Unveiling the Accretion Disks That Fuel Active Galactic

Total Page:16

File Type:pdf, Size:1020Kb

Unveiling the Accretion Disks That Fuel Active Galactic The Pennsylvania State University The Graduate School Department of Astronomy and Astrophysics UNVEILING THE ACCRETION DISKS THAT FUEL ACTIVE GALACTIC NUCLEI A Thesis in Astronomy and Astrophysics by Karen Theresa Lewis c 2005 Karen Theresa Lewis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2005 The thesis of Karen Theresa Lewis was read and approved1 by the following: Michael Eracleous Associate Professor of Astronomy and Astrophysics Thesis Adviser Chair of Committee Steinn Sigurdsson Associate Professor of Astronomy and Astrophysics W. Niel Brandt Professor of Astronomy and Astrophysics Donald Schneider Professor of Astronomy and Astrophysics L. Samuel Finn Professor of Physics Lawrence Ramsey Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics 1Signatures on file in the Graduate School. iii Abstract An increasing number of Active Galactic Nuclei (AGN) exhibit broad, double- peaked Balmer emission lines, reminiscent of those observed in Cataclysmic Variables; these double-peaked Balmer lines represent some of the best evidence for the existence of accretion disks in AGNs. There is considerable evidence to support the hypothesis that double-peaked emitters are “clean” systems in which the accretion disk is not veiled by a disk wind. This unobscured view affords the opportunity to study the underlying accretion disk which is believed to exist in all AGNs. In this thesis, I study two aspects of double-peaked emitters, namely the mechanism responsible for diminishing the accretion disk wind and the long-term profile variability of the double-peaked emission lines. It has been argued that double-peaked emitters have accretion flows that transi- tion to a vertically extended, radiatively inefficient accretion flow at small radii. This scenario naturally explains the diminished wind in double-peaked emitters, but also of- fers a way to illuminate the outer accretion disk, which is necessary to produce the double-peaked emission lines. I critically analyze this hypothesis through robust esti- mates of the accretion rate in a few objects and also through an investigation of the X-ray spectra, which are sensitive to the structure of the inner accretion disk. I find that this hypothesis may be valid in some, but not all double-peaked emitters. Thus, alternative mechanisms for diminishing the disk wind should be sought; ideally these mechanisms should also offer a way to illuminate the outer accretion disk. Furthermore, robust estimates of the accretion rate should be determined for a much larger sample of double-peaked emitters in order to determine whether the distribution of accretion rates is continuous. A set of 20 double-peaked emitters has been monitored for nearly a decade in order to observe long-term profile variations in the double-peaked emission lines. Variations generally occur on timescales of years, and are attributed to physical changes in the accretion disk. The profile variability requires the use of non-axisymmetric accretion disk models; a few of the best observed objects have been modeled, with varying degrees of success, by invoking circular accretion disks with bright spots or spiral arms, or elliptical disks. I have characterized the variability of a group of seven double-peaked emitters in a model independent way and found that variability is caused primarily by the presence of one or more lumps of excess emission that change in amplitude, projected velocity, and shape over periods of several years. An elliptical accretion disk does not produce the correct variability patterns, and for those objects with a known black hole mass, the timescale for variability in this model is an order of magnitude longer than is observed. The spiral arm model produces variability on the correct timescale, but it is also unable to reproduce the observations. However, I suggest that with the simple modification of allowing the spiral arm to be clumpy, many of the observed variability patterns could be reproduced. To make further progress, it is important to continue monitoring these objects at least twice per year. Additionally, a few objects which showed significant variability should occasionally be monitored intensively (every few weeks) for several months at a time in order to probe variability taking place on the dynamical timescale. iv Table of Contents List of Tables ...................................... vi List of Figures ..................................... vii Acknowledgments ................................... viii Chapter 1. Introduction ................................ 1 1.1 The Accretion Disk Paradigm for Active Galactic Nuclei . ...... 1 1.2 A Brief History of Double-Peaked Emitters . 3 1.2.1 External Illumination by a Radiatively Inefficient Accretion Flow................................ 3 1.2.2 Connection Between Double-peaked Emitters and the General AGNPopulation ......................... 5 1.2.3 Challenges to the RIAF hypothesis . 6 1.2.4 Variability of the Double-Peaked Balmer Emission Lines . 7 1.3 Double-Peaked Emitters — Who Needs Them? . 8 1.4 TheGoalsofthisThesis ......................... 9 Chapter 2. Black Hole Masses in Double-Peaked Emitters ............. 11 2.1 Introduction................................ 11 2.2 Sample Selection, Observations, and Data Reduction . ...... 12 2.3 AnalysisandResults ........................... 17 2.3.1 FittingMethod .......................... 17 2.3.2 SourcesofSystematicError . 17 2.3.3 Notes on Individual Objects . 18 2.4 DiscussionandConclusions . 19 Chapter 3. XMM and RXTE Observation of 3C 111 ................ 23 3.1 Introduction................................ 23 3.2 Propertiesof3C111 ........................... 25 3.3 Observations and Data Reductions . 27 3.3.1 XMM-Newton ........................... 27 3.3.2 Rossi X-ray Timing Explorer .................. 29 3.4 TimingAnalysis ............................. 30 3.5 SpectralAnalysis ............................. 30 3.5.1 ContinuumModels ........................ 32 3.5.2 Models for the Fe Kα Line.................... 37 3.5.3 Combined Continuum and Fe Kα Emission Models . 42 3.5.3.1 Truncated Accretion Disk - Models #7a,b . 42 3.5.3.2 Highly Ionized Accretion Disk - Models #8a,b,c . 43 3.5.3.3 Partial Covering - Model #9 . 46 v 3.6 Discussion................................. 49 3.6.1 Origin of the Low Energy Component . 49 3.6.2 Interpretation of the Spectral Models . 50 3.7 Conclusions ................................ 52 Chapter 4. Long-Term Profile Variability in Double-Peaked Emitters ...... 54 4.1 Introduction................................ 54 4.2 Observations and Data Reductions . 57 4.3 ProfileAnlysis............................... 61 4.3.1 Relative Narrow and Broad Line Fluxes . 64 4.3.2 DifferenceSpectra ........................ 67 4.3.3 Variations in Profile Parameters . 75 4.3.4 Variations with Integrated Broad Hα Flux........... 79 4.4 Model Profile Characterization . 81 4.4.1 Physical Motivation . 81 4.4.2 Calculation of the Model Profiles . 83 4.4.3 Model Characterization . 84 4.5 Discussion and Interpretations . 89 4.6 Conclusions ................................ 91 Chapter 5. Conclusions and Suggestions for Future Work ............. 93 5.1 ViabilityoftheRIAFscenario. 93 5.2 Characterization of the Long-term Profile variability . ........ 94 5.3 Accretion Disk Winds in Double-Peaked Emitters . 95 Appendix A. Telluric Correction Method ...................... 96 Appendix B. Inclination Angle of the Disk in 3C 111 ............... 99 Appendix C. Total Galactic Hydrogen Column Density Towards 3C 111 ..... 100 Bibliography ...................................... 101 vi List of Tables 2.1 GalaxyProperties .............................. 13 2.2 TemplateStars ................................ 13 2.3 Velocity Dispersions and Derived Properties . ....... 21 3.1 ObservationLog ............................... 28 3.2 Best Fit Continuum Parameters . 33 3.3 Best Fit Parameters for Combined Continuum and Fe Kα Line Models . 47 4.1 GalaxyProperties .............................. 56 4.2 InstrumentalConfigurations . 58 4.3 LogofObservations ............................. 59 vii List of Figures 2.1 Observed Ca ii linesandBest-fitModels . 16 3.1 3C111X-rayLightcurve........................... 31 3.2 X-raySpectraof3C111 ........................... 34 3.3 Confidence Contours in the Column Density and Photon Index..... 35 3.4 Confidence Contour in the Folding Energy and Reflection Fraction . 36 3.5 Confidence Contours for Gaussian Fits to the Fe Kα Line ........ 39 3.6 Confidence Contours for the Disk-line Fits to the Fe Kα Line (Powerlaw +softGaussianContinuum) . 40 3.7 Confidence Contours for the Disk-line Fits to the Fe Kα Line (Powerlaw +Comptonreflectioncontinuum). 41 3.8 Ratio of the REFSCH and Power Law Models . 44 3.9 Confidence Contour in the Ionization Parameter and Reflection Fraction 45 3.10 Confidence Contour in the Column Density and Covering Fraction for thePartialCoveringModel . 49 3.11 Confidence Contours for the Gaussian Fit to the Fe Kα Line (Partial CoveringModel) ............................... 53 4.1 Double-Peaked Balmer Emission Line Profile . 61 4.2 Broad Hα LightCurves ........................... 66 4.3 DifferenceSpectra .............................. 68 4.4 Variations in Profile Properties as a Function of Time . ....... 77 4.5 Variations in Peak Separation with Broad Hα Flux............ 80 4.6 ModelProfiles................................. 85 A.1 Un-corrected Spectrum of IRAS 0236.6–3101 . 96 A.2 Example Fit of a Rapidly Rotating B-star and
Recommended publications
  • June 2013 BRAS Newsletter
    www.brastro.org June 2013 What's in this issue: PRESIDENT'S MESSAGE .............................................................................................................................. 2 NOTES FROM THE VICE PRESIDENT ........................................................................................................... 3 MESSAGE FROM THE HRPO ...................................................................................................................... 4 OBSERVING NOTES ..................................................................................................................................... 6 MAY ASTRONOMICAL EVENTS .................................................................................................................... 9 PRESIDENT'S MESSAGE Greetings Everyone, Summer is here and with it the humidity and bugs, but I hope that won't stop you from getting out to see some of the great summer time objects in the sky. Also, Saturn is looking quite striking as the rings are now tilted at a nice angle allowing us to see the Casini Division and shadows on and from the planet. Don't miss it! I've been asked by BREC to make sure our club members are all aware of the Park Rules listed on BREC's website. Many of the rules are actually ordinances enacted by the city of Baton Rouge (e.g., No smoking permitted in public areas, No alcohol brought onto or sold on BREC property, No Gambling, No Firearms or Weapons, etc.) Please make sure you observe all of the Park Rules while at the HRPO and provide good examples for the general public. (Many of which are from outside East Baton Rouge Parish and are likely unaware of some of the policies.) For a full list of BREC's Park Rules, you may visit their Park Rules section of their website at http://brec.org/index.cfm/page/555/n/75 I'm sorry I had to miss the outing to LIGO, but it will be good to see some folks again at our meeting on Monday, June 10th.
    [Show full text]
  • Profile Variability of the Hα and Hβ Broad Emission Lines in NGC 5548
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Profile variability of the Hα and Hβ broad emission lines in NGC 5548 A.I. Shapovalova1,5, V.T. Doroshenko2,7, N.G. Bochkarev2, A.N. Burenkov1,5, L. Carrasco3, V.H. Chavushyan3, S. Collin4, J.R. Vald´es3, N. Borisov1, A.-M. Dumont4, V.V. Vlasuyk1, I. Chillingarian2, I.S. Fioktistova1, and O.M. Martinez6 1 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia, 369167, Russia 2 Sternberg Astronomical Institute, University of Moscow, Universitetskij Prospect 13, Moscow 119899, Russia 3 Instituto Nacional de Astrof´isica, Optica y Electr´onica, INAOE, Apartado Postal 51 y 216, 7200, Puebla, Pue., M´exico 4 LUTH, Observatoire de Paris, Section de Meudon, Place Janssen, 92195, Meudon France 5 Isaac Newton Institute of Chile, SAO Branch, Russia 6 Benem´erita Universidad Aut´onoma de Puebla, Facultad de Ciencias F´ısico-Matem´aticas, Apdo. Postal 1152, C.P. 72000, Puebla, Pue. M´exico 7 Isaac Newton Institute of Chile, Crimean Branch, Ukraine Received: 10 November 2003 / Accepted: 26 April 2004 Abstract. Between 1996 and 2002, we have carried out a spectral monitoring program for the Seyfert galaxy NGC 5548 with the 6 m and 1 m telescopes of SAO (Russia) and with the 2.1 m telescope of Guillermo Haro Observatory (GHO) at Cananea, M´exico. High quality spectra with S/N> 50 in the continuum near Hα and Hβ were obtained, covering the spectral range ∼(4000 – 7500) A˚ with a (4.5 to 15) A-resolution.˚ We found that both the flux in the lines and the continuum gradually decreased, reaching minimum values during May-June 2002.
    [Show full text]
  • The Soft X-Ray Variability and Spectrum of 1H0419-577From A
    The Soft X-ray Variability and Spectrum of 1H0419-577from a long EUVE Observation H. L. Marshall 1 Eureka Scientific, Inc., 2452 Delmer St, Suite 100, Oakland, CA, 94602 J. P. Halpern Columbia University K. Leighly Columbia University Received ; accepted 1Mailing address: 5 Whipple Rd., Lexington, MA 02173. 2 ABSTRACT The active galaxy associatedwith the hard X-ray source1H0419-577was observedwith EUVE for about 25 days to obtain a long, contiguouslight curve and an EUV spectrum. An EUV sourcewas detectedwhich was about asbright asthe AGN and was later identified asan AM Her type system(Halpern et al. 1999). The AGN showedvariations as large as a factor of two over 5-10day time scalesand occasionallyvaried by 20-30%in < 0.5day. The spectrum is dominated by a continuum that is poorly fit by a simple powerlaw. There are possibleemissionlines without positive identifications but the lines are likely to be spurious. Subject headings: quasars - Individual: LB1727 -3- 1. Introduction There were less than 10 active galactic nuclei (AGN) detected in the EUVE all-sky survey that were bright enough to be considered detected unambiguously (Marshall, Fruscione, & Carone 1995). Of these, only a few have brbad lines and are bright enough to be detected well using the EUVE spectrometer. There has been significant controversy regarding the extreme ultraviolet (EUV) spectra of the few AGN that have been observed. While there are claims of possible emission lines in some active galaxies (NGC 5548: Kaastra et al. (1995); Mrk 478 and Ton S180 Hwang, C.-Y. &: Bowyer, S. 1997), there is also evidence that the AGN spectra are dominated by continua and that any lines must very weak (Mrk 478: Marshall et al.
    [Show full text]
  • Optical Astronomy Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1994 PROVISIONAL PROGRAM PLAN June 25, 1993 TABLE OF CONTENTS I. INTRODUCTION AND PLAN OVERVIEW 1 II. SCIENTIFIC PROGRAM 3 A. Cerro Tololo Inter-American Observatory 3 B. Kitt Peak National Observatory 9 C. National Solar Observatory 16 III. US Gemini Project Office 22 IV. MAJOR PROJECTS 23 A. Global Oscillation Network Group (GONG) 23 B. 3.5-m Mirror Project 25 C. WIYN 26 D. SOAR 27 E. Other Telescopes at CTIO 28 V. INSTRUMENTATION 29 A. Cerro Tololo Inter-American Observatory 29 B. Kitt Peak National Observatory 31 1. KPNO O/UV 31 2. KPNO Infrared 34 C. National Solar Observatory 38 1. Sacramento Peak 38 2. Kitt Peak 40 D. Central Computer Services 44 VI. TELESCOPE OPERATIONS AND USER SUPPORT 45 A. Cerro Tololo Inter-American Observatory 45 B. Kitt Peak National Observatory 45 C. National Solar Observatory 46 VII. OPERATIONS AND FACILITIES MAINTENANCE 46 A. Cerro Tololo 47 B. Kitt Peak 48 C. NSO/Sacramento Peak 48 D. NOAO Tucson Headquarters 49 VIII. SCIENTIFIC STAFF AND SUPPORT 50 A. CTIO 50 B. KPNO 50 C. NSO 51 IX. PROGRAM SUPPORT 51 A. NOAO Director's Office 51 B. Central Administrative Services 52 C. Central Computer Services 52 D. Central Facilities Operations 53 E. Engineering and Technical Services 53 F. Publications and Information Resources 53 X. RESEARCH EXPERIENCES FOR UNDERGRADUATES PROGRAM 54 XI. BUDGET 55 A. Cerro Tololo Inter-American Observatory 56 B. Kitt Peak National Observatory 56 C. National Solar Observatory 57 D. Global Oscillation Network Group 58 E.
    [Show full text]
  • 188633377.Pdf
    The Astrophysical Journal Supplement Series, 225:29 (15pp), 2016 August doi:10.3847/0067-0049/225/2/29 © 2016. The American Astronomical Society. All rights reserved. EVIDENCE FOR PERIODICITY IN 43 YEAR-LONG MONITORING OF NGC 5548 E. Bon1,2, S. Zucker3, H. Netzer4, P. Marziani5, N. Bon1,2, P. JovanoviĆ1,2, A. I. Shapovalova6, S. Komossa7, C. M. Gaskell8,L.Č. PopoviĆ1,2, S. Britzen7, V. H. Chavushyan9, A. N. Burenkov6, S. Sergeev10, G. La Mura11, J. R. Valdés9, and M. Stalevski1,12,13 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Isaac Newton Institute of Chile, Yugoslavia Branch Belgrade, Serbia 3 Department of Geosciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 4 School of Physics and Astronomy and the Wise Observatory, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel 5 INAF, Osservatorio Astronomico di Padova, Padova, Italy 6 Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167, Russia 7 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany 8 Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 9 Instituto Nacional de Astrofsica, Óptica y Electrónica, Apartado Postal 51, CP 72000, Puebla, Pue, Mexico, Mexico 10 Crimean Astrophysical Observatory, P/O Nauchny, Republic of Crimea 298409, Russia 11 Dipartimento di Fisica e Astronomia “G. Galilei,” Università degli Studi di Padova, Vicolo dell’Osservatorio 3, I-35122—Padova, Italy 12 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Casilla 36-D Santiago, Chile 13 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, Gent, B-9000, Belgium Received 2016 April 10; revised 2016 June 11; accepted 2016 June 14; published 2016 August 23 ABSTRACT We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548.
    [Show full text]
  • 1987Apj. . .321. .233E the Astrophysical Journal, 321
    .233E The Astrophysical Journal, 321:233-250,19S7 October 1 © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. .321. 1987ApJ. BROAD-BAND PROPERTIES OF THE CfA SEYFERT GALAXIES. II. INFRARED TO MILLIMETER PROPERTIES R. A. Edelson Owens Valley Radio Observatory, California Institute of Technology M. A. Malkan1,2 Department of Astronomy, University of California, Los Angeles AND G. H. Rieke Steward Observatory, University of Arizona Received 1986 November 14; accepted 1987 March 18 ABSTRACT Observations between 1.2 jum and 1.3 mm are presented for an unbiased, spectroscopically selected sample of 48 Seyfert galaxies. Most have complete infrared detections, but none were detected at 1.3 mm. The infrared spectra of optically selected Seyfert 2 galaxies are steep (a2.2_25/an= -1.56), in sharp contrast to optically selected quasars, which have flat infrared spectra (â2 2_25Aim = —1.09). This suggests that the infrared emission is predominantly thermal in Seyfert 2 galaxies and nonthermal in quasars. For optically selected Seyfert 1 galaxies, a2.2_25/im= -1.15, and -70% have flat spectra similar to quasars and unlike Seyfert 2 galaxies. Thus, the near- and mid-infrared emission from most Seyfert 1 galaxies appears to be dominated by non- thermal radiation, although thermal dust radiation is clearly important for others. Half of the objects detected at three or more IRAS wavelengths have far-infrared spectra which turn over shortward of 100 /un. For the relatively dust-free Seyfert 1 galaxies, this suggests that the infrared emission is dominated by unreprocessed radiation from a synchrotron self-absorbed source of the order of a light-day in size, about the same size as the hypothesized accretion disks.
    [Show full text]
  • Vitae-Balonek-Full-2019 May 13
    Thomas J. Balonek Professor of Physics and Astronomy Department of Physics and Astronomy Colgate University 13 Oak Drive, Hamilton, NY 13346 (315) 228-7767 [email protected] EDUCATIONAL BACKGROUND Ph.D. (Astronomy) University of Massachusetts, Amherst, MA, 1982 M.S. (Astronomy) University of Massachusetts, Amherst, MA, 1977 B.A. (Physics) Cornell University, Ithaca, NY, 1974 PROFESSIONAL BACKGROUND Professor of Physics and Astronomy, Colgate University, Hamilton, NY (2002-present) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (2008-2011) Visiting Research Scientist, National Astronomy and Ionosphere Center, Cornell University, Ithaca, NY (2006-2007) Associate Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1991-2002) Chair, Department of Physics and Astronomy, Colgate University, Hamilton, NY (1995-1998) Chair, New York Astronomical Corporation (1995-1998) Visiting Research Scientist, National Radio Astronomy Observatory, Tucson, AZ (1992-1993) Assistant Professor of Physics and Astronomy, Colgate University, Hamilton, NY (1985-1991) Visiting Assistant Professor of Astronomy, Williams College, Williamstown, MA (1983-1985) NASA-ASEE (National Aeronautics and Space Administration and American Society for Engineering Education) Summer Faculty Fellow, NASA-Ames Research Center, Moffett Field, CA (1983, 1984) Post-Doctoral Research Associate and Lecturer I, University of New Mexico, Albuquerque, NM (1982-1983) Planetarium Lecturer, Basset Planetarium, Amherst College, Amherst, MA (1979-1981)
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Referierte Publikationen
    14 Publikationslisten Referierte Publikationen Aasi, J., B.P. Abbott, R. Abbott, ..., A. v. Kienlin: Search Allevato, V., A. Finoguenov, F. Civano, N. Cappelluti, F. - Shankar, T. Miyaji, G. Hasinger, R. Gilli, G. Zamorani, G. tected by the Interplanetary Network. Phys. Rev. Lett. 113, Lanzuisi, M. Salvato, M. Elvis, A. Comastri and J. Silver- 011102 (2014). man: Clustering of Moderate Luminosity X-Ray-selected Achitouv, I., C. Wagner, J. Weller and Y. Rasera: Compu- Type 1 and Type 2 AGNS at Z ~ 3. Ap. J. 796, 4 (2014). tation of the halo mass function using physical collapse Amorín, R., V. Sommariva, M. Castellano, A. Grazian, parameters: application to non-standard cosmologies. J. L.A.M. Tasca, A. Fontana, L. Pentericci, P. Cassata, B. of Cosmology and Astroparticle Phys. 10, 77 (2014). Garilli, V. Le Brun, O. Le Fèvre, D. Maccagni, R. Thomas, Ackermann, M., A. Albert, W.B. Atwood, ..., A.W. Strong, E. Vanzella, G. Zamorani, E. Zucca, S. Bardelli, P. Capak, et al.: The Spectrum and Morphology of the Fermi Bub- L.P. Cassará, A. Cimatti, J.G. Cuby, O. Cucciati, S. de la bles. Ap. J. 793, 64 (2014). Torre, A. Durkalec, M. Giavalisco, N.P. Hathi, O. Ilbert, B.C. Lemaux, C. Moreau, S. Paltani, B. Ribeiro, M. Sal- Ackermann, M., M. Ajello, A. Albert, ..., A.W. Strong, et al.: vato, D. Schaerer, M. Scodeggio, M. Talia, Y. Taniguchi, Inferred Cosmic-Ray Spectrum from Fermi Large Area Te- L. Tresse, D. Vergani, P.W. Wang, S. Charlot, T. Contini, S. Fotopoulou, C. López-Sanjuan, Y. Mellier and N.
    [Show full text]
  • A Comprehensive and Novel Analysis of the Chandra X-Ray Observatory Data for the Pictor a Radio Galaxy
    A Comprehensive and Novel Analysis of the Chandra X-ray Observatory Data for the Pictor A Radio Galaxy A PhD Dissertation by mgr Rameshan Thimmappa [email protected] presented to The Faculty of Physics, Astronomy and Applied Computer Science of the Jagiellonian University Krak´ow,Poland Supervisor: dr hab.Lukasz STAWARZ March 2021 Dedicated to My mother Padhmamma and my father Thimmappa A Comprehensive and Novel Analysis of the Chandra X-ray Observatory Data for the Pictor A Radio Galaxy by mgr Rameshan Thimmappa Abstract Pictor A, recognized as the archetypal powerful radio galaxy of the FR II type, is not only one of the brightest radio sources in the sky, but is also particularly prominent in the X-ray domain. Importantly, the extended structure of Pictor A is characterized by the large angular size of the order of several arcminutes. This structure could be therefore easily resolved by the modern X-ray telescopes, in particular by the Chandra X-ray Observatory. As such, Pictor A is a truly unique object among all the other radio galaxies. The main goal of my scientific research carried out during the last years, and summarized in this dissertation, is a comprehensive and novel re-analysis of all the available archival Chandra data for Pictor A. One of the main difficulties in this respect, is that the Chandra observations spread over the past decades have targeted different regions in the source with various exposures and off-axis angles. In addition, those regions do vary dramatically in their X-ray output and appearance, from the extremely bright and point-like (unresolved) nucleus, to the low-surface brightness but considerably extended lobes.
    [Show full text]
  • The Advanced X-Ray Imaging Satellite
    AXIS Advanced X-ray Imaging Satellite arXiv:1903.04083v2 [astro-ph.HE] 15 Mar 2019 Astro2020 Decadal Survey Probe Mission Study i PI Richard Mushotzky and the AXIS Team THE ADVANCED X-RAY IMAGING SATELLITE Authors: Richard F. Mushotzky1, James Aird2, Amy J. Barger3, Nico Cappelluti4, George Chartas5, Lía Corrales6, Rafael Eufrasio7;8, Andrew C. Fabian9, Abraham D. Falcone10, Elena Gallo6, Roberto Gilli11, Catherine E. Grant12, Martin Hardcastle13, Edmund Hodges-Kluck1;8, Erin Kara1;8;12, Michael Koss14, Hui Li15, Carey M. Lisse16, Michael Loewenstein1;8, Maxim Markevitch8, Eileen T. Meyer17, Eric D. Miller12, John Mulchaey18, Robert Petre8, Andrew J. Ptak8, Christopher S. Reynolds9, Helen R. Russell9, Samar Safi-Harb19, Randall K. Smith20, Bradford Snios20, Francesco Tombesi1;9;21;22, Lynne Valencic8;23, Stephen A. Walker8, Brian J. Williams8, Lisa M. Winter15;24, Hiroya Yamaguchi25, William W. Zhang8 Contributors: Jon Arenberg26, Niel Brandt10, David N. Burrows10, Markos Georganopoulos17, Jon M. Miller6, Colin A. Norman17, Piero Rosati27 A Probe-class mission study commissioned by NASA for the NAS Astro2020 Decadal Survey March 20, 2019 AUTHOR AFFILIATIONS 1 Department of Astronomy, University of Maryland, College Park, MD 20742 2 Department of Physics and Astronomy, The University of Leicester, Leicester LE1 7RH, UK 3 Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 4 Physics Department, University of Miami, Coral Gables, FL 33124 5 Department of Physics and Astronomy, College of Charleston, Charleston, SC
    [Show full text]
  • An Extraordinary View of the Universe the Use of X-Ray Vision in Space Science
    MONOGRAPH Mètode Science StudieS Journal, 7 (2017): 163–171. University of Valencia. DOI: 10.7203/metode.7.8819 ISSN: 2174-3487. Article received: 18/07/2016, accepted: 16/11/2016. AN EXTRAORDINARY VIEW OF THE UNIVERSE THE USE OF X-RAY VISION IN SPACE SCIENCE ANETA SIEMIGINOWSKA X-ray emission from cosmic sources indicates that these sources are heated to temperatures exceeding a million degrees or that they contain highly energetic particles. Recent X-ray telescopes, such as the Chandra X-ray Observatory and XMM-Newton, observed thousands of cosmic X-ray sources. These observations greatly impacted our understanding of the physics governing the evolution of structures across the universe. Here, I review and highlight some of these important results. Keywords: astronomy, X-rays, quasars, jets, X-ray clusters, cosmology. Riccardo Giacconi received the 2002 Nobel Prize in In addition, the wavelength of X-ray radiation is shorter Physics «for pioneering contributions to astrophysics, than 10 Angstroms and focusing these very short which have led to the discovery of cosmic X-ray electromagnetic waves involves their reflection at very sources». The final paragraph of his Nobel Lecture, small angles (grazing) off the surface of the telescope’s held on December 8, 2002, summarized the mirror. The X-ray telescope presented by Giacconi and importance of X-ray astronomy: Rossi would focus the X-rays and give sharp images of the X-ray sky, which was not known at that time. ... this radiation reveals the existence of astrophysical In the same year Giacconi, George W. Clark, processes where matter has been heated to temperatures and Rossi published predictions of X-ray fluxes of millions of degrees or in which particles have been accelerated from a few sources outside the to relativistic energies.
    [Show full text]