Description of the Montevallo And

Total Page:16

File Type:pdf, Size:1020Kb

Description of the Montevallo And DESCRIPTION OF THE MONTEVALLO AND By Charles Butts INTRODUCTION south of New England is divisible into four parts called Birmingham district is considerably lower than that of the LOCATION AND EXTENT provinces. These are, from southeast to northwest, the Pied­ adjacent provinces. mont province, the Blue Ridge province, the Valley and The rocks of this province are not crystalline, like those of As shown by the key map (fig. 1) the Montevallo and Ridge province, and the Appalachian Plateaus. West of the the Piedmont and Blue Ridge provinces, but are all sedimen­ Columbiana quadrangles are in the north-central part of Ala­ Appalachian Plateaus are the Interior Low Plateaus, which are tary. They include limestone, dolomite, conglomerate, sand­ bama, mainly in Shelby, Bibb, and Chilton Counties. The included in the Interior Plains by the Association of American stone, and shale, which have been greatly disturbed by folding northwest corner of the Montevallo quadrangle includes a Geographers but which in the opinion of some, including and faulting. small area of Jefferson County, and the eastern part of the the writer, should be regarded as part of the Appalachian Highlands. C AH ABA RID GB S The dividing line between the Piedmont province and the The Valley and Ridge province in Alabama is divided Blue Ridge province is the eastern foot of the Blue Ridge and into the Cahaba Ridges, Birmingham Valley, and Coosa Val­ the foot of the high but irregular eastern scarp of the moun­ ley. Although in general a valley, this province contains tains that form the southern extension of the Blue Ridge in many high ridges extending parallel to its general direction, of western North Carolina and northern Georgia. The boundary which Red Mountain is a good example. Most of these ridges between the Blue Ridge province and the Valley and Ridge lie along the west side of the valley from Pennsylvania to province is the western base of the Blue Ridge of Virginia and Alabama. In Alabama the ridge section includes all the val­ of the high mountains of eastern Tennessee. This boundary ley west of the east boundary of the Coosa coal field and west continues into northwestern Georgia, to its intersection with of a line in continuation of that boundary southwest to Calera, the boundary between the Piedmont and Blue Ridge provinces, thence northwest to Maylene by way of Montevallo, thence about 15 miles southeast of Dalton. The Blue Ridge province southwest through the middle of the southern part of the thus terminates in northwestern Georgia. Thence the indefi­ Cahaba coal field. The north end of the ridge area curves nite boundary between the Piedmont and Valley and Ridge eastward and narrows to a point a few miles southeast of provinces runs southwestward through Sylacauga to the Gadsden. It includes Blount and Chandler Mountains. The Coastal Plain in Chilton County, Ala. The boundary between name Cahaba Ridges is here applied to this part of the Valley the Valley and Ridge province and the Appalachian Plateaus and Ridge province in Alabama. is, in Pennsylvania, the escarpment known as the Allegheny Front or Allegheny Mountains; in southwestern Virginia and BIRMINGHAM VALLEY through Tennessee, the Cumberland escarpment or Cumber­ The belt of relatively low land lying between Shades Moun­ 87' land Mountain; and in Alabama, the eastern scarp of Lookout tain on the southeast and Sand Mountain on the northwest FIGURE 1. Index map of northeastern Alabama and portions of adjacent Mountain and the eastern boundary of the Warrior coal field. and extending the full length of the Cahaba coal field is com­ States The western boundary of the Appalachian Plateaus through monly called Birmingham Valley. It includes Shades, Jones, The location of the Montevallo and Columbiana quadrangles, covered by Folio 226, is shown by the darker ruling. Published folios describing other quadrangles, indicated by lighter ruling, Tennessee, lying midway between Knoxville and Nashville, is and Opossum Valleys, Red Mountain, and Enon or Flint Ridge. are the following: Nos. 2, Ringgold; 6, Chattanooga; 8, Sewanee; 19, Stevenson; 20, Cleve­ a broken escarpment 800 to 1,000 feet high, separating the land; 85, Gadsden ; 78, Rome; 175, Birmingham; 221, Bessemer-Vandiver Cumberland Plateau from the Highland Rim. This boundary COOSA VALLEY Columbiana quadrangle includes small areas of Coosa and is extended northeastward through eastern Kentucky and East of the Cahaba Ridges is the Coosa Valley, which is Talladega Counties. The quadrangles are bounded by paral­ central Ohio to the vicinity of Cleveland, although it is not the broad, generally flat, low country occupied by Coosa River lels 33° and 33°15' and meridians 86°30' and 87°." Each sharply defined in those States. and its tributaries and farther southwest by Cahaba River and quadrangle covers one-sixteenth of a "square degree" and has its eastern tributaries. The lower part of the Coosa Valley lies PIEDMONT PBOVINCE an area of 250 square miles. in the Piedmont province. The Piedmont province is a rolling upland 1,100 feet above GENERAL RELATIONS sea level at the foot of the Blue Ridge and 500 feet or less APPALACHIAN PLATEAUS Northern Alabama is in the southern part of the Appalach­ along the "fall line." Its generally flat surface has been The subdivision of the Appalachian Highlands known as the ian Highlands. 2 This physiographic division of the United deeply trenched by the streams that flow across it. It is Appalachian Plateaus is practically coextensive with the Appa­ States extends from the Atlantic Plain on the east to the underlain by very ancient and crumpled crystalline rocks, lachian coal fields. It is relatively high, ranging from 500 feet both igneous and metamorphic. A small area in the southeast above sea level in the Warrior coal field to more than 4,500 corner of the Columbiana quadrangle lies in the Piedmont feet in Pocahontas County, W. Va., and about 2,000 feet in province. western New York. In Tennessee it slopes somewhat west­ BLUE EIDGE PROVINCE ward, from about 2,000 feet above sea level on the east to about 1,800 feet on the west, where it terminates in the steep The Blue Ridge province is narrow at its north end in scarp 800 to 1,000 feet high, descending to the Highland Rim Pennsylvania but more than 60 miles wide in North Carolina. of middle Tennessee. As a whole this province may be It is a rugged region of hills and ridges and deep, narrow val­ regarded as a series of plateaus extending from New York to leys. The altitude of the higher summits in Virginia is 3,000 Alabama, which have been more or less separated into parts or, to 5,719 feet above sea level, and in western North Carolina in large areas, nearly obliterated by erosion. Because they Mount Mitchell, 6,711 feet high, is the highest point east of have been so much eroded they are called dissected plateaus. Mississippi River. Throughout its extent this province stands The separated parts have received names, and one of them, the up conspicuously above the adjoining provinces, from each of Cumberland Plateau in Tennessee, is the part of the province which it is separated by a steep, broken, rugged front from that most nearly embodies the conception of a plateau. 1,000 to 3,000 feet high. The rocks of this province corn- The rocks of the Appalachian Plateaus are mostly sandstone, rise closely folded quartzite, slate, schist, gneiss, granite, and conglomerate, shale, and coal. In contrast with those of the greenstone. Valley and Ridge province the strata of the plateaus have VALLEY AND KIDGE PKOVINCE been but slightly disturbed. GENERAL FEATURES TOPOGRAPHY OF THE QUADRANGLES FIGURE 2. Map of the southern part of the Appalachian province, showing its physiographic divisions and its relation to the Coastal Plain The Valley and Ridge province, in which the Montevallo GENERAL FEATURES and Columbiana quadrangles are mainly situated, is a belt Interior Plains on the west and from Canada and Lake Erie 50 to 80 miles wide, extending from Canada into Alabama, The south half of the Montevallo quadrangle and nearly all on the northeast into Alabama and Georgia on the southwest. which is on the whole lower than the Blue Ridge province on of the Columbiana quadrangle lie in the Coosa Valley; the The boundaries of the Appalachian Highlands and of the the east and the Appalachian Plateaus on the west. Near Big rest of the area lies in the Cahaba Ridges. A line drawn from larger subdivisions are shown on the sketch map (fig. 2). Stone Gap, Va., the crest of the Big Black Mountains is 3,000 Calera to Montevallo, passing 1 mile south of Hardys, thence APPALACHIAN HIGHLANDS feet above the valley on its northwest side, and in northern north to Lacy, thence due southwest to Garnsey would approx­ Tennessee Holston Mountain, near the northwest front of the SUBDIVISIONS imately mark the boundary between the two subdivisions. Blue Ridge province, rises nearly 3,000 feet above the valley The region is one of late mature topography. The streams On the grounds of differences in topography, rocks, and on its southeast side. are approximately graded and reach all parts of the area, so geologic structure the portion of the Appalachian Highlands In other places, as in the Birmingham district, the valley is that no extensive undrained surface remains. The upland not so distinctly defined by high escarpments. Nevertheless surfaces probably nearly coincide with an ancient peneplain 1 Surveyed in cooperation with the Geological Survey of Alabama. Text submitted in August 1924. the altitude of the limestone and shale valleys that constitute below which the larger streams have intrenched their valleys 2 Assoc.
Recommended publications
  • A Teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and Its Palaeobiogeographical Significance
    Pal~iont. Z. 55 I 3/4 313-319 Stuttgart, Dezember 1981 I A teleosaurid (Crocodylia, Mesosuchia) from the Toarcian of Madagascar and its palaeobiogeographical significance ERIC BUFFETAUT, GENEVIJ~VE TERMIER & HENRI TERM1ER, Paris* With 2 figures in the text Kurzfassung: Ein Oberkieferfragment eines Krokodiliers aus dem Toarcium von NW-Madagaskar wird als Stenosaurus sp. (Familie Teleosauridae) bestimmt. Es ist der ~ilteste aus Madagaskar bekannte Kro- kodilier und deutet aunistische B eziehungen mit Westeuropa und Siidamerika an. Die Verbreitung der ober- liassischen marinen Krokodilier, die derjenigen des Ammoniten Bouleiceras iihnelt, weist auf die Existenz einer epikontinentalen Seestraf~e vonder Tethys fiber die transerythr~iische Provinz bis zum siidlichen Tell Afrikas; diese Seestral~e bildete eine Verbindung zwischen Westeuropa und Siidamerika. A b s t r a c t : A fragment of the upper jaw of a crocodilian from the Toarcian of NW Madagascar is refer- red to Steneosaurus sp. (family Teleosauridae). It is the earliest known crocodilian from Madagascar. It indi- cates faunal relationships with western Europe and South America. The distribution of late Liassic marine crocodilians, similar to that of the ammonite Bouleiceras, suggests the existence of an epicontinental seaway from the Tethyan region to the southern part of Africa via the Transerythrean Province, which provided a marine connection between western Europe and South America. R ~ s u m ~ : Un fragment de mfichoire sup~rieure de Crocodilien du Toarcien du NW de Madagascar est rapport8 ~Steneosaurus sp. (famille Teleosauridae). C'est le plus ancien Crocodilien connu ~iMadagascar. I1 indique des relations fauniques avec l'Europe occidentale et l'Am&ique du Sud.
    [Show full text]
  • Cleburne County Hazard Mitigation Plan
    Cleburne County Hazard Mitigation Plan 2015 Plan Update 2 This page left intentionally blank 3 Prepared under the direction of the Hazard Mitigation Planning Committee, the Local Emergency Planning Committee, and the Cleburne County Emergency Management Agency by: 236 Town Mart Clanton, AL 35045 Office (205) 280-3027, Fax (205) 280-0543 www.leehelmsllc.com 4 This page left intentionally blank 5 Cleburne County Hazard Mitigation Plan Table of Contents Introduction 11 Section One Planning Process 13 Plan Update Process 13 Continued Public Participation 13 Hazard Mitigation Planning Committee 14 Participation Guidelines 15 Committee and Public Meeting Schedule and Participation 16 Interagency and Intergovernmental Coordination 26 Integration with Existing Plans 27 Plan Adoption 27 Section Two General Characteristics 31 Growth Trends 32 General Geology 34 Section Three Cleburne County Risk Assessment 39 Hazard Profiles 54 I. Thunderstorms 54 II. Lightning 55 III. Hail 58 IV. Tornados 60 V. Floods/Flash Floods 66 VI. Droughts/Extreme Heat 72 VII. Winter Storms/Frost Freezes/Heavy Snow/Ice Storms/ Winter Weather/Extreme Cold 78 VIII. Hurricanes/Tropical Storms/Tropical Depressions/High Winds/ Strong Winds 80 IX. Sinkholes/Expansive Soils 85 X. Landslides 88 XI. Earthquake 90 6 XII. Wildfire 99 XIII. Dam Failure 101 Section Four Vulnerability Assessment 105 Socially Vulnerable Populations 112 Vulnerable Structures 116 Critical Facility Inventory 118 Development Trends 120 Methods of Warning 120 Vulnerability Summary 124 Estimated Loss Projections
    [Show full text]
  • Smithsonian Miscellaneous Collections Volume 148, Number 3
    —r SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 ,v, . SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 l^psfarrl| 3F«ttb UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 <.%'^ Q^fii^ CONNECTICUT PRINTERS, INC. HARTFORD, CONN., U.S.A. CONTENTS Part I. Stratigraphy and Faunas Pj^ge Acknowledgments 3 Descriptions of Localities and Sections 3 General statement 3 Hawkins County 4 Hamblen County 10 Grainger County 12 Jefferson County I5 Union County 19 Claiborne County 21 Knox County 22 Monroe County 23 Purchase Ridge, Scott Coimty, Virginia 24 Index of Localities 25 Fauna of the Cedaria Zone 26 Fauna of the Crepicephalus Zone 28 Fauna of the Aphelaspis Zone 30 Part II. Systematic Paleontology General Statement 38 Descriptions of Trilobite Genera and Species Order AGNOSTIDA 38 Family AGNOSTIDAE 38 Order CORYNEXOCHIDA 39 Family DORYPYGIDAE 39 Order PTYCHOPARHDA 40 Family LONCHOCEPHALIDAE 40 Family CATILLICEPHALIDAE 44 Family CREPICEPHALIDAE 45 Family TRI CREPICEPHALIDAE 54 Family ASAPHISCIDAE 55 Family KINGSTONIIDAE 60 Family MENOMONIIDAE 61 Family NORWOODIIDAE 64 Family CEDARIIDAE 69 Family ELVINIIDAE 71 Family PTEROCEPHALIIDAE 72, PTYCHOPARHDA of uncertain affinities 102 Undetermined trilobites 112 References 115 Explanation of Plates 118 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE By FRANCO RASETTI The Johns Hopkins University PART I. STRATIGRAPHY AND FAUNAS The purpose of this paper is both to describe the fossils and to present them in their proper stratigraphic setting.
    [Show full text]
  • Smithsonian Miscellaneous Collections Volume 101
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101. NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 22, 1942 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101, NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 12, 1942 Z?>i Botb QBafhtnore (prcee BALTIMORE, MD., U. S. A. ' FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS By CHARLES E. RESSER Curator, Division of Stratigraphic Paleonlolo<jy, U. S. National Museum This is the fifth in the series of papers designed to care for changes necessary in the names of Cambrian fossils. When the fourth paper was published it was hoped that further changes would be so few and so obvious that they could be incorporated in the Cambrian bibliographic summary, and would not be required to appear first in a separate paper. But even now it is impossible to gather all of the known errors for rectification in this paper. For example, correc- tion of some errors must await the opportunity to examine the speci- mens because the published illustrations, obviously showing incorrect generic determinations, are too poor to permit a proper understanding of the fossil. In the other instances where new generic designations are clearly indicated, erection of new genera should await the pub- lication of a paper with illustrations, because better-preserved speci- mens are in hand, or undescribed species portray the generic charac- teristics more fully and should therefore be chosen as the genotypes.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]
  • Comprehensive Review of Cambrian Himalayan
    http://www.diva-portal.org Postprint This is the accepted version of a paper published in Papers in Palaeontology. This paper has been peer- reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record): Popov, L E., Holmer, L E., Hughes, N C., Ghobadi Pour, M., Myrow, P M. (2015) Himalayan Cambrian brachiopods. Papers in Palaeontology, 1(4): 345-399 http://dx.doi.org/10.1002/spp2.1017 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-255813 HIMALAYAN CAMBRIAN BRACHIOPODS BY LEONID E. POPOV1, LARS E. HOLMER2, NIGEL C. HUGHES3 MANSOUREH GHOBADI POUR4 AND PAUL M. MYROW5 1Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom, <[email protected]>; 2Institute of Earth Sciences, Palaeobiology, Uppsala University, SE-752 36 Uppsala, Sweden, <[email protected]>; 3Department of Earth Sciences, University of California, Riverside, CA 92521, USA <[email protected]>; 4Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran and Department of Geology, National Museum of Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom <[email protected]>; 5 Department of Geology, Colorado College, Colorado Springs, CO 80903, USA <[email protected]> Abstract: A synoptic analysis of previously published material and new finds reveals that Himalayan Cambrian brachiopods can be referred to 18 genera, of which 17 are considered herein. These contain 20 taxa assigned to species, of which five are new: Eohadrotreta haydeni, Aphalotreta khemangarensis, Hadrotreta timchristiorum, Prototreta? sumnaensis and Amictocracens? brocki.
    [Show full text]
  • Carboniferous Formations and Faunas of Central Montana
    Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa­ tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________
    [Show full text]
  • Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T
    Memorial to Charles Wythe Cooke 1887— 1971 VICTOR T. STRINGFIELD 4208 50 Street, NW„ Washington, D.C. 20016 The death of Dr. Charles Wythe Cooke in Daytona Beach, Florida, on Christmas Day 1971, ended his long and successful career as geologist, stratigrapher, and paleontologist. He is survived by his sister, Madge Lane Cooke. Cooke was born in Baltimore, Maryland, July 20, 1887. He was a bachelor. He received the degree of Bachelor of Arts from Johns Hopkins University in 1908 and Ph.D. (in geology) in 1912. From 1911 to 1912 he was a Fellow at the university. In July 1910, while a grad­ uate student, he received an appointment as Junior Geologist for summer work in the U.S. Geological Survey, beginning his long career in that organization. In the U.S. Geological Survey, he was Assistant Geologist, 1913 to 1917; Paleontologist, 1917 to 1919; Associate Geologist, 1919 to 1920; Geologist, 1920 to 1928; Scientist, 1928 to 1941; Senior Scientist, 1941 to 1951; andGeologist-Stratigrapher-Paleontologist, 1952 to 1956. He served as research associate in the Smithsonian Institute, Washington, D.C., from 1956 until his death. He was geologist in the Dominican Republic for the Geological Survey in 1919 and worked for the Tropical Oil Company, Colombia, South America, in 1920. After completing his 40 years of service in the U.S. Geological Survey, Cooke retired on November 30,1956. Also in 1956 he received the Meritorious Service Award of the Interior Department in recognition of his outstanding service. That citation in 1956 states: His scientific work lias been concerned with the paleontology, stratigraphy, and landforms (geomorphology) of the Coastal Plain, extending from New Jersey to Mississippi.
    [Show full text]
  • View of Valley and Ridge Structures from ?:R Stop IX
    GIJIDEBOOJ< TECTONICS AND. CAMBRIAN·ORDO'IICIAN STRATIGRAPHY CENTRAL APPALACHIANS OF PENNSYLVANIA. Pifftbutgh Geological Society with the Appalachian Geological Society Septembet, 1963 TECTONICS AND CAMBRIAN -ORDOVICIAN STRATIGRAPHY in the CENTRAL APPALACHIANS OF PENNSYLVANIA FIELD CONFERENCE SPONSORS Pittsburgh Geological Society Appalachian Geological Society September 19, 20, 21, 1963 CONTENTS Page Introduction 1 Acknowledgments 2 Cambro-Ordovician Stratigraphy of Central and South-Central 3 Pennsylvania by W. R. Wagner Fold Patterns and Continuous Deformation Mechanisms of the 13 Central Pennsylvania Folded Appalachians by R. P. Nickelsen Road Log 1st day: Bedford to State College 31 2nd day: State College to Hagerstown 65 3rd day: Hagerstown to Bedford 11.5 ILLUSTRATIONS Page Wagner paper: Figure 1. Stratigraphic cross-section of Upper-Cambrian 4 in central and south-central Pennsylvania Figure 2. Stratigraphic section of St.Paul-Beekmantown 6 rocks in central Pennsylvania and nearby Maryland Nickelsen paper: Figure 1. Geologic map of Pennsylvania 15 Figure 2. Structural lithic units and Size-Orders of folds 18 in central Pennsylvania Figure 3. Camera lucida sketches of cleavage and folds 23 Figure 4. Schematic drawing of rotational movements in 27 flexure folds Road Log: Figure 1. Route of Field Trip 30 Figure 2. Stratigraphic column for route of Field Trip 34 Figure 3. Cross-section of Martin, Miller and Rankey wells- 41 Stops I and II Figure 4. Map and cross-sections in sinking Valley area- 55 Stop III Figure 5. Panorama view of Valley and Ridge structures from ?:r Stop IX Figure 6. Camera lucida sketch of sedimentary features in ?6 contorted shale - Stop X Figure 7- Cleavage and bedding relationship at Stop XI ?9 Figure 8.
    [Show full text]
  • Application of Organic Petrography in North American Shale Petroleum Systems: a Review
    International Journal of Coal Geology 163 (2016) 8–51 Contents lists available at ScienceDirect International Journal of Coal Geology journal homepage: www.elsevier.com/locate/ijcoalgeo Application of organic petrography in North American shale petroleum systems: A review Paul C. Hackley a, Brian J. Cardott b a U.S. Geological Survey, MS 956 National Center, 12201 Sunrise Valley Dr, Reston, VA 20192, USA b Oklahoma Geological Survey, 100 E. Boyd St., Rm. N-131, Norman, OK 73019-0628, USA article info abstract Article history: Organic petrography via incident light microscopy has broad application to shale petroleum systems, including Received 13 April 2016 delineation of thermal maturity windows and determination of organo-facies. Incident light microscopy allows Received in revised form 10 June 2016 practitioners the ability to identify various types of organic components and demonstrates that solid bitumen Accepted 13 June 2016 is the dominant organic matter occurring in shale plays of peak oil and gas window thermal maturity, whereas Available online 16 June 2016 oil-prone Type I/II kerogens have converted to hydrocarbons and are not present. High magnification SEM obser- Keywords: vation of an interconnected organic porosity occurring in the solid bitumen of thermally mature shale reservoirs Organic petrology has enabled major advances in our understanding of hydrocarbon migration and storage in shale, but suffers Thermal maturity from inability to confirm the type of organic matter present. Herein we review organic petrography applications Shale petroleum systems in the North American shale plays through discussion of incident light photographic examples. In the first part of Unconventional resources the manuscript we provide basic practical information on the measurement of organic reflectance and outline Vitrinite reflectance fluorescence microscopy and other petrographic approaches to the determination of thermal maturity.
    [Show full text]
  • PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania
    PALEOZOIC STRATIGRAPHIC COLUMN of Central Pennsylvania _____________________________________________________________________*Ridge Makers System & Series Formation and Members General Description Llewellyn Formation Cycles of conglomerate or sandstone; underclay coal, shale Pnn. L & N 2000’+ Pottsville Formation* Cycles of conglomerate or sandstone; underclay coal, shale L & M 1400’ Mauch Chunk Grayish red and gray shale M 5000’ Miss. Pocono* Mount Carbon Gray to buff, medium grained, cross-bedded sandstone 1600’ 940’ Beckville Gray to buff, medium grained, cross-bedded sandstone Lower 225’ Spechty Kopf Gray, fine and medium grained sandstone conglomerate 435’ near middle and base Catskill Duncannon Asymmetric, upward-fining fluvial cycles, basal nonred, locally 7250’ 2000’ conglomeratic sandstone is overlain by grayish red sandstone and siltstones Sherman Creek Interbedded grayish red claystone and fine grained, cross- 2400’ bedded sandstone Upper Irish Valley Interbedded, grayish red and olive gray sandstone, siltstone, 2850’ shale, overlain upward-fining cyclic deposits of gray sandstone and red siltstone Trimmers Rock Medium gray siltstone and shale, with fine grained sandstone in 2000’ upper part; graded bedding common Harrell Olive and medium light gray shale 200’ Mahantango Sherman Ridge* Olive gray, fossiliferous, claystone with interbedded fine 1600’ 600’ sandstones which coarsen upward Montebello Olive gray, medium grained, locally conglomeratic, fossiliferous 600’ sandstone, interbedded with siltstone and claystone in upward-
    [Show full text]