<<

The Clinical Importance of 5alpha-Reductase in Human Health and Pathology Part 1: Men, Replacement, and Stress by Alan B. McDaniel, MD

Notes 1. AndroGel 1.62% (testosterone) – Full prescribing information [web page]. PDR.net. http://www.pdr.net/full-prescribing-information?druglabelid=5. Accessed June 27, 2016. 2. Cunningham GR, Cordero E, Thornby JI. Testosterone replacement with transdermal therapeutic systems. Physiological serum testosterone and elevated dihydrotestosterone levels. JAMA. 1989 May 5; 261(17):2525–2530. PMID: 2704112. 3. Handa RJ, Sharma D, Uht R. A role for the androgen metabolite, 5alpha androstane 3beta, 17beta diol (3β-diol) in the regulation of the hypothalamo-pituitary-adrenal axis. Front Endocrinol (Lausanne). 2011 Nov 10; 2:65. doi:10.3389/fendo.2011.00065. PMID: 22649380. 4. Low MJ. Neuroendocrinology; gonadotropin releasing and control of the reproductive axis. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR. Williams Textbook of Endocrinology.11th ed. Philadelphia: Saunders Elsevier; 2008:129–136. 5. Lindzey J, Wetsel WC, Couse JF, et al. Effects of castration and chronic steroid treatments on hypothalamic gonadotropin-releasing hormone content and pituitary gonadotropins in male wild-type and receptor-alpha knockout mice. Endocrinology. 1998 Oct; 139 (10):4092–4101. PMID: 9751487. 6. Armandari I, Hamid AR, Verhaegh G, Schalken J. Intratumoral steroidogenesis in castration-resistant prostate cancer: a target for therapy. Prostate Int. 2014 Sep; 2(3):105–113. doi:10.12954/PI.14063. PMID: 25325021. 7. Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol. 2012; 2012:530121. doi:10.1155/2012/530121. PMID: 22235201. 8. Saartok T, Dahlberg E, Gustafsson JA. Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 1984 Jun; 114(6):2100–2106. PMID: 6539197. 9. Keller ET, Ershler WB, Chang C. The androgen receptor: a mediator of diverse responses. Front Biosci. 1996 Mar 1;1:d59–d71. PMID: 9159212. 10. Grino PB, Griffin JE, Wilson JD. Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology. 1990 Feb; 126(2):1165–1172. PMID: 2298157. 11. Bao AM, Swaab DF. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol. 2011 Apr; 32(2):214–226. doi:10.1016/j.yfrne.2011.02.007. PMID: 21334362. 12. Konkle AT, McCarthy MM. Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology. 2011 Jan;152(1):223–235. doi:10.1210/en.2010-0607. PMID: 21068160. 13. Negri-Cesi P, Colciago A, Celotti F, Motta M. Sexual differentiation of the brain: role of testosterone and its active metabolites. J Endocrinol Invest. 2004; 27(6 Suppl):120–127. PMID: 15481811. 14. Palomba S, Marotta R, Di Cello A, et al. Pervasive developmental disorders in children of hyperandrogenic women with polycystic ovary syndrome: a longitudinal case-control study. Clin Endocrinol (Oxf). 2012 Dec; 77(6):898–904. doi:10.1111/j.1365-2265.2012.04443.x. PMID: 22612600. 15. Miodovnik A, Diplas AI, Chen J, et al. Polymorphisms in the maternal sex steroid pathway are associated with behavior problems in male offspring. Psychiatr Genet. 2012 Jun; 22(3):115–122. doi:10.1097/YPG.0b013e328351850b. PMID: 22336992. 16. Thornton J, Zehr JL, Loose MD. Effects of prenatal androgens on rhesus monkeys: a model system to explore the organizational hypothesis in primates. Horm Behav. 2009 May;55(5):633–645. doi:10.1016/j.yhbeh.2009.03.015. PMID: 19446080. 17. Idan A, Griffiths KA, Harwood DT, et al. Long-term effects of dihydrotestosterone treatment on prostate growth in healthy, middle-aged men without prostate disease: a randomized, placebo-controlled trial. Ann Intern Med. 2010 Nov 16; 153(10):621–32. doi:10.7326/0003-4819-153-10-201011160-00004. PMID: 21079217. 18. Peterson RE, Imperato-McGinley J, Gautier T, Sturla E. Male pseudohermaphroditism due to steroid 5-alpha-reductase deficiency. Am J Med. 1977 Feb; 62(2):170–191. PMID: 835597. 19. Martinez PE, Rubinow DR, Nieman LK, et al. 5α-Reductase Inhibition Prevents the Luteal Phase Increase in Plasma Allopregnanolone Levels and Mitigates Symptoms in Women with Premenstrual Dysphoric Disorder. Neuropsychopharmacology. 2016 Mar; 41(4):1093–1102. doi:10.1038/npp.2015.246. PMID: 26272051. 20. Kilts JD, Tupler LA, Keefe FJ, et al. Neurosteroids and self-reported pain in veterans who served in the U.S. Military after September 11, 2001. Pain Med. 2010 Oct; 11(10):1469–1476. doi:10.1111/j.1526-4637.2010.00927.x. PMID: 20735755. 21. Windahl SH, Andersson N, Börjesson AE, et al. Reduced bone mass and muscle strength in male 5α-reductase type 1 inactivated mice. PLoS One. 2011; 6(6):e21402. doi:10.1371/journal.pone.0021402. PMID: 21731732. 22. Katz MD, Cai LQ, Zhu YS, et al. The biochemical and phenotypic characterization of females homozygous for 5 alpha-reductase-2 deficiency. J Clin Endocrinol Metab. 1995 Nov; 80(11):3160–3167. PMID: 7593420. 23. Cantagrel V, Lefeber DJ, Ng BG, et al. SRD5A3 is required for converting polyprenol to and is mutated in a congenital glycosylation disorder. . 2010 Jul 23; 142(2):203–217. doi:10.1016/j.cell.2010.06.001. PMID: 20637498. 24. Vassiliadi DA, Barber TM, Hughes BA, et al. Increased 5 alpha-reductase activity and adrenocortical drive in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2009 Sep; 94(9):3558–3566. doi:10.1210/jc.2009-0837. PMID: 19567518. 25. Glintborg D, Hermann AP, Hagen C, et al. A randomized placebo-controlled study on the effects of pioglitazone on cortisol metabolism in polycystic ovary syndrome. Fertil Steril. 2009 Mar; 91(3):842–850. doi:10.1016/j.fertnstert.2007.12.082. PMID: 18402944. 26. Complete [web page]. Genova Diagnostics. https://www.gdx.net/product/complete-hormones-test-urine. Accessed June 30, 2016. 27. Adrenal Steroid Profile [online document]. Meridian Valley Lab. http://meridianvalleylab.com/wp-content/uploads/ 2014/07/Adrenal-Profile.pdf. Accessed June 28, 2016. 28. Slominski A, Zbytek B, Nikolakis G, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013 Sep;137:107–123. doi:10.1016/j.jsbmb.2013.02.006. PMID: 23435015. Free PMC Article. 29. Tan KC, Shiu SW, Kung AW. Alterations in hepatic lipase and lipoprotein subfractions with transdermal testosterone replacement therapy. Clin Endocrinol (Oxf). 1999 Dec;51(6):765–769. PMID: 10619982. 30. Jockenhövel F, Vogel E, Kreutzer M, et al. Pharmacokinetics and pharmacodynamics of subcutaneous testosterone implants in hypogonadal men. Clin Endocrinol (Oxf). 1996 Jul;45(1):61–71. PMID: 8796140. 31. Rochira V, Balestrieri A, Madeo B, et al. Congenital estrogen deficiency in men: a new syndrome with different phenotypes; clinical and therapeutic implications in men. Mol Cell Endocrinol. 2002 Jul 31;193(1–2):19–28. PMID: 12160998. 32. Villablanca AC, Tetali S, Altman R, et al. Testosterone-derived estradiol production by male endothelium is robust and dependent on p450 aromatase via estrogen receptor alpha. Springerplus. 2013 May 9;2(1):214. doi:10.1186/2193-1801-2-214. PMID: 23741647. 33. Simpson ER. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003 Sep;86(3–5):225–230. PMID: 14623515. 34. Langley RE, Kynaston HG, Alhasso AA, et al. A randomised comparison evaluating changes in bone mineral density in advanced prostate cancer: luteinising hormone-releasing hormone agonists versus transdermal oestradiol. Eur Urol. 2016 Jun;69(6):1016–1025. doi:10.1016/j.eururo.2015.11.030. PMID: 26707868. 35. Aguirre LE, Colleluori G, Fowler KE, et al. High aromatase activity in hypogonadal men is associated with higher spine bone mineral density, increased truncal fat and reduced lean mass. Eur J Endocrinol. 2015 Aug;173(2):167–174. doi:10.1530/EJE-14-1103. PMID: 26142101. 36. Aghazadeh M, Pastuszak AW, Johnson WG, et al. Elevated Dihydrotestosterone is Associated with Testosterone Induced Erythrocytosis. J Urol. 2015 Jul;194(1):160–165. doi:10.1016/j.juro.2015.01.038. PMID: 25596360. 37. Borst SE, Shuster JJ, Zou B, et al. Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: a systematic review and meta-analysis. BMC Med. 2014 Nov 27;12:211. doi:10.1186/s12916-014-0211-5. PMID: 25428524. 38. Gill JK, Wilkens LR, Pollak MN, et al. Androgens, growth factors, and risk of prostate cancer: the Multiethnic Cohort. Prostate. 2010 Jun 1;70(8):906–915. doi:10.1002/pros.21125. PMID: 20166103. 39. Weiss JM, Huang WY, Rinaldi S, et al. Endogenous sex hormones and the risk of prostate cancer: a prospective study. Int J Cancer. 2008 May 15;122(10):2345–2350. doi:10.1002/ijc.23326. PMID: 18172860. 40. Wilt TJ, MacDonald R, Hagerty K, et al. Five-alpha-reductase inhibitors for prostate cancer prevention. Cochrane Database Syst Rev. 2008 Apr 16;(2):CD007091. doi:10.1002/14651858.CD007091. PMID: 18425978. 41. Bhasin S, Woodhouse L, Casaburi R, et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J Clin Endocrinol Metab. 2005 Feb;90(2):678–688. PMID: 15562020. 42. Nieschlag E, Vorona E. Mechanisms in endocrinology: medical consequences of doping with anabolic androgenic steroids: effects on reproductive functions. Eur J Endocrinol. 2015 Aug;173(2):R47–R58. doi:10.1530/EJE-15-0080. PMID: 25805894. 43. O’Donnell AB, Travison TG, Harris SS, et al. Testosterone, dehydroepiandrosterone, and physical performance in older men: results from the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 2006 Feb;91(2):425–431. PMID: 16332936. 44. Yeap BB, Alfonso H, Chubb SA, et al. In older men an optimal plasma testosterone is associated with reduced all-cause mortality and higher dihydrotestosterone with reduced ischemic heart disease mortality, while estradiol levels do not predict mortality. J Clin Endocrinol Metab. 2014 Jan;99(1):E9–E18. doi:10.1210/jc.2013-3272. PMID: 24257908. 45. Rhoden EL, Morgentaler A. Risks of testosterone-replacement therapy and recommendations for monitoring. N Engl J Med. 2004 Jan 29;350(5):482–492. 46. Travison TG, Araujo AB, Kupelian V, et al. The relative contributions of aging, health, and lifestyle factors to serum testosterone decline in men. J Clin Endocrinol Metab. 2007 Feb;92(2):549–555. doi:10.1210/jc.2006–1859. PMID: 17148559. 47. Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab. 1996 May;81(5):1821–1826. doi:10.1210/jcem.81.5.8626841. PMID: 8626841. 48. Cooke RR, McIntosh RP, McIntosh JG, Delahunt JW. Serum forms of testosterone in men after an hCG stimulation: relative increase in non-protein bound forms. Clin Endocrinol (Oxf). 1990 Feb;32(2):165–175. PMID: 2347086. 49. Tenover JS, Matsumoto AM, Plymate SR, Bremner WJ. The effects of aging in normal men on bioavailable testosterone and luteinizing hormone secretion: response to clomiphene citrate. J Clin Endocrinol Metab. 1987 Dec;65(6):1118–1126. PMID: 3119649. 50. Tenover JS, Bremner WJ. The effects of normal aging on the response of the pituitary-gonadal axis to chronic clomiphene administration in men. J Androl. 1991 Jul–Aug;12(4):258–263. PMID: 1917692. 51. Guay AT, Bansal S, Heatley GJ. Effect of raising endogenous testosterone levels in impotent men with secondary hypogonadism: double blind placebo-controlled trial with clomiphene citrate. J Clin Endocrinol Metab. 1995 Dec;80(12):3546–3552. PMID: 8530597. 52. PubMed. Search results for “lomiphene testosterone replacement.” http://www.ncbi.nlm.nih.gov/pubmed/?term=clomiphene+testosterone+replacement. Accessed June 16, 2016. 53. Mazzola CR, Katz DJ, Loghmanieh N, et al. Predicting biochemical response to clomiphene citrate in men with hypogonadism. J Sex Med. 2014 Sep;11(9):2302–7. doi:10.1111/jsm.12592. PMID: 24902614. 54. Practice Committee of the American Society for Reproductive Medicine. Use of clomiphene citrate in infertile women: a committee opinion. Fertil Steril. 2013 Aug;100(2):341–348. doi:10.1016/j.fertnstert.2013.05.033. PMID: 23809505. 55. Bendre SV, Murray PJ, Basaria S. Clomiphene citrate effectively increases testosterone in obese, young, hypogonadal men. Reprod Syst Sex Disord. 2015 Dec;4(4). pii:155. Epub 2015 Nov 13. PMID: 26844009. 56. Chandrapal JC, Nielson S, Patel DP, et al. Characterising the safety of clomiphene citrate in male patients through prostate-specific antigen, haematocrit, and testosterone levels. BJU Int. Epub 2016 May 25. doi:10.1111/bju.13546. PMID: 27226135. 57. Ring JD, Lwin AA, Köhler TS. Current medical management of endocrine-related male infertility. Asian J Androl. 2016 May–Jun;18(3):357–363. doi:10.4103/1008-682X.179252. PMID: 27098657. 58. Clomifene [web page]. Wikipedia. https://en.wikipedia.org/wiki/Clomifene. Accessed June 26, 2016. 59. Rodriguez KM, Pastuszak AW, Lipshultz LI. Enclomiphene citrate for the treatment of secondary male hypogonadism. Expert Opin Pharmacother. Epub 2016 Jun 23. PMID: 27337642. 60. Hill S, Arutchelvam V, Quinton R. Enclomiphene, an estrogen receptor antagonist for the treatment of testosterone deficiency in men. IDrugs. 2009 Feb;12(2):109–119. PMID: 19204885. 61. Rahnema CD, Lipshultz LI, Crosnoe LE, et al. Anabolic steroid-induced hypogonadism: diagnosis and treatment. Fertil Steril. 2014 May;101(5):1271–1279. doi:10.1016/j.fertnstert.2014.02.002. PMID: 24636400. 62. Nixon M, Upreti R, Andrew R. 5α-Reduced glucocorticoids: a story of natural selection. J Endocrinol. 2012 Feb;212(2):111–127. doi:10.1530/JOE-11-0318. PMID: 21903862. 63. Nasiri M, Nikolaou N, Parajes S, et al. 5α-reductase type 2 regulates glucocorticoid action and metabolic phenotype in human hepatocytes. Endocrinology. 2015 Aug;156(8):2863–2871. doi:10.1210/en.2015-1149. PMID: 25974403. 64. Melcangi RC, Giatti S, Garcia-Segura LM. Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci Biobehav Rev. Epub 2015 Dec 2. pii: S0149-7634(15)30099-3. doi:10.1016/j.neubiorev.2015.09.023. PMID: 26657814. 65. Melcangi RC, Panzica GC. Allopregnanolone: state of the art. Prog Neurobiol. 2014 Feb;113:1–5. doi:10.1016/j.pneurobio.2013.09.005. PMID: 24121112. 66. Gunn BG, Cunningham L, Mitchell SG, et al. GABAA receptor-acting neurosteroids: a role in the development and regulation of the stress response. Front Neuroendocrinol. 2015 Jan;36:28–48. doi:10.1016/j.yfrne.2014.06.001. PMID: 24929099. 67. Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res. 2010;186:113–37. doi:10.1016/B978-0-444-53630-3.00008-7. PMID: 21094889. 68. King SR. Emerging roles for neurosteroids in sexual behavior and function. J Androl. 2008 Sep–Oct;29(5):524–33. doi:10.2164/jandrol.108.005660. PMID: 18567641. 69. Agís-Balboa RC, Pinna G, Zhubi A, et al. Characterization of brain neurons that express mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A. 2006 Sep 26;103(39):14602–7. PMID: 16984997. 70. Bäckström T, Bixo M, Johansson M, et al. Allopregnanolone and mood disorders. Prog Neurobiol. 2014 Feb;113:88–94. doi:10.1016/j.pneurobio.2013.07.005. PMID: 23978486. 71. Maitra R, Reynolds JN. Modulation of GABA(A) receptor function by neuroactive steroids: evidence for heterogeneity of steroid sensitivity of recombinant GABA(A) receptor isoforms. Can J Physiol Pharmacol. 1998 Sep;76(9):909–20. PMID: 10066142. 72. Sarkar J, Wakefield S, MacKenzie G, et al. Neurosteroidogenesis is required for the physiological response to stress: role of neurosteroid-sensitive GABAA receptors. J Neurosci. 2011 Dec 14;31(50):18198–18210. doi:10.1523/JNEUROSCI.2560-11.2011. PMID: 22171026. 73. Purdy RH, Morrow AL, Moore PH Jr, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type A receptor-active steroids in the rat brain. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4553–4557. PMID: 1852011. 74. Bitran D, Dugan M, Renda P, et al. Anxiolytic effects of the neuroactive steroid pregnanolone (3 alpha-OH-5 beta-pregnan-20-one) after microinjection in the dorsal hippocampus and lateral septum. Brain Res. 1999 Dec 11;850(1–2):217–224. PMID: 10629767. 75. Carboni E, Wieland S, Lan NC, Gee KW. Anxiolytic properties of endogenously occurring pregnanediols in two rodent models of anxiety. Psychopharmacology (Berl). 1996 Jul;126(2):173–178. PMID: 8856837. 76. Patchev VK, Hassan AH, Holsboer DF, Almeida OF. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology. 1996 Dec;15(6):533–540. PMID: 8946427. 77. Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct. 2012 Dec 19;8:61. doi:10.1186/1744-9081-8-61. PMID: 23253178. 78. Genazzani AR, Petraglia F, Bernardi F, et al. Circulating levels of allopregnanolone in humans: gender, age, and endocrine influences. J Clin Endocrinol Metab. 1998 Jun;83(6):2099–2103. PMID: 9626145. 79. Schmidt PJ, Purdy RH, Moore PH Jr, et al. Circulating levels of anxiolytic steroids in the luteal phase in women with premenstrual syndrome and in control subjects. J Clin Endocrinol Metab. 1994 Nov;79(5):1256–1260. PMID: 7962316. 80. Tsigos C, Kyrou I, Kassi E, Chrousos G. Stress, endocrine physiology and pathophysiology. In: De Groot LJ, Beck-Peccoz P, Chrousos G, et al., eds. Endotext. South Dartmouth, MA: MDText.com Inc.; 2000–2016 Mar 10. PMID: 25905226. Available at http://www.ncbi.nlm.nih.gov/books/NBK278995. Accessed June 30, 2016. 81. Milivojevic V, Fox HC, Sofuoglu M, et al. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women. Psychoneuroendocrinology. 2016 Mar;65:44–53. doi:10.1016/j.psyneuen.2015.12.008. PMID: 26716877. 82. Webster KM, Wright DK, Sun M, et al. Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. J Neuroinflammation. 2015 Dec 18;12:238. doi:10.1186/s12974-015-0457-7. PMID: 26683475. 83. Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci. 2011 Dec 5;5:131. doi:10.3389/fnins.2011.00131. eCollection 2011. PMID: 22164129. 84. Herd MB, Belelli D, Lambert JJ. Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther. 2007 Oct;116(1):20–34. PMID: 17531325. 85. Schiller CE, Schmidt PJ, Rubinow DR. Allopregnanolone as a mediator of affective switching in reproductive mood disorders. Psychopharmacology (Berl). 2014 Sep;231(17):3557–3567. doi:10.1007/s00213-014-3599-x. PMID: 24846476.