SQUAMATA: Vlperldae Crotalus Ruber
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al. -
Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae. -
Annotated Checklist and Provisional Conservation Status of Namibian Reptiles
Annotated Checklist - Reptiles Page 1 ANNOTATED CHECKLIST AND PROVISIONAL CONSERVATION STATUS OF NAMIBIAN REPTILES MICHAEL GRIFFIN BIODIVERSITY INVENTORY MINISTRY OF ENVIRONMENT AND TOURISM PRIVATE BAG 13306 WINDHOEK NAMIBIA Annotated Checklist - Reptiles Page 2 Annotated Checklist - Reptiles Page 3 CONTENTS PAGE ABSTRACT 5 INTRODUCTION 5 METHODS AND DEFINITIONS 6 SPECIES ACCOUNTS Genus Crocodylus Nile Crocodile 11 Pelomedusa Helmeted Terrapin 11 Pelusios Hinged Terrapins 12 Geochelone Leopard Tortoise 13 Chersina Bowsprit Tortoise 14 Homopus Nama Padloper 14 Psammobates Tent Tortoises 15 Kinixys Hinged Tortoises 16 Chelonia GreenTurtle 16 Lepidochelys Olive Ridley Turtle 17 Dermochelys Leatherback Turtle 17 Trionyx African Soft-shelled Turtle 18 Afroedura Flat Geckos 19 Goggia Dwarf Leaf-toed Geckos 20 Afrogecko Marbled Leaf-toed Gecko 21 Phelsuma Namaqua Day Gecko 22 Lygodactylus Dwarf Geckos 23 Rhoptropus Namib Day Geckos 25 Chondrodactylus Giant Ground Gecko 27 Colopus Kalahari Ground Gecko 28 Palmatogecko Web-footed Geckos 28 Pachydactylus Thick-toed Geckos 29 Ptenopus Barking Geckos 39 Narudasia Festive Gecko 41 Hemidactylus Tropical House Geckos 41 Agama Ground Agamas 42 Acanthocercus Tree Agama 45 Bradypodion Dwarf Chameleons 46 Chamaeleo Chameleons 47 Acontias Legless Skinks 48 Typhlosaurus Blind Legless Skinks 48 Sepsina Burrowing Skinks 50 Scelotes Namibian Dwarf Burrowing Skink 51 Typhlacontias Western Burrowing Skinks 51 Lygosoma Sundevall’s Writhing Skink 53 Mabuya Typical Skinks 53 Panaspis Snake-eyed Skinks 60 Annotated -
HERP. G66 A7 Uhiumiiy B{ Koiifttu
HERP. QL G66 .06 A7 The UHiumiiy b{ Koiifttu Wtmm «i Hobiuit Kiftto'uf HARVARD UNIVERSITY G Library of the Museum of Comparative Zoology UNIVERSITY OF KANSAS PUBLICATIONS MUSEUM OF NATURAL HISTORY Copies of publications may be obtained from the Publications Secretary, Museum of Natural History, University of Kansas, Law- rence, Kansas 66045 Price for this number: $6.00 postpaid Front cover: The subspecies of the ridgenose rattlesnake C. iv. (Crotalus willardi). Clockwise, starting from the upper left, amahilis, C. w. meridionalis, C. w. silus, and C. w. willardi. All photographs by Joseph T. Collins, with the cooperation of the Dallas Zoo. University of Kansas Museum of Natural History Special Publication No. 5 December 14, 1979 THE NATURAL HISTORY OF MEXICAN RATTLESNAKES By BARRY L. ARMSTRONG Research Associate and JAMES B. MURPHY Curator Department of Herpetology Dallas Zoo 621 East Clarendon Drive Dallas, Texas 75203 University of Kansas Lawrence 1979 University of Kansas Publications Museum of Natural History Editor: E. O. Wiley Co-editor: Joseph T. Collins Special Publication No. 5 pp. 1-88; 43 figures 2 tables Published 14 December 1979 MUS. COMP. ZOO' MAY 1 7 IPR? HARVARD Copyrighted 1979 UNIVERSITY By Museum of Natural History University of Kansas '~\ Lawrence, Kansas 66045 U.S.A. Printed By University of Kansas Printing Service Lawrence, Kansas ISBN: 0-89338-010-5 To Jonathan A. Campbell for his encouragement *?;:»:j>.^ ,_.. = -V-.^. ^4^4 PREFACE Beginning in November, 1966, studies on rattlesnakes (genera Crotalus and Sistrurus) and other pit vipers were initiated at the Dallas Zoo which included techniques for maintenance and disease treatments, in conjunction with observations on captive and wild populations. -
A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St. -
(Crotalus Oreganus Helleri) Hunting Behavior Through Community Science
diversity Article Quantifying Southern Pacific Rattlesnake (Crotalus oreganus helleri) Hunting Behavior through Community Science Emily R. Urquidi * and Breanna J. Putman Department of Biology, California State University San Bernardino, 5500 University Parkway, San Bernardino, CA 92407, USA; [email protected] * Correspondence: [email protected] Abstract: It is increasingly important to study animal behaviors as these are the first responses organisms mount against environmental changes. Rattlesnakes, in particular, are threatened by habitat loss and human activity, and require costly tracking by researchers to quantify the behaviors of wild individuals. Here, we show how photo-vouchered observations submitted by community members can be used to study cryptic predators like rattlesnakes. We utilized two platforms, iNaturalist and HerpMapper, to study the hunting behaviors of wild Southern Pacific Rattlesnakes. From 220 observation photos, we quantified the direction of the hunting coil (i.e., “handedness”), microhabitat use, timing of observations, and age of the snake. With these data, we looked at whether snakes exhibited an ontogenetic shift in behaviors. We found no age differences in coil direction. However, there was a difference in the microhabitats used by juveniles and adults while hunting. We also found that juveniles were most commonly observed during the spring, while adults were more consistently observed throughout the year. Overall, our study shows the potential of using Citation: Urquidi, E.R.; Putman, B.J. community science to study the behaviors of cryptic predators. Quantifying Southern Pacific Rattlesnake (Crotalus oreganus helleri) Keywords: citizen science; conservation; ontogeny; behavioral lateralization; snakes Hunting Behavior through Community Science. Diversity 2021, 13, 349. https://doi.org/10.3390/ d13080349 1. -
Patterns of Species Richness, Endemism and Environmental Gradients of African Reptiles
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Patterns of species richness, endemism ARTICLE and environmental gradients of African reptiles Amir Lewin1*, Anat Feldman1, Aaron M. Bauer2, Jonathan Belmaker1, Donald G. Broadley3†, Laurent Chirio4, Yuval Itescu1, Matthew LeBreton5, Erez Maza1, Danny Meirte6, Zoltan T. Nagy7, Maria Novosolov1, Uri Roll8, 1 9 1 1 Oliver Tallowin , Jean-Francßois Trape , Enav Vidan and Shai Meiri 1Department of Zoology, Tel Aviv University, ABSTRACT 6997801 Tel Aviv, Israel, 2Department of Aim To map and assess the richness patterns of reptiles (and included groups: Biology, Villanova University, Villanova PA 3 amphisbaenians, crocodiles, lizards, snakes and turtles) in Africa, quantify the 19085, USA, Natural History Museum of Zimbabwe, PO Box 240, Bulawayo, overlap in species richness of reptiles (and included groups) with the other ter- Zimbabwe, 4Museum National d’Histoire restrial vertebrate classes, investigate the environmental correlates underlying Naturelle, Department Systematique et these patterns, and evaluate the role of range size on richness patterns. Evolution (Reptiles), ISYEB (Institut Location Africa. Systematique, Evolution, Biodiversite, UMR 7205 CNRS/EPHE/MNHN), Paris, France, Methods We assembled a data set of distributions of all African reptile spe- 5Mosaic, (Environment, Health, Data, cies. We tested the spatial congruence of reptile richness with that of amphib- Technology), BP 35322 Yaounde, Cameroon, ians, birds and mammals. We further tested the relative importance of 6Department of African Biology, Royal temperature, precipitation, elevation range and net primary productivity for Museum for Central Africa, 3080 Tervuren, species richness over two spatial scales (ecoregions and 1° grids). We arranged Belgium, 7Royal Belgian Institute of Natural reptile and vertebrate groups into range-size quartiles in order to evaluate the Sciences, OD Taxonomy and Phylogeny, role of range size in producing richness patterns. -
Toxicological Comparison of Crotalus Ruber Lucasensis Venom from Different Ecoregions of the Baja California Peninsula
Toxicon 187 (2020) 111–115 Contents lists available at ScienceDirect Toxicon journal homepage: http://www.elsevier.com/locate/toxicon Short communication Toxicological comparison of Crotalus ruber lucasensis venom from different ecoregions of the Baja California Peninsula Ivan´ Fernando Pozas-Ocampo a, Alejandro Carbajal-Saucedo b, Ana Bertha Gatica-Colima c, Amaury Cordero-Tapia a, Gustavo Arnaud-Franco a,* a Centro de Investigaciones Biologicas´ Del Noroeste SC, Instituto Polit´ecnico Nacional, #195 Col. Playa Palo Santa Rita Sur, La Paz, BCS, CP 23096, Mexico b ISBI Biosciences S.C, Alta Tension´ #4, Huitzilac, Morelos, CP 62510, Mexico c Universidad Autonoma´ de Ciudad Juarez,´ Instituto de Ciencias Biom´edicas, Anillo Envolvente Del PRONAF y Estocolmo, S/n. Ciudad Juarez,´ Chihuahua, CP 32310, Mexico ARTICLE INFO ABSTRACT Keywords: The Baja California Peninsula possesses a mosaic of ecoregions that offers a wide variety of environments for the Red diamond rattlesnake species that here inhabit. Here we report biological variations in. Toxicology Crotalus ruber lucasensis venom from arid, semiarid and tropical eco-regions. Lethal (1.4–6.8 mg/kg), ede Venom matogenic (0.3–0.5 μg) and defibrinogenating (from non-detectable to 20 μg) activities were found to have Hemorrhage significant differences among eco-regions. Edema PLA2 Snake venoms of the Viperidae family are composed of a complex of the arid Magdalena Plains eco-region (MP); El Comitan,´ representa mixture of proteins (Calvete et al., 2010; Kang et al., 2011; Mackessy, tive of semiarid Central Gulf Coast (CGC), and; Santiago, representative 2008), which may vary at an inter- and intra-specific level, which is a of tropical Cape Deciduous Forest (CDF). -
Feeding Ecology of the Endemic Rattleless Rattlesnake, Crotalus Catalinensis, of Santa Catalina Island, Gulf of California, Mexico
Copeia, 2007(1), pp. 80–84 Feeding Ecology of the Endemic Rattleless Rattlesnake, Crotalus catalinensis, of Santa Catalina Island, Gulf of California, Mexico HE´ CTOR AVILA-VILLEGAS,MARCIO MARTINS, AND GUSTAVO ARNAUD Crotalus catalinensis is a rattleless rattlesnake endemic to Santa Catalina Island, in the Gulf of California, Mexico. It has been hypothesized that the lack of a rattle in this species is a stealth adaptation for hunting birds in vegetation. We provide detailed data on the diet of C. catalinensis from samples obtained during nine trips to the island in 2002–2004. Over two-thirds (70%) of the diet of C. catalinensis was composed of the Santa Catalina Deer Mouse (Peromyscus slevini). The remaining prey were lizards (Dipsosaurus catalinensis, Uta squamata, and Sceloporus lineatulus). There was an ontogenetic shift in diet and higher feeding activity during the dry season. The diet of this species is only a small subset of the diet of its supposed closest relative, C. ruber, probably as a result of limited diversity of prey on the island. The lack of birds in the diet of C. catalinensis argues against the supposed importance of birds as an essential feature for the hypothesis relating the lack of a rattle with a stealth hunting technique for birds in vegetation. However, since P. slevini is partially arboreal, there remains the possibility that the lack of a rattle is an adaptation for stealth hunting for mice in vegetation. HE rattleless rattlesnake, Crotalus catalinensis, Catalina Leaf-Toed Gecko, Phyllodactylus bugastrole- T is endemic to Santa Catalina Island, in the pis. Avila-Villegas et al. -
A Contribution to Spalerosophis Microlepis JAN, 1865, with a Short Review of the Genus and a Key to the Species (Squamata: Serpentes: Colubridae)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2010 Band/Volume: 22_3_4 Autor(en)/Author(s): Schätti Beat, Tillack Frank, Helfenberger Notiker Artikel/Article: Ein Beitrag zu Spalerosophis microlepis JAN, 1865 mit einem kurzen Überblick zur Gattung und einem Bestimmungsschlüssel der Arten (Squamata: Serpentes: Colubridae) 115-136 ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 22 (3/4): 115 - 135 115 Wien, 30. Dezember 2009 A contribution to Spalerosophis microlepis JAN, 1865, with a short review of the genus and a key to the species (Squamata: Serpentes: Colubridae) Ein Beitrag zu Spalerosophis microlepis JAN, 1865 mit einem kurzen Überblick zur Gattung und einem Bestimmungsschlüssel der Arten (Squamata: Serpentes: Colubridae) BEAT SCHÄTTI & FRANK TILLACK & NOTKER HELFENBERGER KURZFASSUNG Die vorliegende Arbeit behandelt Morphologie und Verbreitung von Spalerosophis microlepis JAN, 1865, einer endemischen Colubride aus dem Westen des Iran. Spalerosophis JAN (Typusart S. microlepis) umfaßt min- destens sechs Arten vom westlichen Sahel und dem Horn von Afrika bis zum Himalaya und Zentralasien. Äußere Diagnosemerkmale der Gattung werden geprüft und ein Bestimmungsschlüssel für die berücksichtigten Taxa prä- sentiert. Die richtige Schreibweise und Autorenschaft von Periops parallelus schirasianus JAN, 1863 wird klarge- stellt und die Validität dieses Taxons in Betracht gezogen. Ferner sprechen die Verfasser die Verbreitungsgrenze gewisser Arten und die heikle Rassengliederung von S. diadema (SCHLEGEL, 1837) an und erläutern taxonomische Probleme im Zusammenhang mit dessen Typuslokalität. ABSTRACT The morphology and distribution of Spalerosophis microlepis JAN, 1865, an endemic colubrid from West Iran, is assessed. Spalerosophis JAN (type species S. -
Draft =>APPROVED Minutes of Meeting February 5, 2015 New
Draft =>APPROVED Minutes of Meeting February 5, 2015 New Mexico Herpetological Society American International Rattlesnake Museum in Old Town Albuquerque President Scott Bulgrin called our meeting to order at 7:12pm, welcomed guests and members (17) and asked for a reading of Minutes that had not been read at previous meetings. OLD BUSINESS Secretary Cosmos read Minutes of both our December 2014 and January 2015 meetings. With minor corrections and additions these were approved by members present. Scott asked for the Treasurer's Report and Treasurer Letitia reported a balance in our NMHS checking account of $3241.48. Scott said that checks for helping with the Sandia Pueblo still have to be made out and sent to Mr. Carroll and any others. That brings up the need for an up-to-date mailing list, particularly of paid members. Letitia, Josh Emms and Scott will cooperate on coming up with the list. Ted Brown will be paid $260 for his work. Scott will inventory the T-shirts with our NMHS logo. He said that books still are available for sale, both $1 ones and more expensive ones for advanced herpers. He will find out when to pay for our website. Application for membership is on the website and the form along with payment must be snailmailed in to us. It was suggested that the category of Honorary Member should be maintained and that Charlie Painter and Lori be honored there. Scott wanted to know what we thought about our 2014 Banquet. In brief, we will request to have it again at the Church Street Cafe', update our mailing list and invite more herpers, and have the projector ready ahead of the evening's program.