Redalyc.Hawkmoth Fauna (Sphingidae, Lepidoptera) in a Semi

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Hawkmoth Fauna (Sphingidae, Lepidoptera) in a Semi Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil PRIMO, LUIS M.; DUARTE, JOSÉ A.; MACHADO, ISABEL C. Hawkmoth fauna (Sphingidae, Lepidoptera) in a semi-deciduous rainforest remnant: composition, temporal fluctuations, and new records for northeastern Brazil Anais da Academia Brasileira de Ciências, vol. 85, núm. 3, septiembre, 2013, pp. 1177-1188 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32728660033 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anais da Academia Brasileira de Ciências (2013) 85(3): 1177-1188 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Hawkmoth fauna (Sphingidae, Lepidoptera) in a semi-deciduous rainforest remnant: composition, temporal fluctuations, and new records for northeastern Brazil LUIS M. PRIMO1, JOSÉ A. DUARTE2 and ISABEL C. MACHADO3 1Programa de Pós-Graduação em Biologia vegetal, universidade Federal de Pernambuco, departamento de Botânica, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50372-970 Recife, PE, Brasil 2Núcleo de Pesquisa Educacionais do Rio Grande do Norte/NUPERN, BR 101, Km 0, Centro Administrativo, Lagoa Nova, 59064-901 Natal, RN, Brasil 3departamento de Botânica, universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50372-970 Recife, PE, Brasil Manuscript received on July 16, 2012; accepted for publication on March 15, 2013 ABSTRACT We carried out a qualitative and quantitative inventory of the hawkmoth fauna (Sphingidae) of an area of semi-deciduous seasonal rainforest in the state of Pernambuco (Tapacurá Ecological Station), northeastern Brazil. hawkmoths were sampled monthly from October 2004 to February 2007 (27 months). We recorded 31 species from 16 genera, three tribes, and three families. Macroglossinae was the most abundant subfamily and represented ca. 71% of all species. Out of the 277 individuals collected, 88.4% were males. Five new records were made for northeastern Brazil: Enyo gorgon (Cramer, 1777), Perigonia stulta (Herrich- Schäffer, [1854]), Eupyrrhoglossum sagra (Poey, 1832), Nyceryx coffaeae (Walker, 1856) and Xylophanes chiron (drury, 1773). Eight further species were recorded for the first time for the Pernambuco Endemism Center, showing the important role played by Tapacurá Station in preserving the biodiversity of this insect group. Species richness and abundance were directly related to rainfall: about 70% of all individuals were captured during the rainy season. Changes in Sphingidae populations may, however, be caused by other factors that directly affect either larvae and adults of those insects, such as matrix effect and forest fragment size, which influence migration processes and the presence of predators. Key words: dry forest, Pernambuco Endemism Center, phenology, seasonality, Sphingidae abundance and richness, sphingophily. INTRODUCTION As hawkmoths, like all lepidopterans, are Sphingidae (Lepidoptera, Bombycoidea) have a holometabolous insects, their life cycle is very pantropical distribution with approximately 1,200 uniform. The larvae are generally oligophagous. species (Kitching and Cadiou 2000), from which 75% However they may exist in the same subfamily or occur in tropical regions (Haber 1983). In Brazil, this tribe representatives both oligo and polyphagous. family is represented by 29 genera and 210 species. In general, Sphingidae feeding on young However, this number is probably higher as the leaves low in tannin, although many species of available data are still poor (Duarte et al. 2008). Smerinthini (Smerinthinae), as the Saturniidae, feed on leaves rich in tannin (Pittaway 1993). Correspondence to: Isabel Cristina Machado E-mail: [email protected] Except Smerinthini and Sphingulini, adults, in An Acad Bras Cienc (2013) 85 (3) 1178 LUIS M. PRIMO, JOSÉ A. DUARTE and ISABEL C. MACHADO turn, are polyphagous-nectarivorous generalists, MATERIALS AND METHODS which forage on flowers of many species (Kieslev STUDY SITE et al. 1972, Haber and Frankie 1989, Darrault and Schlindwein 2002), and may be responsible The present study was carried out in Tapacurá for 5 to 10% of the pollination of the tropical Ecological Station (Estação Ecológica do Tapacurá), flora (Bawa et al. 1985, haber and Frankie 1989, São Lourenço da Mata municipality, 50 km from Oliveira et al. 2004, Primo 2008). the coast of Pernambuco State (08°01´S, 35°11´W), The Atlantic Forest located to the north northeastern Brazil. The region’s annual rainfall is of São Francisco River is known as the ca. 1,300 mm and the average temperature is 25.5 °C. Pernambuco Endemism Center (sensu Prance There are marked seasons: the rainy season occurs 1987); faunal inventories in its remnants are of from March to August and the dry season between high biogeographic interest. However, there are September and February (ITEP-LAMEPE) (Fig. 1). only two studies on the sphingid fauna in this ecosystem: Duarte and Schlindwein (2005a) and Lopes et al. (2006), both in rainforest areas, but none in dry forest areas (sensu Gentry 1995). Five other inventories have been carried out in northeastern Brazil in other ecosystems, such as Caatinga (Duarte et al. 2001, Duarte and Schlindwein 2005b, Gusmão and Creão-Duarte Fig. 1 - Multiannual rainfall and temperature at the Tapacurá 2004), Ombrophilous Montane Forest - “Brejo de Ecological Station, Pernambuco, Brazil. Source: ITEP (Instituto Altitude” (Gusmão and Creão-Duarte 2004) and de Tecnologia de Pernambuco), São Lourenço da Mata (barragem Tapacurá) station (historical average of 30 years). Tabuleiro (Darrault and Schlindwein 2002). __________ Rainfall - - - - - - - - Temperature Considering that hawkmoths play a vital role in the stability of ecosystems, acting on the The forest remnant area is approximately 400 ha and pollination and reproduction of plant species, the it is surrounded by a matrix of sugar cane plantations main purpose of our study was to improve the basic and pastures. The vegetation is classified as semi- knowledge on these lepidopterans by answering deciduous seasonal rainforest, as the variation the following questions: What is the composition between dry (six months with rainfall below 100 and abundance of sphingids in the area? Is the mm) and rainy seasons imposes seasonality on the phenology of this group seasonal? We also aimed dominant tree species (Andrade-Lima 1960, Veloso to test whether there was a direct relationship et al. 1991). Although there is a floristic similarity between richness and abundance of sphingids and with the rainforest near the Atlantic coast, the semi- rainfall in the dry forest (sensu Gentry 1995), as it deciduous forest shows a relatively less diverse and has been observed in other ecosystems. structurally simpler community (Rodal et al. 2005). This information is essential not only to improve the biogeographic research on this insect SPHINGID SURVEYS group, but also for the management and conser- Sampling was carried out at each new moon over vation of natural environments, mainly dry forests, two consecutive nights, between 5:30 pm and 2:30 which are fast becoming degraded, as they are am, for 27 months, from October 2004 to February located in sites of flat relief that are eminently 2007 (only June 2005 and January 2006 were not suitable for agriculture (Janzen 1988a,b, 1997). sampled), for a total of 486 sampling hours. An Acad Bras Cienc (2013) 85 (3) HAWKMOTH FAUNA IN A SEMI-DECIDUOUS RAINFOREST 1179 To sample the moths, we used a light trap STATISTICAL ANALYSIS composed of a mercury vapor lamp (250 watts) in To test for differences in species richness and a vertical position two meters above the ground in abundance between dry and rainy seasons, as well front of a white cloth of 3 x 2 m. We always set the as the relationship between population size of the trap in the same site: an open area that allowed the most abundant species and annual rainfall, we used light to shine across a large forest area. Pearson’s correlation. Calculations were made Sphingids were collected by hand, using an using the package BioStat 5.0 (Ayres et al. 2007). entomological net, killed with an injection of The relative abundance of hawkmoth species was ethyl acetate ventrally between the thorax and calculated as a percentage of number of individual the abdomen, conserved in individual wax-paper collected monthly in relation to the total of captured envelopes, and later dry-pinned, labeled and individuals. The normality of the data was checked deposited in the collection of the Laboratory of using the Liliefors’ test (Sokal and Rohlf 1995). Floral and Reproductive Biology (Laboratório de Biologia Floral e Reprodutiva), at the RESULTS Botanical Department of Universidade Federal COMPOSITION OF ThE SPHINGID FAUNA de Pernambuco, Recife, Brazil. Species were identified using Kitching and Cadiou (2000) and We captured 277 sphingids of 16 genera and 31 additional literature (D´Abrera 1986, Moré et al. species (Table I). The subfamily Macroglossinae 2005). We determined the sex of each individual was most abundant (22 species, 70.96%) followed by by the morphology of the frenulum (a brush of Sphinginae (eight species, 25.8%) and Smerinthinae bristles
Recommended publications
  • Recolecta De Artrópodos Para Prospección De La Biodiversidad En El Área De Conservación Guanacaste, Costa Rica
    Rev. Biol. Trop. 52(1): 119-132, 2004 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Recolecta de artrópodos para prospección de la biodiversidad en el Área de Conservación Guanacaste, Costa Rica Vanessa Nielsen 1,2, Priscilla Hurtado1, Daniel H. Janzen3, Giselle Tamayo1 & Ana Sittenfeld1,4 1 Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Costa Rica. 2 Dirección actual: Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. 3 Department of Biology, University of Pennsylvania, Philadelphia, USA. 4 Dirección actual: Centro de Investigación en Biología Celular y Molecular, Universidad de Costa Rica. [email protected], [email protected], [email protected], [email protected], [email protected] Recibido 21-I-2003. Corregido 19-I-2004. Aceptado 04-II-2004. Abstract: This study describes the results and collection practices for obtaining arthropod samples to be stud- ied as potential sources of new medicines in a bioprospecting effort. From 1994 to 1998, 1800 arthropod sam- ples of 6-10 g were collected in 21 sites of the Área de Conservación Guancaste (A.C.G) in Northwestern Costa Rica. The samples corresponded to 642 species distributed in 21 orders and 95 families. Most of the collections were obtained in the rainy season and in the tropical rainforest and dry forest of the ACG. Samples were obtained from a diversity of arthropod orders: 49.72% of the samples collected corresponded to Lepidoptera, 15.75% to Coleoptera, 13.33% to Hymenoptera, 11.43% to Orthoptera, 6.75% to Hemiptera, 3.20% to Homoptera and 7.89% to other groups.
    [Show full text]
  • Lepidoptera Sphingidae:) of the Caatinga of Northeast Brazil: a Case Study in the State of Rio Grande Do Norte
    212212 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 59(4), 2005, 212–218 THE HIGHLY SEASONAL HAWKMOTH FAUNA (LEPIDOPTERA SPHINGIDAE:) OF THE CAATINGA OF NORTHEAST BRAZIL: A CASE STUDY IN THE STATE OF RIO GRANDE DO NORTE JOSÉ ARAÚJO DUARTE JÚNIOR Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58059-900, João Pessoa, Paraíba, Brasil. E-mail: [email protected] AND CLEMENS SCHLINDWEIN Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brasil. E-mail:[email protected] ABSTRACT: The caatinga, a thorn-shrub succulent savannah, is located in Northeastern Brazil and characterized by a short and irregular rainy season and a severe dry season. Insects are only abundant during the rainy months, displaying a strong seasonal pat- tern. Here we present data from a yearlong Sphingidae survey undertaken in the reserve Estação Ecológica do Seridó, located in the state of Rio Grande do Norte. Hawkmoths were collected once a month during two subsequent new moon nights, between 18.00h and 05.00h, attracted with a 160-watt mercury vapor light. A total of 593 specimens belonging to 20 species and 14 genera were col- lected. Neogene dynaeus, Callionima grisescens, and Hyles euphorbiarum were the most abundant species, together comprising up to 82.2% of the total number of specimens collected. These frequent species are residents of the caatinga of Rio Grande do Norte. The rare Sphingidae in this study, Pseudosphinx tetrio, Isognathus australis, and Cocytius antaeus, are migratory species for the caatinga.
    [Show full text]
  • The Sphingidae (Lepidoptera) of the Philippines
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe­ cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each).
    [Show full text]
  • Further Records of Ecuadorian Sphingidae (Lepidoptera: Sphingidae) 137-141 - 1 3 7
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Neue Entomologische Nachrichten Jahr/Year: 1998 Band/Volume: 41 Autor(en)/Author(s): Racheli Luigi, Racheli Tommaso Artikel/Article: Further records of Ecuadorian Sphingidae (Lepidoptera: Sphingidae) 137-141 - 1 3 7 - Further records of Ecuadorian Sphingidae (Lepidoptera: Sphingidae) by Luigi Racheli & T ommaso Racheli Abstract Distributional records of 22 hawkmoths species of Ecuador are reported. In the past, distributional data on the ecuadorian Sphingidae were reported by Dognin (1886-1897), Campos (1931), Rothschild & J ordan (1903) and Schreiber (1978). Haxaire (1991), describing a new species of Xylophanes from Ecuador, has reported a total of 135 species collected in Ecuador. Racheli & R acheli (1994) listed 167 species, including recent collecting data for 80 species, and all the records for the country extracted from the literature, including also doubtful records such as Manduca muscosa (Rothschild & J ordan , 1903) and Xylophanes juanita Rothschild & J ordan , 1903 which are unlikely to occur in Ecuador. The total number of hawkmoths species of Ecuador may account for approximately 155-160 spe­ cies. Following the recent studies of Racheli & R acheli (1994, 1995), Racheli (1996) and Haxaire (1995, 1996a, 1996b), additional records of Museum specimens and of material collected in Ecuador are given herewith. All the specimens reported below are in the collection of the senior author unless otherwise stated. Abbreviations: Imbabura (IM); Esmeraldas (ES); Pichincha (PI); Ñapo (NA); Pastaza (PA); Morona Santiago (MS). EMEM = Entomologische Museum (Dr, Ulf Eitschberger ), Marktleuthen, Germany; ZSBS = Zoologische Saammlungen des Bayerischen, München, Germany. Sphinginae Manduca lefeburei lefeburei (Guérin-Ménéville , 1844) Remarks: In Ecuador, it is distributed on both sides of the Andes and according to Haxaire (1995) it coexists with Manduca andicola (Rothschild & J ordan , 1916).
    [Show full text]
  • Lepidoptera, Sphingidae, Smerinthinae)
    Lucas Waldvogel Cardoso Contribuição de marcadores morfológicos e moleculares na elucidação da Sistemática de Ambulycini (Lepidoptera, Sphingidae, Smerinthinae) Contribution of morphological and molecular markers to the elucidation of the Ambulycini systematics (Lepidoptera, Sphingidae, Smerinthinae) São Paulo 2015 Exemplar corrigido O original encontra-se disponível no Instituto de Biociências da USP Lucas Waldvogel Cardoso Contribuição de marcadores morfológicos e moleculares na elucidação da Sistemática de Ambulycini (Lepidoptera, Sphingidae, Smerinthinae) Contribution of morphological and molecular markers to the elucidation of the Ambulycini systematics (Lepidoptera, Sphingidae, Smerinthinae) Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Ciências Biológicas, na Área de Zoologia. Orientador: Prof. Dr. Marcelo Duarte da Silva São Paulo 2015 Ficha Catalográfica Waldvogel Cardoso, Lucas Contribuição de marcadores morfológicos e moleculares na elucidação da Sistemática de Ambulycini (Lepidoptera, Sphingidae, Smerinthinae) 187 + iv pp. Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Zoologia. 1. Ambulycini 2. Filogenia 3. Filogeografia 4. Conservação I. Universidade de São Paulo. Instituto de Biociências. Departamento de Zoologia. Comissão Julgadora: ________________________ _______________________ Prof(a). Dr(a). Prof(a). Dr(a). ______________________ Prof(a). Dr.(a). Orientador(a) Dedicatória À minha família, a quem devo todas as minhas conquistas. Epígrafe ‘‘The crux of the problem is that if we don’t know what is out there or how widely species are distributed, how can we convince people about the reality and form of the biodiversity crisis?’’ Riddle et al. (2011). Agradecimentos Inicialmente, ao Prof. Dr. Marcelo Duarte, a quem devo muito pela paciência e compreensão.
    [Show full text]
  • ! 2013 Elena Tartaglia ALL RIGHTS RESERVED
    !"#$%&" '()*+",+-.+/(0+" 122"3456,7"3'7'38'9" HAWKMOTH – FLOWER INTERACTIONS IN THE URBAN LANDSCAPE: SPHINGIDAE ECOLOGY, WITH A FOCUS ON THE GENUS HEMARIS By ELENA S. TARTAGLIA A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Ecology and Evolution written under the direction of Dr. Steven N. Handel and approved by ________________________________________! ________________________________________ ________________________________________ ________________________________________ New Brunswick, New Jersey May 2013 ABSTRACT OF THE DISSERTATION Hawkmoth-Flower Interactions in the Urban Landscape: Sphingidae Ecology, With a Focus on the Genus Hemaris by ELENA S. TARTAGLIA Dissertation Director: Steven N. Handel ! In this dissertation I examined the ecology of moths of the family Sphingidae in New Jersey and elucidated some previously unknown aspects of their behavior as floral visitors. In Chapter 2, I investigated differences in moth abundance and diversity between urban and suburban habitat types. Suburban sites have higher moth abundance and diversity than urban sites. I compared nighttime light intensities across all sites to correlate increased nighttime light intensity with moth abundance and diversity. Urban sites had significantly higher nighttime light intensity, a factor that has been shown to negatively affect the behavior of moths. I analyzed moths’ diets based on pollen grains swabbed from the moths’ bodies. These data were inconclusive due to insufficient sample sizes. In Chapter 3, I examined similar questions regarding diurnal Sphingidae of the genus Hemaris and found that suburban sites had higher moth abundances and diversities than urban sites.
    [Show full text]
  • Acoustic Communication in the Nocturnal Lepidoptera
    Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B.
    [Show full text]
  • Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes
    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes Akito Y. Kawahara1*, Andre A. Mignault1, Jerome C. Regier2, Ian J. Kitching3, Charles Mitter1 1 Department of Entomology, College Park, Maryland, United States of America, 2 Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America, 3 Department of Entomology, The Natural History Museum, London, United Kingdom Abstract Background: The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well- studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes. Methodology/Principal Findings: The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two- thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes.
    [Show full text]
  • Lepidoptera: Sphingidae) in Savannahs in the Alter Do Chão Protection Area, Santarém, Pará, Brazil
    Acta Scientiarum http://periodicos.uem.br/ojs/acta ISSN on-line: 1807-863X Doi: 10.4025/actascibiolsci.v42i2.49064 ECOLOGY Temporal variation and ecological parameters of hawkmoths (Lepidoptera: Sphingidae) in savannahs in the Alter do Chão protection area, Santarém, Pará, Brazil Ana Carla Walfredo da Conceição1* and José Augusto Teston1,2 ¹Programa de Pós-Graduação de Recursos Naturais da Amazônia, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, 68040-255, Santarém, Pará, Brazil. 2Laboratório de Estudos de Lepidópteros Neotropicais, Instituto de Ciências da Educação, Museu de Zoologia, Santarém, Pará, Brazil. *Author for correspondence. E-mail: [email protected] ABSTRACT. This study evaluated the seasonality of Sphingidae spp. in two areas of savannah, in the eastern Brazilian Amazon, sampled for one year (June, 2014 through May, 2015) with the aid of Pennsylvania light traps placed at four sampling points. Data on fauna were obtained through the following parameters: abundance (N), richness (S), composition, Shannon diversity and uniformity indices (H’ and U’), and the Berger-Parker (BP) dominance index. Richness estimates were calculated using Bootstrap, Chao1, ACE, Jackknife 1, and Jackknife2 estimators. The Pearson correlation was also used to analyze the effect of climatic variables such as rainfall, temperature, and relative humidity on richness and abundance. The result for the parameters analyzed during the entire sampling period was N= 374, S= 34, H’= 2.59, U= 0.733 and BP= 0.235. The estimation of richness showed that between 63% and 87% of expected species were collected (Bootstrap estimated 39 species and Chao1 estimated 54). The most representative species were: Isognathus caricae (Linnaeus, 1758) (N= 88), Enyo lugubris lugubris (Linnaeus, 1771) (N= 58), Isognathus menechus (Boisduval, [1875]) (N= 46) and Cocytius duponchel (Poey, 1832) (N= 44), with 54% of the sample containing species considered rare divided into 298 male and 76 female specimens.
    [Show full text]
  • Lista De Anexos
    LISTA DE ANEXOS ANEXO N°1 MAPA DEL HUMEDAL ANEXO N°2 REGIMEN DE MAREAS SAN JUAN DEL N. ANEXO N°3 LISTA PRELIMINAR DE FAUNA SILVESTRE ANEXO N°4 LISTA PRELIMINAR DE VEGETACIÓN ANEXO N°5 DOSSIER FOTOGRAFICO 22 LISTADO PRELIMINAR DE ESPECIES DE FAUNA SILVESTRE DEL REFUGIO DE VIDA SILVESTRE RIO SAN JUAN. INSECTOS FAMILIA ESPECIE REPORTADO POR BRENTIDAE Brentus anchorago Giuliano Trezzi CERAMBYCIDAE Acrocinus longimanus Giuliano Trezzi COCCINELLIDAE Epilachna sp. Giuliano Trezzi COENAGRIONIDAE Argia pulla Giuliano Trezzi COENAGRIONIDAE Argia sp. Giuliano Trezzi FORMICIDAE Atta sp. Giuliano Trezzi FORMICIDAE Paraponera clavata Giuliano Trezzi FORMICIDAE Camponotus sp. Giuliano Trezzi GOMPHIDAE Aphylla angustifolia Giuliano Trezzi LIBELLULIDAE Micrathyria aequalis Giuliano Trezzi LIBELLULIDAE Micrathyria didyma Giuliano Trezzi LIBELLULIDAE Erythemis peruviana Giuliano Trezzi LIBELLULIDAE Erythrodiplax connata Giuliano Trezzi LIBELLULIDAE Erythrodiplax ochracea Giuliano Trezzi LIBELLULIDAE Dythemis velox Giuliano Trezzi LIBELLULIDAE Idiataphe cubensis Giuliano Trezzi NYMPHALIDAE Caligo atreus Javier Baltodano NYMPHALIDAE Archaeoprepona demophoon Javier Baltodano NYMPHALIDAE Eueides lybia Javier Baltodano NYMPHALIDAE Dryas iulia Javier Baltodano NYMPHALIDAE Heliconius charitonius Javier Baltodano NYMPHALIDAE Heliconius cydno Javier Baltodano NYMPHALIDAE Heliconius erato Javier Baltodano NYMPHALIDAE Heliconius melponeme Javier Baltodano NYMPHALIDAE Heliconius sara Javier Baltodano NYMPHALIDAE Philaetria dido Javier Baltodano NYMPHALIDAE Aeria eurimedia
    [Show full text]
  • Journal of the Lepidopterists' Society
    Volume 62 Number 2 25 Aug 2008 ISSN 0024-0966 Journal of the Lepidopterists' Society Published quarterly by The Lepidopterists' Society ) ) THE LEPIDOPTERISTS’ SOCIETY Executive Council John H. Acorn, President John Lill, Vice President William E. Conner, Immediate Past President David D. Lavvrie, Secretary Andre V.L. Freitas, Vice President Kelly M. Richers, Treasurer Akito Kayvahara, Vice President Members at large: Kim Garwood Richard A. Anderson Michelle DaCosta Kenn Kaufman John V. Calhoun John H. Masters Plarry Zirlin Amanda Roe Michael G. Pogue Editorial Board John W. Rrovvn {Chair) Michael E. Toliver Member at large ( , Brian Scholtens (Journal Lawrence F. Gall ( Memoirs ) 13 ale Clark {News) John A. Snyder {Website) Honorary Life Members of the Society Charles L. Remington (1966), E. G. Munroe (1973), Ian F. B. Common (1987), Lincoln P Brower (1990), Frederick H. Rindge (1997), Ronald W. Hodges (2004) The object of The Lepidopterists’ Society, which was formed in May 1947 and formally constituted in December 1950, is “to pro- mote the science of lepidopterology in all its branches, ... to issue a periodical and other publications on Lepidoptera, to facilitate the exchange of specimens and ideas by both the professional worker and the amateur in the field; to secure cooperation in all mea- sures” directed towards these aims. Membership in the Society is open to all persons interested in the study of Lepidoptera. All members receive the Journal and the News of The Lepidopterists’ Society. Prospective members should send to the Assistant Treasurer full dues for the current year, to- gether with their lull name, address, and special lepidopterological interests.
    [Show full text]
  • Lista Taxonómica Actualizada De Los Esfíngidos De Cuba (Lepidoptera)
    Lista taxonómica actualizada de los esfíngidos de Cuba (Lepidoptera) Alfonso Iorio [email protected] La última y más reciente clasificacion taxonómica (la misma que adopté en mi libro sobre los esfíngidos de Ecuador: “Mariposas del Ecuador. Sphingidae”) es de Kitching & Cadiou (2000). Así, la familia contiene las siguentes agrupaciones: Familia: Sphingidae Latreille, [1802] Subfamilia: Smerinthinae Grote & Robinson, 1865 Tribu: Smerinthini Grote & Robinson, 1865 Sphingulini Rothschild & Jordan, 1903 Ambulycini Butler, 1876 Subfamilia: Sphinginae Latreille, [1802] Tribu: Sphingini Latreille, [1802] Acherontiini Boisduval, [1875] Subfamilia: Macroglossinae Harris, 1839 Tribu: Dilophonotini Burmeister, 1878 Subtribu: Dilophonotina Burmeister, 1878 Hemarina Tutt, 1902 Tribu : Philampelini Burmeister, 1878 Macroglossini Harris, 1839 Subtribu: Macroglossina Harris, 1839 Choerocampina Grote & Robinson, 1865 Subfamilias, tribus y subtribus que se encuentran en Cuba: Familia: Sphingidae Latreille, [1802] Subfamilia: Smerinthinae Grote & Robinson, 1865 Tribu: Ambulycini Butler, 1876 Protambulyx strigilis (L., 1771) Adhemarius gannascus cubanus (Rothschild & Jordan, 1908) Subfamilia: Sphinginae Latreille, [1802] Tribu: Sphingini Latreille, [1802] Nannoparce poeyi (Grote, 1865) Manduca afflicta (Grote, 1865) Manduca brontes cubensis (Grote, 1865) Manduca quinquemaculatus (Haworth, 1803) Manduca rustica cubana (Wood, 1915) Manduca sexta jamaicensis (Butler, 1875) Neococytius cluentius (Cramer, 1775) Cocytius antaeus (Drury, 1773) Cocytius duponchel
    [Show full text]