The Minoan Eruption of Santorini, Greece

Total Page:16

File Type:pdf, Size:1020Kb

The Minoan Eruption of Santorini, Greece The Minoan eruption of Santorini, Greece A. BOND & R. S. J. SPARKS SUMMARY The Minoan eruption of Santorini produced logical contrasts in the mass flows which pro- the following sequence of deposits- a plinian duced them. Grain size analyses show wide pumice fall deposit, interbedded surtseyan-type ranges in the lithic contents of the different ash fall and base surge deposits, mud-flow types of deposit: ignimbrite (35--6o~), mud- deposits and ignimbrite interbedded with very flows (2o-3o ~) and the pyroclastic fall and coarse, well-sorted flood deposits. The variation base surge deposits (4-x 5 %). The ignimbrite is of thickness and grain size in the plinian deposit enriched in crystals, complemented by deple- indicates a vent x km west of Thera town. The tion in fine air-fall ash beds that interstratify base surges and surtseyan-type activity is in- with the ignimbrite. The gas velocity of the terpreted as the result of sea water entering the plinian phase is estimated as 55o m/s, the erup- magma chamber. The poorly sorted mud-flow tion column height as greater than 2o km deposits and ignimbrite are distinguished on and it is shown that only particles of 2 mm their grain size, temperature and morphological could have reached Minoan Crete. characteristics, which indicate substantial rheo- I N T H ~. L AT E B R ON Z F. A o E a paroxysmal eruption took place on Santorini Vol- cano, referred to as the Minoan eruption after the Minoan civilisation which inhabited the island at that time. The eruption produced a great volume of pumice and ash and resulted in the formation of the present day caldera which measures x 1- 5 × 8 km and probably had a catastrophic effect on the people living in the southern Aegean. There is still controversy concerning the exact date of the erup- tion, which is largely based on archaeological finds at the buried town of Acrotiri on Santorini. For convenience the date of I47o B.C. 4-2O years is accepted, follow- ing Luce (1967). Santorini is a group of islands lying I2o km north of Crete at the southern end of the Cycladic Group. It is the only active volcano in the eastern Mediterranean to have been copiously active in historic times. The islands of Palea Kammeni and Nea Kammeni in the middle of the caldera have been constructed by post-Minoan eruptions in 197 B.C., A.D. 19, 46, 726, 1570, 17O7- 171 I, 1866--70 , 1925--6, 1928, I939-41 and I95 ° (Georgalas I962) which have been largely small, gas-poor eruptions characterised by weak vulcanian explosions and the effusion of blocky lava flows; the eruption of A.D. 726, however, produced considerable pumice. Santorini has been the subject of several stratigraphical and petrological studies including the classic research of Fouqu6 (i879) and the studies of Pichler & Kuss- maul (I972) and Nicholls (I97I). The volcano is built up on a basement of Triassic limestones, forming the hills of Monte Elias and Platinamos, and Mesozoic schists near the port of Athinion (Pichler & Kussmaul I972 ). Previous workers recognise several phases of activity at different centres in the construction of the volcano, beginning wlth the old and substantially altered Acr0tiri group in the south. Van Padang (t 936) reeognises several series of pyroclastic deposits: i) the lower Pumice 'series,' 2) the middle Pumice 'series' and 3) the upper Pumice Jl geol. Soc. Lond. vol. x32, x976, pp. I-I6, 7 figs. Printed in Northern Ireland. Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/132/1/1/4896862/gsjgs.132.1.0001.pdf by guest on 24 September 2021 A. Bond & R. S. J. Sparks 'series' However, there is considerable stratigraphic imbalance in that both the lower and middle Pumice 'series' represent the accumulated products of a large number of explosive eruptions exposed in the wall of the caldera, whereas the upper Pumice 'series' represents the products of one eruption, the t47 o B.C. event. Before the Minoan eruption there was probably only one island, known as Stronghyli (Pichler & Kussmaul I972) with a steep sided central cone which, judging from the present profile of the volcano, rose to between 5oo and 8oo m above sea level. Repeated eruptions of blocky lavas similar to the historic lavas of Nea Kammeni has infilled an old ealdera in the NE. of the island, a cross section of which is preserved in the caldera walls between Thera and Oia. To the south lay a low sloping plain formed by the pyroclastic accumulations from many pre- historic eruptions. The Minoan eruption produced a thick, continuous layer of white pumice and ash that now covers the remnants of the volcano like icing on a cake. The products of the eruption were a plinian pumice fall deposit succeeded by fine ash fall and base surge deposits, ignimbrite, mud-flows and mud-flood deposits. This study describes the relations and characteristics of the products of this eruption and offers volcanological interpretation of an event which has aroused much interest and debate in the fields of geology, archaeology, history and the classics. I. Products of the Minoan eruption (A) THE PLINIAN PUMICE FALL DEPOSIT The lowermost unit is a pyroclastic fall deposit composed of white to pale pink pumice clasts and accessory angular lithic fragments. Figure I shows the isopach map and isopleth maps of the average diameter of the five largest pumice and lithic clasts seen at each exposure, and they all indicate a source vent about I to 2 km west of Thera town. The deposit is reversely graded in the central and south- ern parts of the island. The deposit is poorly stratified, which suggests continuity in the activity (stratification in pyroclastic fall deposits is a result of discontinuity in the activity), and well sorted. The content of lithic clasts increases towards the top of the deposit to form a lithic enriched zone making up between 5 and 4o% of the total thickness, and reaching a maximum I km north of Thera town. The deposit contains several varieties of lithic fragments including a highly ferruginous sandstone, altered tufts and some hFpabyssal rocks. Many of the xenoliths are coated with a veneer of deep red iron oxides, and a red-stained halo, formed by a leaching of iron oxides from the lithics, often extends into the surrounding pumice. In addition to the white pumice a pale grey rounded pumice commonly occurs in the upper parts of the deposit. Many of the white pumice clasts contain irregularly shaped fragments of this grey pumice and in rare examples the grey and white pumice are intimately mixed as streaks. The boundaries between the white and grey pumice are crenu- late and highly embayed. These features are characteristics of the mixture of two magmas of contrasted viscosities (Blake et al. 1964). The grey pumice is a basaltic andesite, containing minor amounts of olivine, whereas the main white pumice is a rhyodacite (Gunther & Piehler i973). Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/132/1/1/4896862/gsjgs.132.1.0001.pdf by guest on 24 September 2021 Minoan eruption of Santorini The Minoan Pumice Deposit is similar to many other deposits which are attrib- uted to plinian-type activity. It has the form of a widely dispersed sheet, is poorly stratified, contains a relatively low proportion of lithics and is reversely graded, A ~,4#E I~OLIiMM B / ~"To Thickness i N I. .o* ..o o 1 l ~I0,1 ~fXO~IITI -(~ - ,...~j.'""--.~ Maximum D / ~*~"-~,_ Maximum ~a ..2~r "~'~l~s Pumice / ~ ~,~. :'" :!e.= kt7.i / ! ~ ~ ~--~.,,,\- N • ~, "~'"~ " ~4" /1 I "7-4 12-5 14 0 18"4 ~#o ,,~-~ .,,.o .,.~ "~ .12"3 ,J' o, ! =.~ 3~. 3e FiG. I. A. Main place names and outcrops of Mesozoic rock: (x) Mt. Elias, (2) Platinamos. B. Isopach map of the Plirdan pumice deposit in cm. Open stars--thickness in- complete due to erosion. Closed stars--thickness over-estimated due to slippage on steep slope. C,D. Isopleth maps of the average diameter of the five largest fragments in cm for pumice and litldc clasts respectively. The suspected source vent for the Minoan erup- tion is shown by the large black circle. Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/132/1/1/4896862/gsjgs.132.1.0001.pdf by guest on 24 September 2021 A. Bond & R. S. J. @arks in common with other well described plinian deposits, for example, Fogo A in the Azores (Walker & Croasdale 197 I) ; the A.D. 79 and 1200 B.C. deposits of Somma- Vesuvius, Italy (Liter et al. I973) , and the Granadilla pumice deposit, Tenerife (Booth 1973). Walker (1973) classifies explosive volcanic eruptions on the basis of the dispersal D, defined as the area enclosed within the o.o I Tmax isopach (where Tmax is the maximum thickness of the deposit) and the degree of fragmentation F, defined as the percentage finer than I mm at the o.o I Tmax isopach. He defines plinian deposits as those with D values greater than I ooo km ~.. Although the area of Santorini limits application of this definition, D must be very much in excess of IOOO km 2. Tmax is taken as 550 cm (Fig. I) and the 25 cm isopach covers about 500 km * and so o.o I Tmax (5"5 cm) must cover several thousand km ~. Although the fragmentation F is difficult to ascertain the deposit can be regarded as the product of thoroughly typical Plinian activity. (B) BASE SURGE AND FINE ASH FALL DEPOSITS Much finer, ill-sorted and well-stratified deposits overlie the Plinian pumice deposit in the caldera wall.
Recommended publications
  • 435 the Date of the Minoan Santorini Eruption
    THE DATE OF THE MINOAN SANTORINI ERUPTION: QUANTIFYING THE “OFFSET” Felix Höflmayer Deutsches Archäologisches Institut, Orient-Abteilung, Peter-Lenné-Strasse 32, 14195 Berlin, Germany. Email: [email protected]. ABSTRACT. Despite many recent attempts to settle the dispute concerning the absolute date of the Minoan Santorini erup- tion, there are still differences between some archaeologists and scientists on the absolute dates and the reliability of radio- carbon dating. The recent publication of over 200 new 14C dates for dynastic Egypt rules out a major flaw in the historical chronology of Egypt and proves the reliability of 14C dating in the Nile Valley. Therefore, the student of Aegean archaeology and eastern Mediterranean interconnections is still confronted with an archaeologically based conventional, or “low,” chro- nology and a 14C-backed “high” chronology. New 14C determinations from different sites of the Aegean support the high chronology for the Late Minoan (LM) IA, while recent re-evaluation of LM IB determinations are slightly higher but more or less in agreement with archaeological estimations. The present contribution reviews archaeological and scientific data for the LM IA period and argues that a reduced (~30 to 50 yr) offset between archaeological and 14C dates for the Minoan San- torini eruption may be possible, thus offering new perspectives for potential solutions for this problem. INTRODUCTION: “HIGH” AND “LOW” CHRONOLOGY AND RECENT DEVELOPMENTS Since the mid-1980s, a date for the Minoan eruption of Santorini 100 to 150 yr higher than previ- ously argued was suggested by radiocarbon dating and climatic events recorded in ice cores and tree rings from North America, Europe, and the eastern Mediterranean, placing the end of the Late Minoan (LM) IA period in the second half of the 17th century BCE (Betancourt 1987; Manning 1988, 1989a,b, 1990a,b, 1999, 2007, 2009; Michael and Betancourt 1988a,b; Friedrich et al.
    [Show full text]
  • The Minoan Eruption of Santorini, Greece
    The Minoan eruption of Santorini, Greece A. BOND & R. S. J. SPARKS SUMMARY The Minoan eruption of Santorini produced logical contrasts in the mass flows which pro- the following sequence of deposits- a plinian duced them. Grain size analyses show wide pumice fall deposit, interbedded surtseyan-type ranges in the lithic contents of the different ash fall and base surge deposits, mud-flow types of deposit: ignimbrite (35--6o~), mud- deposits and ignimbrite interbedded with very flows (2o-3o ~) and the pyroclastic fall and coarse, well-sorted flood deposits. The variation base surge deposits (4-x 5 %). The ignimbrite is of thickness and grain size in the plinian deposit enriched in crystals, complemented by deple- indicates a vent x km west of Thera town. The tion in fine air-fall ash beds that interstratify base surges and surtseyan-type activity is in- with the ignimbrite. The gas velocity of the terpreted as the result of sea water entering the plinian phase is estimated as 55o m/s, the erup- magma chamber. The poorly sorted mud-flow tion column height as greater than 2o km deposits and ignimbrite are distinguished on and it is shown that only particles of 2 mm their grain size, temperature and morphological could have reached Minoan Crete. characteristics, which indicate substantial rheo- I N T H ~. L AT E B R ON Z F. A o E a paroxysmal eruption took place on Santorini Vol- cano, referred to as the Minoan eruption after the Minoan civilisation which inhabited the island at that time. The eruption produced a great volume of pumice and ash and resulted in the formation of the present day caldera which measures x 1- 5 × 8 km and probably had a catastrophic effect on the people living in the southern Aegean.
    [Show full text]
  • Plumbing System Dynamics at Kolumbo Submarine Volcano, Greece, Prior to the 1650 CE Explosive Eruption
    Goldschmidt2019 Abstract Plumbing system dynamics at Kolumbo submarine volcano, Greece, prior to the 1650 CE explosive eruption F. MASTROIANNI1,2,*, I. FANTOZZI2, C.M. PETRONE3, G.E. VOUGIOUKALAKIS4, E. BRASCHI5, L. FRANCALANCI2 1DST, University of Pisa, Via S. Maria 53, Pisa, IT (*correspondence: [email protected]) 2DST, University of Florence, Via G. LaPira, 4, Florence, IT 3The Natural History Museum, CromWell Road, London, UK 4HSGME, S. Lui 1, Olympic Village, Athens, GR 5CNR-IGG, Via G. LaPira, 4, Florence, IT Kolumbo is the largest of tWenty submarine volcanic cones tectonically aligned in the transtentional Anydros basin, NE of Santorini, representing one of the most seismically active Zones in the South Aegean Volcanic Arc. Kolumbo explosively erupted in 1650 CE, causing the death of 70 people on Santorini. Explorative cruises employing ROVs shoWed the presence of a high temperature (220°C) hydrothermal field With CO2-rich discharges and accumulation of acidic Water at the bottom of the crater (505m bsl) [1], increasing the haZard of this active system. A possible magma chamber Was recognized beloW the crater at depth 9-6 km by seismic data [2], Which is separated from the storage system of Santorini, as suggested also for the mantle source by geochemical data [3]. We present neW petrographic, geochemical and isotopic data (on Whole-rock, minerals and glasses) of samples collected during the cruises. Most samples represent the juvenile products of the 1650 CE activity, characterizing the different magmas interacting before the eruption. They consist of White rhyolitic pumices With grey and black bands, also including centimetric to millimetric, basaltic-andesitic enclaves.
    [Show full text]
  • A Different Ocean Acidification Hazard—The Kolumbo Submarine Volcano
    A different ocean acidifi cation hazard—The Kolumbo submarine volcano example Peter G. Brewer Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, California 95039, USA Detailed knowledge of the geochemistry of CO2, the signature mol- column with its large capacity for dissolution. If transport overcomes this ecule of the 21st century, is a modern day requirement for almost all geo- aqueous chemical sink—the bubble streams typically dissolve within ~10 chemists. Concerns over CO2 driven contemporary climate change, its m rise—the gas will be exposed to the atmosphere at the wind-swept open relationship to past climates in Earth history, skills required for geologic ocean surface. CO2 sequestration, and the rapid emergence of ocean acidifi cation as an There is also the matter of scale. The estimated 400 metric tons environmental threat are all prime subject matter for the literate geoscien- of dissolved CO2 in the Kolumbo crater is far less than the 100,000 – tist today. In this issue of Geology, Carey et al. (2013, p. 1035) describe 300,000 tons believed to have been released in the Lake Nyos event. Of a new, interesting, and quite powerful natural example of the intersection course, we could be at an early stage of the CO2 buildup, and over time, of these concerns in describing the build-up of a large body of acidic, far larger quantities could accumulate. Carey et al. show that the local dense CO2 rich sea water in the shallow crater of the Kolumbo volcano source is an extensive hydrothermal vent fi eld, releasing almost pure close to the Mediterranean island of Santorini.
    [Show full text]
  • Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected]
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2007 Exploring Submarine Arc Volcanoes Steven Carey University of Rhode Island, [email protected] Haraldur Sigurdsson University of Rhode Island Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Carey, S., and H. Sigurdsson. 2007. Exploring submarine arc volcanoes. Oceanography 20(4):80–89, https://doi.org/10.5670/ oceanog.2007.08. Available at: https://doi.org/10.5670/oceanog.2007.08 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. This article has This been published in or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any permitted articleonly photocopy by is of machine, reposting, this means or collective or other redistirbution SP ec I A L Iss U E On Ocean E X P L O R ATIO N Oceanography , Volume 20, Number 4, a quarterly journal of The 20, Number 4, a quarterly , Volume O ceanography Society. Copyright 2007 by The 2007 by Copyright Society. ceanography Exploring O ceanography Society. All rights All reserved. Society. ceanography O Submarine Arc Volcanoes or Th e [email protected] Send Society. ceanography to: correspondence all B Y S T even C A R E Y an D H A R A LDUR SIGURD ss O N Three quarters of Earth’s volcanic activ- although a significant part of arc volca- tion of tsunamis (Latter, 1981).
    [Show full text]
  • Dating the Santorini Eruption
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 The olive-branch dating of the Santorini eruption Cherubini, Paolo ; Humbel, Turi ; Beeckman, Hans ; Gärtner, Holger ; Mannes, David ; Pearson, Charlotte ; Schoch, Werner ; Tognetti, Roberto ; Lev-Yadun, Simcha Abstract: The date of the volcanic eruption of Santorini that caused extensive damage toMinoan Crete has been controversial since the 1980s. Some have placed the event in the late seventeenth century BC. Others have made the case for a younger date of around 1500 BC. A recent contribution to that controversy has been the dating of an olive tree branch preserved within the volcanic ash fall on Santorini. In this debate feature Paolo Cherubini and colleagues argue that the olive tree dating (which supports the older chronology) is unreliable on a number of grounds. There follows a response from the authors of that dating, and comments from other specialists, with a closing reply from Cherubini and his team. DOI: https://doi.org/10.1017/s0003598x00050365 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154340 Journal Article Published Version Originally published at: Cherubini, Paolo; Humbel, Turi; Beeckman, Hans; Gärtner, Holger; Mannes, David; Pearson, Charlotte; Schoch, Werner; Tognetti, Roberto; Lev-Yadun, Simcha (2014). The olive-branch dating of the Santorini eruption. Antiquity, 88(339):267-273. DOI: https://doi.org/10.1017/s0003598x00050365 Bronze Age catastrophe and modern controversy: dating the Santorini eruption The date of the volcanic eruption of Santorini that caused extensive damage to Minoan Crete has been controversial since the 1980s.
    [Show full text]
  • The Theran Eruption and Minoan Palatial Collapse: New Interpretations Gained from Modelling the Maritime Network
    The Theran eruption and Minoan palatial collapse: new interpretations gained from modelling the maritime network. Carl Knappett, Department of Art, University of Toronto, Ray Rivers, Department of Physics, Imperial College London, Tim Evans, Department of Physics, Imperial College London, UK. What was the effect on Late Minoan civilisation of the catastrophic destruction of Akrotiri on Thera (Santorini) by volcanic eruption? Not much, according to the evidence for continuing prosperity on Crete. But the authors mobilise their ingenious mathematical model (published in Antiquity 82, 1009-24), this time to show that the effects of removing a major port of call could have impacted after an interval, as increased costs of transport gradually led to ever fewer routes and eventual economic collapse. Keywords: Bronze Age, Aegean, Minoan, Crete, Thera, Santorini, Akrotiri, maritime communications, network analysis Introduction We seek in this paper to provide a novel perspective on the possible causes for the demise of Cretan Bronze Age palatial society c. 1500 BC using a mathematical model developed from a previous study (Knappett et al 2008). Various explanations have been proposed for the collapse - a tsunami generated by the Theran eruption destroying the Minoan fleet, an invasion by Mycenaean mainlanders, or internal socio-political turmoil and unrest (Rehak & Younger 2001). Today many scholars would see many such factors, natural and social, combining in some way. And although most do see some role for the Theran eruption, the fact that it took place some 50-100 years before the collapse makes it difficult to envisage what that role might have been. One persuasive argument sees indirect though insidious effects, both economic (such as ashfall polluting water supply and compromising crop yields in east Crete) and social, such as ideological uncertainty (Driessen & Macdonald 1997: 89-98).
    [Show full text]
  • Sharon R. Allen Is a Physical Volcanologist Who Has Worked On
    Sharon R. Allen is a physical volcanologist who Timothy H. Druitt is a volcanologist who works has worked on the processes and products of felsic on the processes and products of explosive volca­ effusive and explosive volcanism in both subaerial nism. His approaches include the field study of and submarine environments from a range of tec­ volcanic products, laboratory analogue experi­ tonic settings. She has been researching the South ments, and the petrology and chemistry of magmas. Aegean volcanic arc since 1993, first as a PhD He has used Santorini Volcano (Greece) as a natural student at Monash University (Australia), later as a laboratory for identifying fundamental questions post­doc at the University of Tasmania (UTAS) (Australia), and currently related to volcanism and for testing hypotheses. He obtained his PhD as a university associate at UTAS. Her scientific interests include subae­ at the University of Cambridge (UK) and is currently Professor of rial caldera forming eruptions, the dynamics of pyroclastic currents Volcanology at Clermont­Auvergne University (France). He was Editor­ on land and when interacting with water, submarine pyroclastic erup­ in­Chief of the Bulletin of Volcanology for four years and received the tions and mechanisms for the formation of pumice in submarine set­ 2018 Norman L. Bowen Award of the American Geophysical Union. tings. Her approach includes field studies of volcanic products and laboratory analogue experimentation. Lorella Francalanci is a geochemist and volcano­ logist who investigates active volcanoes to reveal Olivier Bachmann is a professor of volcanology the pre­eruptive processes that are relevant to the and magmatic petrology at the Eidgenössische dynamics of volcanic eruptions.
    [Show full text]
  • © 2009 by Richard Vanderhoek. All Rights Reserved
    © 2009 by Richard VanderHoek. All rights reserved. THE ROLE OF ECOLOGICAL BARRIERS IN THE DEVELOPMENT OF CULTURAL BOUNDARIES DURING THE LATER HOLOCENE OF THE CENTRAL ALASKA PENINSULA BY RICHARD VANDERHOEK DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Anthropology in the Graduate College of the University of Illinois at Urbana-Champaign, 2009 Urbana, Illinois Doctoral Committee: Professor R. Barry Lewis, Chair Professor Stanley H. Ambrose Professor Thomas E. Emerson Professor William B. Workman, University of Alaska ABSTRACT This study assesses the capability of very large volcanic eruptions to effect widespread ecological and cultural change. It focuses on the proximal and distal effects of the Aniakchak volcanic eruption that took place approximately 3400 rcy BP on the central Alaskan Peninsula. The research is based on archaeological and ecological data from the Alaska Peninsula, as well as literature reviews dealing with the ecological and cultural effects of very large volcanic eruptions, volcanic soils and revegetation of volcanic landscapes, and northern vegetation and wildlife. Analysis of the Aniakchak pollen and soil data show that the pyroclastic flow from the 3400 rcy BP eruption caused a 2500 km² zone of very low productivity on the Alaska Peninsula. This "Dead Zone" on the central Alaska Peninsula lasted for over 1000 years. Drawing on these data and the results of archaeological excavations and surveys throughout the Alaska Peninsula, this dissertation examines the thesis that the Aniakchak 3400 rcy BP eruption created a massive ecological barrier to human interaction and was a major factor in the separate development of modern Eskimo and Aleut populations and their distinctive cultural traditions.
    [Show full text]
  • Assessing Pyroclastic Fall Hazard Through Field Data And
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Earth-prints Repository JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B2, 2063, doi:10.1029/2001JB000642, 2003 Assessing pyroclastic fall hazard through field data and numerical simulations: Example from Vesuvius Raffaello Cioni,1 Antonella Longo,2 Giovanni Macedonio,3 Roberto Santacroce,2 Alessandro Sbrana,2 Roberto Sulpizio,2 and Daniele Andronico4 Received 12 April 2001; revised 2 April 2002; accepted 7 May 2002; published 1 Feburary 2003. [1] A general methodology of pyroclastic fall hazard assessment is proposed on the basis of integrated results of field studies and numerical simulations. These approaches result in two different methods of assessing hazard: (1) the ‘‘field frequency,’’ based on the thickness and distribution of past deposits and (2) the ‘‘simulated probability,’’ based on the numerical modeling of tephra transport and fallout. The proposed methodology mostly applies to volcanoes that, by showing a clear correlation between the repose time and the magnitude of the following eruptions, allows the definition of a reference ‘‘maximum expected event’’ (MEE). The application to Vesuvius is shown in detail. Using the field frequency method, stratigraphic data of 24 explosive events in the 3–6 volcanic explosivity index range in the last 18,000 years of activity are extrapolated to a regular grid in order to obtain the frequency of exceedance in the past of a certain threshold value of mass loading (100, 200, 300, and 400 kg/m2). Using the simulated probability method, the mass loading related to the MEE is calculated based on the expected erupted mass (5 Â 1011 kg), the wind velocity profiles recorded during 14 years, and various column heights and grain-size populations.
    [Show full text]
  • Tsunamis Observed on and Near the Turkish Coast
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226113643 Tsunamis Observed on and Near the Turkish Coast Article in Natural Hazards · January 2000 DOI: 10.1023/A:1008155117243 CITATIONS READS 91 453 2 authors: Yıldız Altınok Şükrü Ersoy Istanbul University Yildiz Technical University 64 PUBLICATIONS 834 CITATIONS 64 PUBLICATIONS 544 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: TRANSFER View project Acil saha gözlem View project All content following this page was uploaded by Şükrü Ersoy on 08 November 2014. The user has requested enhancement of the downloaded file. Natural Hazards 21: 185–205, 2000. 185 © 2000 Kluwer Academic Publishers. Printed in the Netherlands. Tsunamis Observed on and Near the Turkish Coast Y. ALTINOK1 andS. ¸ ERSOY2 1Department of Geophysical Engineering, Faculty of Engineering, University of Istanbul, 34850 Avcilar, Istanbul, Turkey; 2Department of Geological Engineering, Faculty of Engineering, University of Istanbul, 34850 Avcilar, Istanbul, Turkey (Received: 21 July 1998; in final form: 6 December 1999) Abstract. For centuries, inhabitants of coastal areas have suffered from the effects of tsunamis. Turkey, with a coastline of 8333 km, has experienced many tsunamis. Historical records reveal that, during the observation period over 3000 years, the coastal and surrounding areas of Turkey have been affected by more than ninety tsunamis. These tended to cluster around the Marmara Sea, the city of Istanbul and the gulfs of Izmit, Izmir, Fethiye and Iskenderun. Each of the tsunami occurrences surveyed in this paper deserves further individual study. The most extensive available information concerns the tsunamis associated with the Istanbul Earthquakes of 1509 and 1894, the Eastern Mar- mara Earthquake in 1963 and that of Izmit in 1999, which disturbed the Marmara Sea; the Earthquake of 1939 in Erzincan in eastern Anatolia; and the 1968 Bartın Earthquake, which affected Fatsa and Amasra on the Black Sea.
    [Show full text]
  • Geomorphic Impacts of the 1257 CE Eruption of Samalas Along the Alas Strait, West Nusa Tenggara, Indonesia Bachtiar Wahyu Mutaqin
    Geomorphic impacts of the 1257 CE eruption of Samalas along the Alas strait, West Nusa Tenggara, Indonesia Bachtiar Wahyu Mutaqin To cite this version: Bachtiar Wahyu Mutaqin. Geomorphic impacts of the 1257 CE eruption of Samalas along the Alas strait, West Nusa Tenggara, Indonesia. Geography. Université Panthéon-Sorbonne - Paris I; Univer- sitas Gadjah Mada (Yogyakarta, Indonésie), 2018. English. NNT : 2018PA01H071. tel-02413719v2 HAL Id: tel-02413719 https://tel.archives-ouvertes.fr/tel-02413719v2 Submitted on 16 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ECOLE DOCTORALE DE GEOGRAPHIE DE PARIS (ED 4434) Laboratoire de Géographie Physique - UMR 8591 Doctoral Thesis in Geography Bachtiar Wahyu MUTAQIN IMPACTS GÉOMORPHIQUES DE L'ÉRUPTION DU SAMALAS EN 1257 LE LONG DU DÉTROIT D'ALAS, NUSA TENGGARA OUEST, INDONÉSIE Defense on: 11 December 2018 Supervised by : Prof. Franck LAVIGNE (Université Paris 1 – Panthhéon Sorbonne) Prof. HARTONO (Universitas Gadjah Mada) Rapporteurs : Prof. Hervé REGNAULD (Université de Rennes 2) Prof. SUWARDJI (Universitas Mataram) Examiners : Prof. Nathalie CARCAUD (AgroCampus Ouest) Dr. Danang Sri HADMOKO (Universitas Gadjah Mada) 1 Abstract As the most powerful event in Lombok’s recent eruptive history, volcanic materials that were expelled by the Samalas volcano in 1257 CE covered the entire of Lombok Island and are widespread in its eastern part.
    [Show full text]