Mattheva, a Proposed New Class of Mollusks

Total Page:16

File Type:pdf, Size:1020Kb

Mattheva, a Proposed New Class of Mollusks Mattheva, a Proposed New Class of Mollusks GEOLOGICAL SURVEY PROFESSIONAL PAPER 523-B ., Mattheva, a Proposed New Class of Mollusks By ELLIS L. YOCHELSON CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 523-B A discussion of the biologic placement of the Late Cambrian fossil Matthevia UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents CONTENTS. I Page Systematic paleontology-Continued Page ~bstract __________________________________________ _ B1 Genus Matthevia Walcott, 1885 __________________ _ B3 Introduction ______________________________________ _ 1 Matthevia variabilis Walcott, 1885 ________________ _ 3 ! Acknowledgments ________________ - __ ------------ 1 Reconstruction of Matthevia ___ ----------------------- 4 bccurrence and distribution of Matthevia ______ _____ - _-- 2 Matthevia as the representative of a class of mollusks ___ _ 8 fystema tic paleontology _____ -_------------------·-- -- 2 Pseudomatthevia _________ --------------------------- 8 1 Class Mattheva, new class ______________________ _ 2 References cited ____ -------------------------------- 9 Family Matthevidae Walcott, 1885 ______________ _ 3 Index ____________________________________________ _ 11 ILLUSTRATIONS [Plate follows index] Page 1. Photographs of Matthevia. 1. Sketch of anterior __________________________________________________________________________________ _ B3 2. Sketch of posterior __________________________________________________________________________________ _ 3 3. Sketches of reconstruction of Matthevia __ ________________________ - -------------------------------------- 6 III CONTRIBUTIONS TO PALEONTOLOGY MATTHEVA, A PROPOSED NEW CLASS OF MOLLUSKS By ELLIS L. y OCHELSON ABSTRACT tropoda. In regard to the Pteropoda as used by him, Basic features of the hard parts of JJfa,tthevia Walcott sug­ Miller ( 1889, p. 389) stated, "It may well be doubted est that this fossil is a mollusk. Matthwl'ia, variabUis Wal­ whether or not any of the Palaeozoic fossils belong to ott, first described from the Late Cambrian Hoyt Lime,stone this order." Other authors of the late 1800's expressed ember of Theresa Dolomite near S'aratoga 8prings, N.Y., has similar reservations as to the occurrence of true Pte­ een found widespread throughout the western conterminous nited State~ in rocks of Trempealeau age. Walcott inter­ ropoda in Paleozoie strata. The Paleozoic "pteropods" vreted the preserved part of JJ!atthevia as a conical shell. The were a heterogeneous assemblage; the principal feature ~enuH is interpreted here as an animal having two hard parts. common to the various genera was the absence of char­ one anterior and one posterior. The presumed anterior pieee acters that would permit the genera to be placed readily fS elongate and contains two conspicuous cavities ; the pre­ into established classes and phyla. ~umed posterior piece is somewhat narrower and shorter but aJso contains two cavities. If this interpretation is correct, In the classie textbook by Zittel under the suborder the hard parts differ markedly from those of other mollusks. Pteropoda, family Hyolithidae, three genera are listed is proposed that JJ!atthevia is the sole known representative in addition to Hyolithes and its synonyms. These are f an extinct class here given the name Mattheva. Pterotheca, Phragnwtheca, and Jfatthev£a. Although Pseudomatthevin of Dresbach age is judged to be closely re­ ted to Hyp8eloconus and is provisionally transferred to the there is no discussion, the implication is obvious that onoplacophora. these three genera are all closely related and are all ~I INTRODUCTION associated with Hyolithes. In every revision and for­ eign-language edition of this work, the generic name 1 M atthevia variabilis Walcott is an enigmatic Cam­ is rendered as Jl,/ atthewia, a name which can only be pria~ fossil. The original description of the genus and fpec1es (vValcott, 1885) is excellent: it emphasizes the treated as an invalid emendation or a typographical ilnusual appearance of two cavities separated by a wide error. ~eptum within an otherwise massive subconical shell. l{night (1941, p. 20) declared: "11-fatthevia Walcott, 1885, a strange and ineomprehensible shell, seems more lw!.alcott placed this genus along with 10 others under he Pteropoda, doing this with "considerable reserva- likely to have belonged to some otherwise unknown ion," because "They form a group although representa­ class of the Mollusca or even to emne unknown phylum ive, in a measure, of the recent Pteropoda, differ in than to the Gastropoda." Two major references on pther respects so much that it appears as thouo·h a divi­ American fossils, Grabau and Shimer (1909) and ~ion of the Gastropoda, equivalent to the P~eropoda, Shi1ner and Shrock ( 1944) , do not list M atthevia. ~night be consistently made to receive them." The iden- Flower ( 1954, p. 81) suggested that this genus "is not cal. description, but. 'vith better illustrations, was re­ elosely similar to either the hyolithids, the tentaculitids, .nbhshed the follmnng year (vV alcott, 1886) without or the gastropods.'' Neither the French "Traite de ny comment about the biological position of the genus Pah~ontologie" (Piveteau, 1952) nor the Russian hand­ xcept that it was a pteropod. Walcott (1912) reillus- book ( Orlov, 1958) mention M atthev,ia, though some !rated the types of Jf a.tthevia with no further comment of the other Pnleozoie "pteropods" are discussed and n their systematic position; these illustrations are pho­ classified. Finally, Fisher (1962, p. W128) placed ographs, though his drawings of 1886 are almost as Jl,f atthevia as the sole genus within his new suborder atisfactory. Matthevina of his new molluscan class Calyptoptoma­ I~ tida. Miller (1889, p. 392) briefly redefined Matthevia and rlaced it within the class Pteropoda. Currently most ACKNOWLEDGMENTS r·orkers on Recent Gastropoda consistently place Pte­ Critical comments of my colleagues over a period of ~·opoda as a group of lower rank under the class Gas- 8 years have played an important part in shaping my Bl 1 B2 CONTRIBUTIONS TO PALEONTOLOGY thoughts regarding the biologic and taxonomic place­ brian Trempealeau age. Locality details are given by ment of M atthevia. Though it is obvious that much Y ochelson, McAllister, and. Reso (1965). Representa­ yet remains to be learned about this genus, several asso­ tive specimens are also figured there. ciates have encouraged me to put my opinions on record All the known occurrences of M atthevia are in lime­ so that others may confirm or refute them. stone or dolomite. In the Nevada-California occur­ In particular, I am indebted to A. R. Palmer, U.S. rences, the dolomite contains fairly little silt, and the Geological Survey, who first called my attention to this acid residues consist almost exclusively of fossil frag­ animal, and to J. F. McAllister, U.S. Geological Survey, ments. A. R. Palmer (oral commun., 1964) observed who at my request collected large quantities of material little silt in the Utah and Texas matrix. The arrange­ in difficult terrain. V. E. Barnes, Bureau of Economic ment of the fossils in partly dissolved blocks shows evi­ Geology, University of Texas, loaned additional spec­ dence of sorting. J. F. McAllister searched for algal imens from his collections, as did W. L. Stokes, Uni­ structures associated with M atthevia in eastern Cali­ versity of Utah, and Anthony Res0, Tenneco Oil Co., fornia. He reported (written commun., 1963) that at Houston, Tex. one locality in theNopah Formation he observed "cryp­ tozoon -like structures in small masses a foot or two OCCURRENCE AND DISTRIBUTION OF MATTHEVIA across and a few girvanella-like ovoids," and that "cer­ M atthevia originally was described only from the tain differences in textures and local accumulations type locality in the Hoyt Limestone quarry, 1 mile seem to indicate some redistribution of carbonate northwest of Saratoga Springs, N.Y. The matrix is a debris." nearly black exceedingly fine grained limestone. Wal­ SYSTEMATIC PALEONTOLOGY cott (1885, p. 19) noted that this fossil is associated with Class M:ATTHEVA, new class 0 ollenia. Fisher ( 1962a, p. W120) suggested that there may be a relationship between the large bodies of Ool­ Description.-Mollusks having two massive calcar­ len·ia-forming "reefs" and the occurrence of Matthevia. eous plates, one anterior and one posterior. He indicated that the form could have been a grazing DiscttB82~on.-The molluscan nature of M atthevia is animal, though he did not rule out the possibility that highly probable but is difficult to demonstrate conclu­ specimens observed in the Hoyt may be a lag deposit. sively. Evidence of its basic molluscan character is The Hoyt Limestone Member of the Theresa Dolo­ the calcareous shell material of the type lot. The man­ mite is of Late Cambrian age and is considered to be a ner in which the shell exfoliates from the steinkern is correlative of the lower part of the Trempealeau, the precisely like that of other mollusks broken from lime­ youngest of the three stages of the Upper Cambrian. stone and unlike that of other shelled invertebrates. The latest published comprehensive stratigraphie data This feature is well shown in Walcott's drawings of the on the New York Cambrian (Fisher, 1962b) indicate types. The shell
Recommended publications
  • Enrico SCHWABE Zoologische Staatssammlung Muenchen
    . , E. SCHWABE NOVAPEX 6 (4): 89-105, 10 décembre 2005 A catalogue of Récent and fossil chitons (MoUusca: Polyplacophora) Addenda Enrico SCHWABE Zoologische Staatssammlung Muenchen, Muenchhausenstrasse 2 1 D-81247 Muenchen, Germany [email protected] KEYWORDS. MoUusca, Polyplacophora, taxon list, bibliography ABSTRACT. This paper lists species-group names of Récent and fossil Polyplacophora (MoUusca) that were published after 1998 (for the Récent species) and 1987 (for the fossil species). A total of 171 species were since then introduced, of which 123 are attributed to valid fossil taxa and 48 to valid Récent taxa. The authorship and complète références are provided for each species-group name. INTRODUCTION Considerazioni suUa famiglia Leptochitonidae Dali, 1889 (MoUusca: Polyplacophora). III. Le species Taxonomic work is impossible without an overview of terziarie e quatemarie Europee, con note sistematiche the scientific names existing in the particular taxon e filogenetiche. - Atti délia prima Giornata di Studi group. Catalogues generally are a great tool to obtain Malacologici Centra lîaliano di Studi Malacologici such overviews, as they often summarize information (1989): 19-140 (: 79; pi. 26). otherwise hard to gather and master. Type locality: Pezzo, near Villa S. Giovanni (Reggio Of the nearly 2600 taxa introduced on species level Calabria prov.); in material of upper Pleistocene, but within the Polyplacophora, 368 fossils and 914 Récent presumably originated from adjacent deposits of lower species are considered as valid (closing date: Pleistocene of bathyal faciès [Pezzo, presso Villa S. 31/10/2005). Giovanni (RC); in materiale del Pleistocene superiore, In the past, excellent catalogues of species-group ma presumibilmente originato da contigui depositi del names in Polyplacophora were compiled by Kaas & Pleistocene inferiore di faciès batiale].
    [Show full text]
  • JEFFERSONIANA Contributions from the Virginia Museum of Natural History
    JEFFERSONIANA Contributions from the Virginia Museum of Natural History Number 19 10 January 2009 Unusual Cambrian Thrombolites from the Boxley Blue Ridge Quarry, Bedford County, Virginia Alton C. Dooley, Jr. ISSN 1061-1878 Virginia Museum of Natural History Jeffersoniana, Number 19, pp. 1-14 Scientific Publications Series Virginia Museum of Natural History The Virginia Museum of Natural History produces five scientific Unusual Cambrian Thrombolites from the Boxley Blue publication series, with each issue published as suitable material becomes Ridge Quarry, Bedford County, Virginia available and each numbered consecutively within its series. Topics consist of original research conducted by museum staff or affiliated ALTON C. DOOLEY , JR. investigators based on the museum’s collections or on subjects relevant to Virginia Museum of Natural History the museum’s areas of interest. All are distributed to other museums and 21 Starling Avenue libraries through our exchange program and are available for purchase by Martinsville, Virginia 24112, USA individual consumers. [email protected] Memoirs are typically larger productions: individual monographs on ABSTRACT a single subject such as a regional survey or comprehensive treatment of an entire group. The standardized format is an 8.5 x 11 inch page with two Three unusual thrombolites were collected in June 2008 from the Late columns. Cambrian Conococheague Formation at the Boxley Materials Blue Ridge Quarry in Bedford County, Virginia. These specimens are isolated low domes Jeffersoniana is an outlet for relatively short studies treating a single with a thrombolitic core and a pustulate, stromatolitic outer layer. The two subject, allowing for expeditious publication. The standardized format is largest domes have a distinctive thickened rim around their margins.
    [Show full text]
  • Shell Microstructures in Early Cambrian Molluscs
    Shell microstructures in Early Cambrian molluscs ARTEM KOUCHINSKY Kouchinsky, A. 2000. Shell microstructures in Early Cambrian molluscs. - Acta Palaeontologica Polonica 45,2, 119-150. The affinities of a considerable part of the earliest skeletal fossils are problematical, but investigation of their microstructures may be useful for understanding biomineralization mechanisms in early metazoans and helpful for their taxonomy. The skeletons of Early Cambrian mollusc-like organisms increased by marginal secretion of new growth lamel- lae or sclerites, the recognized basal elements of which were fibers of apparently aragon- ite. The juvenile part of some composite shells consisted of needle-like sclerites; the adult part was built of hollow leaf-like sclerites. A layer of mineralized prism-like units (low aragonitic prisms or flattened spherulites) surrounded by an organic matrix possibly existed in most of the shells with continuous walls. The distribution of initial points of the prism-like units on a periostracurn-like sheet and their growth rate were mostly regular. The units may be replicated on the surface of internal molds as shallow concave poly- gons, which may contain a more or less well-expressed tubercle in their center. Tubercles are often not enclosed in concave polygons and may co-occur with other types of tex- tures. Convex polygons seem to have resulted from decalcification of prism-like units. They do not co-occur with tubercles. The latter are interpreted as casts of pore channels in the wall possibly playing a role in biomineralization or pits serving as attachment sites of groups of mantle cells. Casts of fibers and/or lamellar units may overlap a polygonal tex- ture or occur without it.
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]
  • The Evolution of Trilobite Body Patterning
    ANRV309-EA35-14 ARI 20 March 2007 15:54 The Evolution of Trilobite Body Patterning Nigel C. Hughes Department of Earth Sciences, University of California, Riverside, California 92521; email: [email protected] Annu. Rev. Earth Planet. Sci. 2007. 35:401–34 Key Words First published online as a Review in Advance on Trilobita, trilobitomorph, segmentation, Cambrian, Ordovician, January 29, 2007 diversification, body plan The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: The good fossil record of trilobite exoskeletal anatomy and on- 10.1146/annurev.earth.35.031306.140258 togeny, coupled with information on their nonbiomineralized tis- Copyright c 2007 by Annual Reviews. sues, permits analysis of how the trilobite body was organized and All rights reserved developed, and the various evolutionary modifications of such pat- 0084-6597/07/0530-0401$20.00 terning within the group. In several respects trilobite development and form appears comparable with that which may have charac- terized the ancestor of most or all euarthropods, giving studies of trilobite body organization special relevance in the light of recent advances in the understanding of arthropod evolution and devel- opment. The Cambrian diversification of trilobites displayed mod- Annu. Rev. Earth Planet. Sci. 2007.35:401-434. Downloaded from arjournals.annualreviews.org ifications in the patterning of the trunk region comparable with by UNIVERSITY OF CALIFORNIA - RIVERSIDE LIBRARY on 05/02/07. For personal use only. those seen among the closest relatives of Trilobita. In contrast, the Ordovician diversification of trilobites, although contributing greatly to the overall diversity within the clade, did so within a nar- rower range of trunk conditions.
    [Show full text]
  • The Weeks Formation Konservat-Lagerstätte and the Evolutionary Transition of Cambrian Marine Life
    Downloaded from http://jgs.lyellcollection.org/ by guest on October 1, 2021 Review focus Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2018-042 The Weeks Formation Konservat-Lagerstätte and the evolutionary transition of Cambrian marine life Rudy Lerosey-Aubril1*, Robert R. Gaines2, Thomas A. Hegna3, Javier Ortega-Hernández4,5, Peter Van Roy6, Carlo Kier7 & Enrico Bonino7 1 Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia 2 Geology Department, Pomona College, Claremont, CA 91711, USA 3 Department of Geology, Western Illinois University, 113 Tillman Hall, 1 University Circle, Macomb, IL 61455, USA 4 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK 5 Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 6 Department of Geology, Ghent University, Krijgslaan 281/S8, B-9000 Ghent, Belgium 7 Back to the Past Museum, Carretera Cancún, Puerto Morelos, Quintana Roo 77580, Mexico R.L.-A., 0000-0003-2256-1872; R.R.G., 0000-0002-3713-5764; T.A.H., 0000-0001-9067-8787; J.O.-H., 0000-0002- 6801-7373 * Correspondence: [email protected] Abstract: The Weeks Formation in Utah is the youngest (c. 499 Ma) and least studied Cambrian Lagerstätte of the western USA. It preserves a diverse, exceptionally preserved fauna that inhabited a relatively deep water environment at the offshore margin of a carbonate platform, resembling the setting of the underlying Wheeler and Marjum formations. However, the Weeks fauna differs significantly in composition from the other remarkable biotas of the Cambrian Series 3 of Utah, suggesting a significant Guzhangian faunal restructuring.
    [Show full text]
  • Cambrian Substrate Revolution
    Vol. 10, No. 9 September 2000 INSIDE • Research Grants, p. 12 • Section Meetings Northeastern, p. 16 GSA TODAY Southeastern, p. 18 A Publication of the Geological Society of America • Happy Birthday, NSF, p. 22 The Cambrian Substrate Revolution David J. Bottjer, Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, [email protected] James W. Hagadorn, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, [email protected] Stephen Q. Dornbos, Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740, [email protected] ABSTRACT The broad marine ecological settings prevalent during the late Neo- proterozoic–early Phanerozoic (600–500 Ma) interval of early metazoan body plan origination strongly impacted the subsequent evolution and development of benthic metazoans. Recent work demonstrates that late Neoproterozoic seafloor sediment had well-developed microbial mats and poorly developed, vertically oriented bioturbation, thus producing fairly stable, relatively low water content substrates and a sharp water-sediment interface. Later in the Cambrian, seafloors with microbial mats became increasingly scarce in shallow-marine environments, largely due to the evolution of burrowing organisms with an increasing vertically oriented component to their bioturba- tion. The evolutionary and ecological effects of these substrate changes on Figure 1. Looping and meandering trace fossil Taphrhelminthopsis, made by a large Early Cambrian benthic metazoans, referred to as the bioturbator, on a bedding plane from Lower Cambrian Poleta Formation, White-Inyo Mountains, California. Such traces, consisting of a central trough between lateral ridges, occur in sandstones Cambrian substrate revolution, are deposited in shallow-marine environments.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Middle Cambrian Trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, Western North Greenland
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 68 · 2020 Middle Cambrian trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, western North Greenland JOHN S. PEEL Peel, J.S. 2020. Middle Cambrian trilobites (Miaolingian, Ehmaniella Biozone) from the Telt Bugt Formation of Daugaard-Jensen Land, western North Greenland. Bulletin of the Geological Society of Denmark, vol. 68, pp. 1–14. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2020-68-01 A small fauna of middle Cambrian trilobites is described from the upper Telt Bugt Geological Society of Denmark Formation of Daugaard-Jensen Land, western North Greenland, and the formation https://2dgf.dk is formally defined.Blainiopsis holtedahli and Blainiopsis benthami, originally described from the equivalent Cape Wood Formation of Bache Peninsula, Nunavut, Canada, are Received 9 October 2019 documented in an assemblage assigned to the Ehmaniella Biozone (Topazan Stage of Accepted in revised form North American usage), Miaolingian Series, Wuliuan Stage, of the international stan- 5 February 2020 dard. Two new species are proposed: Ehmaniella sermersuaqensis and Clappaspis tupeq. Published online 9 March 2020 Keywords: Laurentia, North Greenland, Cambrian, Miaolingian (Wuliuan), tri- © 2020 the authors. Re-use of material is lobites. permitted, provided this work is cited. Creative Commons License CC BY: John S. Peel [[email protected]], Department of Earth Sciences (Palaeobiology), https://creativecommons.org/licenses/by/4.0/ Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden. The first Cambrian fossils from the Nares Strait setti 1951; Cooper et al. 1952; Palmer & Halley 1979). region, the narrow waterway separating northern- Several of the lithostratigraphic and biostratigraphic most Greenland and Canada, were collected from problems recognised in Poulsen’s (1927) studies were Bache Peninsula (Fig.
    [Show full text]
  • Redalyc.Quitones (Mollusca: Polyplacophora) Del Mar Caribe
    Biota Colombiana ISSN: 0124-5376 [email protected] Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Colombia Gracia C., Adriana; Díaz, Juan Manuel; Ardila, Néstor E. Quitones (Mollusca: Polyplacophora) del Mar Caribe Colombiano Biota Colombiana, vol. 6, núm. 1, junio, 2005, pp. 117-125 Instituto de Investigación de Recursos Biológicos "Alexander von Humboldt" Bogotá, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=49106102 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Biota Colombiana 6 (1) 117 - 125, 2005 Quitones (Mollusca: Polyplacophora) del Mar Caribe Colombiano Adriana Gracia C.1, Juan Manuel Díaz2, Néstor E. Ardila1 1 Museo de Historia Natural Marina de Colombia. INVEMAR. [email protected]; [email protected] Dirección de correspondencia: Instituto de Investigaciones Marinas y Costeras, INVEMAR, A.A. 1016. Cerro de Punta Betín. Santa Marta. Colombia. 2 Instituto Alexander von Humboldt. [email protected] Palabras Clave: Quitones, Polyplacophora, Mollusca, Distribución, Caribe colombiano, Lista de especies Introducción Las especies litorales se alimentan en su mayoría de algas Los quitones o poliplacóforos constituyen una que crecen sobre la superficie de las rocas, y son raspadas de las ocho clases del filum Mollusca. Está conformada por y removidas mediante la rádula, un órgano bucal que se unas 875 especies vivientes reconocidas, todas ellas mari- asimila a una lengua raspadora. Son animales poco activos, nas, que habitan desde la zona intermareal hasta profundida- que se mueven únicamente para alimentarse en las noches des abisales (Kaas & Van Belle 1998).
    [Show full text]
  • Zootaxa, the Marjuman Trilobite Cedarina Lochman: Thoracic
    Zootaxa 2218: 35–58 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) The Marjuman trilobite Cedarina Lochman: thoracic morphology, systematics, and new species from western Utah and eastern Nevada, USA JONATHAN M. ADRAIN1, SHANAN E. PETERS2 & STEPHEN R. WESTROP3 1Department of Geoscience, 121 Trowbridge Hall, University of Iowa, Iowa City, Iowa 52242, USA. E-mail: [email protected] 2Department of Geology & Geophysics, University of Wisconsin-Madison, 1215 W. Dayton St., Madison, Wisconsin 53706, USA. E-mail:[email protected] 3Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman, Oklahoma 73072, USA. E-mail:[email protected] Abstract Cedarina schachti n. sp. from the Marjuman (Cedaria Zone) Weeks Formation of western Utah, USA, provides the first information on thoracic morphology within the genus. Its thorax is radically different from those of species of Cedaria Walcott, with which Cedarina Lochman has been classified in Cedariidae Raymond, but strikingly similar to those of plesiomorphic remopleuridoideans grouped in the paraphyletic Richardsonellinae Raymond. If Cedarina and the remopleuridoideans are genuinely related it follows that 1) Cedariidae as traditionally conceived is paraphyletic; 2) Cedarina is a plesiomorphic sister taxon of the remopleuridoideans; and 3) the remopleuridoideans are not a component of the Order Asaphida. Silicified material of a second new species, C. clevensis from the Marjuman (Crepicephalus Zone) Lincoln Peak Formation of eastern Nevada, confirms the presence of a long thoracic axial spine and provides the first information on ontogenetic development and ventral morphology within the genus.
    [Show full text]