa.gov/people/Mamajek/ Positions 2020- Discipline Program Manager - Exoplanets, Astro. & Physics Directorate, JPL/Caltech 2016- Deputy Program Chief Scientist, NASA Exoplanet Exploration Program, JPL/Caltech 2017- Professor of Physics & Astronomy (Research), University of Rochester 2016-2017 Visiting Professor, Physics & Astronomy, University of Rochester 2016 Professor, Physics & Astronomy, University of Rochester 2013-2016 Associate Professor, Physics & Astronomy, University of Rochester 2011-2012 Associate Astronomer, NOAO, Cerro Tololo Inter-American Observatory 2008-2013 Assistant Professor, Physics & Astronomy, University of Rochester (on leave 2011-2012) 2004-2008 Clay Postdoctoral Fellow, Harvard-Smithsonian Center for Astrophysics 2000-2004 Graduate Research Assistant, University of Arizona, Astronomy 1999-2000 Graduate Teaching Assistant, University of Arizona, Astronomy 1998-1999 J. William Fulbright Fellow, Australia, ADFA/UNSW School of Physics Languages English (native), Spanish (advanced) Education 2004 Ph.D. The University of Arizona, Astronomy 2001 M.S. The University of Arizona, Astronomy 2000 M.Sc. The University of New South Wales, ADFA, Physics 1998 B.S. The Pennsylvania State University, Astronomy & Astrophysics, Physics 1993 H.S. Bethel Park High School Research Interests Formation and Evolution - 
												
												An Upper Limit on the Mass of the Circumplanetary Disk for DH Tau B
Draft version August 28, 2021 Preprint typeset using LATEX style emulateapj v. 12/16/11 AN UPPER LIMIT ON THE MASS OF THE CIRCUM-PLANETARY DISK FOR DH TAU B* Schuyler G. Wolff1, Franc¸ois Menard´ 2, Claudio Caceres3, Charlene Lefevre` 4, Mickael Bonnefoy2,Hector´ Canovas´ 5,Sebastien´ Maret2, Christophe Pinte2, Matthias R. Schreiber6, and Gerrit van der Plas2 Draft version August 28, 2021 ABSTRACT DH Tau is a young (∼1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious Hα emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of 17:2 ± 1:7 M⊕, which gives a disk- to-star mass ratio of 0.014 (assuming the usual Gas-to-Dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42M⊕ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model including heating of the circumplanetary disk by DH Tau b and DH Tau A suggests that a mass averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09M⊕ for DH Tau b. - 
												
												Constraints on the Spin Evolution of Young Planetary-Mass Companions Marta L
Constraints on the Spin Evolution of Young Planetary-Mass Companions Marta L. Bryan1, Björn Benneke2, Heather A. Knutson2, Konstantin Batygin2, Brendan P. Bowler3 1Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125, USA. 2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA. 3McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712, USA. Surveys of young star-forming regions have discovered a growing population of planetary- 1 mass (<13 MJup) companions around young stars . There is an ongoing debate as to whether these companions formed like planets (that is, from the circumstellar disk)2, or if they represent the low-mass tail of the star formation process3. In this study we utilize high-resolution spectroscopy to measure rotation rates of three young (2-300 Myr) planetary-mass companions and combine these measurements with published rotation rates for two additional companions4,5 to provide a look at the spin distribution of these objects. We compare this distribution to complementary rotation rate measurements for six brown dwarfs with masses <20 MJup, and show that these distributions are indistinguishable. This suggests that either that these two populations formed via the same mechanism, or that processes regulating rotation rates are independent of formation mechanism. We find that rotation rates for both populations are well below their break-up velocities and do not evolve significantly during the first few hundred million years after the end of accretion. This suggests that rotation rates are set during late stages of accretion, possibly by interactions with a circumplanetary disk. - 
												
												Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 - 
												
												Exoplanet Meteorology: Characterizing the Atmospheres Of
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. - 
												
												Gas and Dust from Hot, Rocky Exoplanets Delivery of Organic
Adaptive optics for high-contrast imaging: The Holographic Modal Wavefront Sensor (HMWFS) Goal: Combining focal-plane Meetings feature presentations by PhD students, postdocs and professors wavefront sensing with apodising phase plate coronography to create who are carrying out research relating to planetary science. temporally stable high-contrast regions in the science PSF, suited to Next meeting: 29 MAY 2015 AT LEIDEN OBSERVATORY, LEIDEN UNIVERSITY direct imaging of exoplanets and Michael Wilby If you would like to join or would like more information, Fig: Focal-plane image of a 6 Zernike mode HMWFS, with a) flat their characterisation with next- Leiden Observatory wavefront and b) 1.5 radians defocus error (Z3). Modal content of the generation instrumentation. [email protected] input wavefront is measured directly by coupled pairs of WFS spots please email [email protected]. Aqueous alteration of polycyclic aromatic hydrocarbons Delivery of organic material and water Present in meteorites and asteroids to planets through asteroid impacts at NAC Is it possible through The goal is to define observables for observations aqueous alteration to alter or breakdown with JWST, METIS & SPICA. polycyclic aromatic hydrocarbons We will study the role of "exo-asteroids" in the delivery of water in asteroids/meteorites? and organics to exoplanets which is interesting because water and organics are relevant for astro-biology. Kateryna Frantseva Claudia-Corina Giese Fig: Scanning electron microscope SRON Groningen/Kapteyn Institute, Leiden - 
												
												Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD - 
												
												Astrometric and Photometric Monitoring of GQ Lupi and Its Sub-Stellar Companion
A&A 484, 281–291 (2008) Astronomy DOI: 10.1051/0004-6361:20078493 & c ESO 2008 Astrophysics Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion R. Neuhäuser1,M.Mugrauer1,A.Seifahrt1,T.O.B.Schmidt1, and N. Vogt2,3 1 Astrophysikalisches Institut, Universität Jena, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [email protected] 2 Departamento de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile 3 Instituto de Astronomía, Universidad Catolica del Norte, Avda. Angamos 0610, Antofagasta, Chile Received 16 August 2007 / Accepted 4 December 2007 ABSTRACT Context. Neuhäuser et al. (2005, A&A, 435, L13) presented direct imaging evidence for a sub-stellar companion to the young T Tauri star GQ Lupi. Common proper motion was highly significant, but no orbital motion was detected. Faint luminosity, low gravity, and a late-M/early-L spectral type indicated that the companion is either a planet or a brown dwarf. Aims. We have monitored GQ Lupi and its companion in order to detect orbital and parallactic motion and variability in its brightness. We also search for closer and fainter companions. Methods. We have taken six more images with the VLT Adaptive Optics instrument NACO from May 2005 to Feb. 2007, always with the same calibration binary from Hipparcos for both astrometric and photometric calibration. By adding up all the images taken so far, we search for additional companions. Results. The position of GQ Lupi A and its companion compared to a nearby non-moving background object varies as expected for parallactic motion by about one pixel (2 · π with parallax π). - 
												
												Exoplanetary Geophysics--An Emerging Discipline
Invited Review for Treatise on Geophysics, 2nd Edition Exoplanetary Geophysics { An Emerging Discipline Gregory Laughlin UCO/Lick Observatory, University of California, Santa Cruz, Santa Cruz, CA 95064, USA Jack J. Lissauer NASA Ames Research Center, Planetary Systems Branch, Moffett Field, CA 94035, USA 1. Abstract Thousands of extrasolar planets have been discovered, and it is clear that the galactic planetary census draws on a diversity greatly exceeding that exhibited by the solar system's planets. We review significant landmarks in the chronology of extrasolar planet detection, and we give an overview of the varied observational techniques that are brought to bear. We then discuss the properties of the planetary distribution that is currently known, using the mass-period diagram as a guide to delineating hot Jupiters, eccentric giant planets, and a third, highly populous, category that we term \ungiants", planets having masses M < 30 M⊕ and orbital periods P < 100 d. We then move to a discussion of the bulk compositions of the extrasolar planets, with particular attention given to the distribution of planetary densities. We discuss the long-standing problem of radius anomalies among giant planets, as well as issues posed by the unexpectedly large range in sizes observed for planets with mass somewhat greater than Earth's. We discuss the use of transit observations to probe the atmospheres of extrasolar planets; various measurements taken during primary transit, secondary eclipse, and through the full orbital period, can give clues to the atmospheric compositions, structures and meteorologies. The extrasolar planet catalog, along with the details of our solar system and observations of star-forming regions and protoplanetary disks, arXiv:1501.05685v1 [astro-ph.EP] 22 Jan 2015 provide a backdrop for a discussion of planet formation in which we review the elements of the favored pictures for how the terrestrial and giant planets were assembled. - 
												
												Download This Article in PDF Format
A&A 593, A75 (2016) Astronomy DOI: 10.1051/0004-6361/201526326 & c ESO 2016 Astrophysics Direct Imaging discovery of a second planet candidate around the possibly transiting planet host CVSO 30? T. O. B. Schmidt1; 2, R. Neuhäuser2, C. Briceño3, N. Vogt4, St. Raetz5, A. Seifahrt6, C. Ginski7, M. Mugrauer2, S. Buder2; 8, C. Adam2, P. Hauschildt1, S. Witte1, Ch. Helling9, and J. H. M. M. Schmitt1 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] 2 Astrophysikalisches Institut und Universitäts-Sternwarte, Universität Jena, Schillergäßchen 2-3, 07745 Jena, Germany 3 Cerro Tololo Inter-American Observatory CTIO/AURA/NOAO, Colina El Pino s/n. Casilla 603, 1700000 La Serena, Chile 4 Instituto de Física y Astronomía, Universidad de Valparaíso, Avenida Gran Bretaña 1111, 2340000 Valparaíso, Chile 5 European Space Agency ESA, ESTEC, SRE-S, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 6 Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637, USA 7 Sterrewacht Leiden, PO Box 9513, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands 8 Max-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 9 School of Physics and Astronomy SUPA, University of St. Andrews, North Haugh, St. Andrews, KY16 9SS, UK Received 16 April 2015 / Accepted 14 March 2016 ABSTRACT Context. Direct imaging has developed into a very successful technique for the detection of exoplanets in wide orbits, especially around young stars. Directly imaged planets can be both followed astrometrically on their orbits and observed spectroscopically and thus provide an essential tool for our understanding of the early solar system.