Department of Mechanical Engineering Technical University of Munich

150 Years Mechanical Engineering Enabling Future 1868 – 2018

Annual Report 2018 The cover illustration shows the department’s building in Garching, 2018 (photo Tobias Hase, TUM) and the Munich Polytechnic School’s building in 1868 (engraving from 1869). Image editing by Fa-Ro Marketing. Department of Mechanical Engineering Technical University of Munich

150 Years Mechanical Engineering Enabling Future 1868 – 2018

Annual Report 2018 Imprint

Technical University of Munich Department of Mechanical Engineering Boltzmannstrasse 15 85748 Garching near Munich www.mw.tum.de

Editor: Prof. Dr.-Ing. Nikolaus Adams Sub-editor: Dr. Till v. Feilitzsch

History of the department: Dr. Matthias Georgi, Mag. Anton Zwischenberger, Neumann & Kamp, www.historische-projekte.de

Layout: Fa-Ro Marketing, Munich

Photo credits: ARBURG, Uli Benz, Matthias Bittner, Michael Cerny, Astrid Eckert, Andreas Gebert, Getty Images, Jan Greune, Tobias Hase, Andreas Heddergott, Tanja Mayer, Jan-Fabian Meis, Christopher Rausch, Matthias Tebbe, Andreas Zeitler, Zubair and further illustrations provided by the institutes

Historical pictures: Bayerland (p. 21), Thomas Bergmann (25), Bildsammlung Liudger Dienel (16), CC Germania (13), Deutsches Museum München (13, 14, 27, 31), EADS Corporate Heritage (17), FOTAG Luftbild, TUM (24), Linde AG (13, 14), MAN Historisches Archiv (14, 54), Angela Molitoris (19), TUM Historisches Archiv (11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 28)

March 2018 (refering to data and events of the year 2017) Content

Preamble 9

150 Years of Mechanical Engineering Milestones in the History of the Department of Mechanical Engineering 12 Science – Politics – Industry 27 Contract Research vs. Free Research 28 Fundamental Research vs. Applied Research 31 6JG+PƅWGPEGQH2QNKVKEU 

Selected Highlights 2017 35

The Department of Mechanical Engineering Governance 48 Facts and Figures 50 Department Board of Management 51 Department Council Mechanical Engineering 52 Central Services 54 Honors Awarded During the Department Day 56 Ranking Results 58 Research 59

Divisions of the Department of Mechanical Engineering Aerospace 62 Automotive 64 Energy 65 Materials 66 Mechatronics 68 Medical Technology 69 Process Engineering 70 Production and Logistics 71

Teaching at the Department of Mechanical Engineering Studying at the TUM Department of Mechanical Engineering 74 International Students and Students’ Exchange 78 #UUKUVCPEGHQT5VWFGPVU1HHGTGFD[VJG%GPVTCN'ZCOKPCVKQP5GTXKEGU1HƄEG  Public Funds to Improve Conditions of Study at the Department of Mechanical Engineering 81 Diversity 82 Central Teaching Unit 83 Student Council 85

Faculty of the Department of Mechanical Engineering Appointments 88 Retirements 90 Department Members 91 Content

Reports of the Institutes

Prof. Dr.-Ing. Nikolaus Adams Aerodynamics and Fluid Mechanics 100

Prof. Dr. phil. Klaus Bengler Ergonomics 109

Prof. Dr. rer. nat. Sonja Berensmeier Bioseparation Engineering 115

Prof. Dr. Carlo L. Bottasso Wind Energy Systems 118

Prof. Dr.-Ing. Klaus Drechsler Carbon Composites 123

Prof. Dr.-Ing. Johannes Fottner Materials Handling, Material Flow, Logistics 127

Prof. Dr.-Ing. Michael W. Gee Mechanics and High Performance Computing 132

Prof. Dr.-Ing. habil. Dipl.-Geophys. Christian Große Non-destructive Testing 137

Prof. Dr.-Ing. Volker Gümmer Turbomachinery and Flight Propulsion 141

Prof. Dr.-Ing. Oskar J. Haidn Space Propulsion 146

Prof. Dr.-Ing. Manfred Hajek Helicopter Technology 151

Prof. Dr.-Ing. Florian Holzapfel Flight System Dynamics 154

Prof. Dr.-Ing. Mirko Hornung Aircraft Design 160

Prof. Dr.-Ing. Hans-Jakob Kaltenbach Flow Control and Aeroacoustics 166

Prof. Dr.-Ing. Harald Klein Plant and Process Technology 169

Prof. Phaedon-Stelios Koutsourelakis, Ph.D. Continuum Mechanics 172

Prof. Dr.-Ing. Andreas Kremling Systems Biotechnology 176

6 Content

Prof. Dr. rer. nat. Oliver Lieleg Biomechanics 179

Prof. Dr.-Ing. Markus Lienkamp Automotive Technology 182

Prof. Dr.-Ing. habil. Boris Lohmann Automatic Control 187

Prof. Dr. rer. nat. Tim C. Lüth Micro Technology and Medical Device Technology 191

Prof. Dr. rer. nat. Tim C. Lüth (interim) Medical Materials and Medical Implant Design 196

Prof. Rafael Macián-Juan, Ph.D. Nuclear Technology 201

Prof. Dr.-Ing. Steffen Marburg Vibroacoustics of Vehicles and 205

Prof. Dr. Rudolf Neu Plasma Material Interaction 209

Prof. Wolfgang Polifke, Ph.D. Thermo-Fluid Dynamics 212

Prof. Dr. Julien Provost Safe Embedded Systems 215

Prof. Dr.-Ing. Gunther Reinhart Industrial Management and Assembly Technologies 218

Prof. Dr. Ir. Daniel Rixen Applied Mechanics 222

Prof. Dr.-Ing. Thomas Sattelmayer Thermodynamics 226

Prof. Dr.-Ing. Veit Senner Sport Equipment and Materials 235

Prof. Dr.-Ing. Hartmut Spliethoff Energy Systems 240

Prof. Dr.-Ing. Karsten Stahl Elements 243

Prof. Dr.-Ing. Birgit Vogel-Heuser Automation and Information Systems 249

7 Content

Prof. Dr.-Ing. Wolfram Volk Metal Forming and Casting 254

Prof. Dr.-Ing. Georg Wachtmeister Internal Combustion Engines 259

Prof. Dr.-Ing. Wolfgang A. Wall Computational Mechanics 264

Prof. Prof. h.c. Dr. rer. nat. Ulrich Walter Astronautics 268

Prof. Dr. mont. habil. Dr. rer. nat. h.c. Ewald Werner Materials Science and Mechanics of Materials 274

Prof. Dr.-Ing. Dirk Weuster-Botz Biochemical Engineering 280

Prof. Dr.-Ing. Michael F. Zaeh Machine Tools and Manufacturing Technology 284

Prof. Dr. Markus Zimmermann Product Development and Lightweight Design 288

Appendix Honorary Doctorates 296 External Lecturers in WS 16/17 und SS 17 297 Habilitations 2017 298 Doctorates 2017 298

8 Preamble

Dear reader,

Enabling the future – ever since In order to maintain the balance between applied 1868 Mechanical Engineering TGUGCTEJCUCTGURQPUGVQQPGQHVJGƄTUVGXCNWCVKQPUQHC at the Technical University of German university department, the department agreed to Munich has been the front CEEGRVRGGTTGXKGYGFUEKGPVKƄERWDNKECVKQPUCPFHWPFKPI runner in developing technical through peer-reviewed public foundations as an additional solutions for the challenges of criteria for research performance, along with successful our society at the cutting edge cooperation with industry. Most international rankings of research and technology. are based on publication data, and the success of the , the pioneer of refrigeration, and Johann IQXGTPCPEGOGCUWTGUKUTGƅGEVGFKPVJGHCEVVJCV67/ Bauschinger, a renowned mathematician and materials Mechanical Engineering is now ranked at top international scientist, as founding professors of the Department, as positions worldwide and at position 1 or 2 among its well as our students, Rudolf Diesel, inventor of the diesel German peers (c.f. Rankings, p. 54). At the same time, engine, and the pioneers in aviation Willy Messerschmitt TUM Mechanical Engineering became the top-performer and Claude Dornier are among the illustrious circle of at TUM with respect to DFG funding, except for TUM TUM engineers. Sustainable mobility, transport and energy Medical (c.f. Research, p. 55). conversion and disruptive technologies in manufacturing caused by digitalization are the most prominent chal- 150 years’ culture of excellence does not allow us to rest lenges today. As much as in the early days of engineer- on our laurels. We are in the midst of an intensive process ing, these challenges can only be met by fundamental of redesigning our study programs to meet the future engi- TGUGCTEJKPGPIKPGGTKPIUEKGPEGUKGOGEJCPKEUƅWKF PGGTKPIEJCNNGPIGUCNTGCF[TGƅGEVGFKPCVGCTN[UGOGUVGTU mechanics, thermodynamics and engineering design from QHVJG$CEJGNQTRTQITCOGPCDNKPIUVWFGPVUVQFGƄPG which innovation and creative solutions emerge. Funda- and master their focus during the subsequent Master’s OGPVCNGPIKPGGTKPIUEKGPEGJQYGXGTƄPFUKVUQTKGPVCVKQP programs. (c.f. Studying p. 69) only in the applied engineering sciences on which it is ƄTON[ITQWPFGF6JGGRKVQOGQHVJGU[PGTI[DGVYGGP For the fourth time now, we have compiled the achieve- applied and fundamental engineering science was Ludwig ments and topical research results of TUM Mechanical Prandtl, one of our most prominent graduates, who devel- Engineering in this report. We hope that it helps our oped the mathematical foundation of aerodynamics and partners in academia and industry to consolidate or estab- boundary layers and thus enabled modern aeronautical lish contact with us, stimulate the interest of prospective engineering (c.f. Highlights on pp. 31-42) students and junior researchers to join us, and – last but not least – ourselves, the faculty and researchers as a live Since about the 1980s, cooperation with industry has exchange platform on our research and teaching activities. gained ground and became one of the most important sources for research funding throughout the years 1995 to 2005. After the move to Garching, between 2005 and 2015, third-party funding almost tripled, motivating restructuring through new governance approaches and Prof. Dr.-Ing. Nikolaus Adams, Dean implementation of a strategic mid-range vision for further departmental development (c.f. Strategic Governance, R| 

9 History of the department Dr. Matthias Georgi Mag. Anton Zwischenberger Neumann & Kamp www.historische-projekte.de

Thermal engine laboratory in the Mechanical Engineering Department, around 1916

10 150 Years of Mechanical Engineering

11 The History of the Department

The Munich Polytechnic School’s new building inaugurated in 1868 and designed by Gotttried Neureuther, one of school’s founding professors; engraving from 1869.

‘The organic provisions for the new Polytechnic School in the rank of collegial councillor) and associate professors Munich have been granted approval by His Majesty the (with the rank of collegiate assessor)’. Moreover: ‘[T]hese King, and the relevant royal ordinance will be published senior teachers will share teaching with an appropriate in the government gazette today.’ These were the words number of assistant teachers as well as readers.’ There used by the Allgemeine Zeitung in Augsburg, one of were explicit rules for students with regard to both Germany’s leading newspapers, when it announced the behaviour and teaching: ‘[T]he audience is subject to establishment of the Technical University of Munich (TUM) the institute’s disciplinary code’ and ‘each student must as a Polytechnic School on 24 April 1868. This was also be occupied at the school at least three hours per day.’ the date on which the history of today’s Department of Students’ admission was also regulated: ‘The Polytechnic Mechanical Engineering began. School only admits students who have reached the age of seventeen and who have completed a technical middle The Allgemeine Zeitung continued: The school ‘comprises school (equivalent to a Realgymnasium).’ The latter was a one general department and four technical schools: for secondary school with a focus on sciences. engineers, architects, mechanics and chemical engineers. 6JGUGƄXGFGRCTVOGPVUYKNNVGCEJDQVJOCVJGOCVKECN The Department of Mechanical Engineering has its origins and natural sciences as well as the arts of drawing, in the mechanics school, Department IV, Mechanical-Tech- construction and engineering, mechanical and chemical nical Department. At the time of its founding, theoretical technology in their full scope.’ Literature, cultural history, mechanics was still part of mathematical physics at the aesthetics, law, geography, history etc. were ‘taught within General Department, and Technical Mechanics was part of the boundaries matching the audience’. the Engineering Department. This department dealt with IGQFGU[EKXKNGPIKPGGTKPICPFVJGƄGNFQHKPHTCUVTWEVWTG The school was given university status from the begin- To guarantee the school’s success it issued the following PKPI&WTKPIKVUƄTUV[GCTCVQVCNQHRTQHGUUQTUCPF statement in 1868: ‘Indeed, only capable teachers and lecturers taught approximately 350 students. The different directors are able to breathe life into it (the Polytechnic positions of the academic instructors were distinguished School).’ as follows: ‘The professors at the Polytechnic School are public servants. They are divided into full professors (with

12 The History of the Department

Milestones in the History of the Department of Mechanical Engineering

1868 Establishment of the Munich Polytechnic School

First Study Programme of the Mechanical-Technical Department Carl v. Linde, Chair of Theoretical Machine Science, lectures on engines in general; steam engines. H.C.A. Ludewig, Chair of Mechani cal Engineering, lectures on: the construction of simple machine parts; the construction of active machine parts; the construction of machines and engines (each includ- ing lecture and tutorial). F. Klingenfeld, Chair of Descriptive Geometry, lectures on: machine science; mechanical tech- no logy; mechanical drawing (lecture and tutorial). Johann Bauschinger, Chair of Technical Mechanics and Graphical Statics (part of the engineering department until 1874), lec- tures on: technical mechanics; elementary mechanics.

1873 The Mechanical-Technical Laboratory headed by Johann Bauschinger which was established in 1871 moves into a laboratory building of its own. This later results in the establishment of the State Materials Test- Johann Bauschinger ing Institute for Mechanical Engineering which is located at the Chair of Materi- als Science and Material Mechanics (Ewald Werner) today. 1875 Carl von Linde sets up the Laboratory of Machine Science. With the newly-established #JCNH[GCTN[EGTVKƄECVGHQT.WFYKI(TØJYGKPHTQOVJG2QN[VGEJPKE5EJQQN Laboratory of Theoretical 1868 Machine Science the Munich Polytechnic School was ahead of all other German Carl von Linde technical universities in UEKGPVKƄEMPQYNGFIGHQTPGCTN[VYGPV[[GCTU6JG objective of this laboratory was to conduct various ‘proof-of-principle’ studies in order to create better ECNEWNCVKQPRTKPEKRNGU1PGQHVJGƄTUVGZRGTKOGPVU concerns the determination of the properties of UWRGTJGCVGFUVGCO(QTVJGƄTUVVKOG.KPFGCNUQ includes the theory of refrigeration engines and refrigeration technology in his ƄGNFQHVGCEJKPI Establishment of the Chair Sketches and annotations from one of Carl Linde’s early lecture concepts of Mechanical Technology, Egbert v. Hoyer is appointed as full professor. The focus of his work is on both textile engineering and paper technology. Egbert von Hoyer

13 The History of the Department

The Paradigm of Mechanical Engineering Evolves The paradigm of modern mechanical engineering evolves during the second half of the 19th century and the beginning of the 20th century. Both engineers and scientists develop basic mechanisms such as the one of the diesel engine and VJGTGHTKIGTCVKQPGPIKPG6JGTOQF[PCOKEUCPFƅWKFOGEJCPKEU CTGRGTHGEVGFCUUEKGPVKƄEFKUEKRNKPGUGUUGPVKCNVQOGEJCPKECN engineering. Institutionally, mechanical engineering outgrows the small inventors’ workshops. It is taught at universities and industrial enterprises set up research departments.

1877 Renaming of the Munich Polytechnic School to Technische Hochschule München (Munich Technical University or THM). 1880 Rudolf Diesel graduates with the best marks since The Werder traction engine and bend testing machine, acquired by Johann the university was established and is awarded an Bauschinger in 1870, served for over 100 years in the Mechanical Technical Laboratory, before it went to the Deutsche Museum; photo from 1916. JQPQTCT[FGITGG&WTKPIVJGƄTUVHGYFGECFGUQHKVU existence students are given a report each semester like at a conventional school. Diplomas are only granted for ‘outstanding achievements’ by the department on application. Only twelve diplomas are granted to graduates between the establishment of the school in 1868 and 1900. 1886 Johann Bauschinger publishes his study entitled: ‘On the changes of the elastic limit and of the strength of iron and steel caused by elongation and squeezing, by heating and cooling and by frequently repeated strain.’ He thus describes the so-called ‘Bauschinger effect’ later named after him, i.e. the change in the elastic limit of a metal or an alloy following a deformation which determines the direction; a workpiece is initially bent in one direction. If it is then bent in the opposite direction it shows a reduction in strength. This is caused by (TQONGHVVQTKIJV6JGGPIKPGGT4WFQNH&KGUGNFKTGEVQTQHVJG/CUEJKPGP- primarily induced dislocations in the material (faults fabrik Augsburg, Heinrich von Buz and Moritz Schröter, Professor of the or impurities). Munich Technical University, 1897 1894 August Föppl, who succeeds Johann Bauschinger, begins to corroborate his theoretical YQTMKPVJGƄGNFQHVGEJPKECN mechanics with practical experiments. 1897 The ‘Föppl’ is released: August Föppl publishes the

ƄTUVRCTVQHJKUn.GEVWTGUQP #WIWUV(ÒRRN Technical Mechanics’. The standard reference work is printed in numerous edi- tions and remains the central textbook for mechan- ical engineering over decades. It is still published today.

View of the old Linde testing laboratory before it was handed over to the university. In the foreground is the oxygen condenser, photo from 1901.

14 The History of the Department

1898 Ludwig Prandtl obtains his degree in mechanical Ca. 1900 Around 1,000 students attend courses at the engineering at the Munich Technical University. He Department of Mechanical Engineers. then works as an assistant to August Föppl, who 1901 The Munich Technical University is granted the right was to become his father-in-law later. However, in to confer doctorates and is thus put on a par with 1899, he had to submit his thesis on ‘Occurrences of Munich University. Tilting. A Case of Unstable Elastic Equilibrium’ to the This was preceded by complicated negotiations LMU (Ludwig-Maximilians-Universität) in Munich. He with both the Bavarian and Prussian Ministries of made important contributions to a basic understand- Education. It was the universities in particular which KPIQHƅWKFOGEJCPKEUCPFFGXGNQRGFVJGDQWPFCT[ feared a debasement of the doctoral degree and layer theory. voiced harsh protests in the run-up to the decision. 1902 Carl von Linde returns to the Munich Technical Uni- Name of the Department versity as associate professor of Applied Thermo- Over the past 150 years, the present-day Department of dynamics. It is on his initiative that the Laboratory Mechanical Engineering has had various names. In 1868 for Technical Physics is set up. the department’s history begins as ‘Mechanical-Technical Department’. Around the year 1900 its name changes to Ludwig Burmester begins his lectures on kine- ‘Mechanical Engineers Department’. In the 1930s it is called matics at the Technische Hochschule, making the ‘Department of Mechanical Engineering’, and in the 1940s theory of the wheel gear an important part of the ‘Department of Mechanical and Electrical Engineering’. In curriculum. 1974 the Electrical Engineering section becomes a department in its own right while the Department of Mechanical Engineering remains. A reconstruction of the exact dates – apart from the last renaming in 1974 – is not possible. 6TCPUKVKQPUYGTGƅWKFGCEJVKOGVJGPCOGEJCPIGFCPFVJG old and new names of the department were used in parallel over many years.

Hilde Barkhausen (1876–1967), a member of the research staff at the Laboratory for Technical Physics, and colleagues. In the front row, to her right, is her sponsor, Professor Oscar Knoblauch, around 1908.

15 The History of the Department

Laboratory for Technical Physics Since its establishment, the aim of the Laboratory for Technical Physics has been the experimental application of theoretically obtained knowledge. Research is also carried out although the Technical University FQGUPQVJCXGCPQHƄEKCNTGUGCTEJCUUKIPOGPV6JKUVGCEJKPI model sets an example for many other technical universities and is applied to this day. The purpose of the laboratory is later explained by Wilhelm Lynen, Professor of Mechanical Engineering at the THM from 1909 onwards: ‘The student must deal with the machines himself, (…) he must see with an open eye, hear with his ear strained, feel with his hands, to understand how they behave when idling and under full load, at the highest speeds and at high temperatures.’

1906 Rudolf Camerer is appointed as full professor at the department, establishing the Chair of Hydroelectric Power Plants. In addition, an Institute of Hydraulic Machines and Plants is attached to the Chair. 1907 Establishment of the Chair of Lifting Equipment CPF%QPXG[KPI5[UVGOUYJKEJKUƄNNGFD[CETCPG construction expert from the industry, Rudolf Krell. Aircraft designer Claude Dornier graduates at the department. 1913 Modernisation of the technical laboratory. The Institute of Machine Tools and Industrial Engi- neering includes materials testing, ferrous metallurgy and the forming of metals through external forces in its focus of activity. Max Jakob, assistant to Oskar Knoblauch, carrying out thermal output testing in the laboratory, around 1906. As a jew, Max Jakob had to emigrate during the Nazi era and became a founder of heat transmission research in The Paradigm of Mechanical Engineering is Improved the United States. The establishment of the groundwork of the paradigm was followed by a period in which the mechanisms, principles and works of mechanical engineering were improved and URGEKƄGF/CEJKPGUYJKEJYQTMQPGUVCDNKUJGFRTKPEKRNGU HQTGZCORNGDGEQOGUOCNNGTCPFOQTGGHƄEKGPV/GEJCPKECN engineering is perfected by lubricants, new materials and shapes of toothed wheels in gear mechanisms as well as numerous other detailed solutions.

1923 Willy Messerschmitt is awarded a degree; he establishes Messerschmitt Flugzeugbau GmbH in $CODGTIYJKNGUVKNNUVWF[KPI+PJGEQOGUƄTUV in a gliding competition on the Rhön hills with his graduation project of a glider named ‘S 14’. 1924'UVCDNKUJOGPVQHVJGƄTUVEJCKTCPFCP+PUVKVWVGQH Agricultural Machinery at a German university. 1925 Wilhelm Nußelt is appointed as full professor at the Testing facility at the Institute of Hydraulic Machines, around 1925 Chair of Theoretical Machine Science and teaches thermodynamics there. The ‘Nusselt number’ is named after him. It describes the convective heat VTCPUOKUUKQPDGVYGGPCUQNKFUWTHCEGCPFCƅQYKPI ƅWKF

16 The History of the Department

1930/31 Willy Messerschmitt is awarded a teaching assignment on the construction and design of aircraft. 1932/33 Establishment of a second Chair of Technical Mechanics. This is maintained until W. Kaufmann is conferred emeritus status. It mainly conducts TGUGCTEJQPVJGOGEJCPKEUQHƅWKFCPFICUGQWU bodies. 1935 The Chair of General Design Theory and Machine 'NGOGPVUYKVJVTKCNƄGNFYQTMUJQRECTRGPVGToUUJQR and test facility is established under the direction of Erich Böddrich. In-depth arms research is carried QWVCPFVJGVTKCNƄGNFKUGZVGPFGF+VKUGXCEWCVGFVQ Willy Messerschmidt as a student Schäftlarn Monastery between 1942 and 1945. at Munich Technical University 1936 The Chair of Metallurgy and Metals Science is established. 1936 Establishment of the Chair of Aircraft Engines and Engine Science under the direction of Kurt Schnauf- ƅGT&WTKPIVJGHQNNQYKPI[GCTUCTGUGCTEJKPUVKVWVG for aviation and motor vehicle engines is set up at the Kapuzinerhölzl, north of the Botanical Gardens. The original plan to move the entire THM there was discarded because of the course of the war. Today the location at Schragenhofstrasse accommodates the engine laboratory of the Chair of Internal Com- bustion Engines. #HVGTVJG(KTUV9QTNF9CTCPCECFGOKECGTQPCWVKECNUQEKGV[#-(NKGIYCU GUVCDNKUJGF#VVJGQWVUGVQPN[INKFGTUYGTGDWKNVCPFƅQYP

(TQOVJGXGT[DGIKPPKPIIQXGTPOGPVCKFHQT#-(NKGIYCUDCUGFQPOKNKVCT[EQPUKFGTCVKQPU

17 The History of the Department

Nazi Era In 1933, the Department of Mechanical Engineering – like the entire THM – becomes part of the Nazi system. The university is brought into line, partly by force, partly by conviction, partly out of anticipatory obedience; University members of Jewish origin are expelled, as are those with politically undesirable views. In 1933, Christian Prinz, Professor of Mechanical Engineering, encounters hostility from students because of his ‘red’ attitude and develops a stomach ulcer from which he dies a short while later. Guido Zerkowitz, Associate Professor of Mechanical Engineering, is dismissed because of his ‘non-Aryan’ extraction. In 1938, he is one of the last German scientists to join the Technion in Haifa (today the Technical University of Israel) in what is then Palestine. Mechanical engineer Erwin Hinlein is sentenced to two years hard labour imprisonment following a perjury trial under Professors of the Technical University at the 1935 ‘dies academicus’ nebulous circumstances during which he loses his doctor’s (annual academic celebration) in the large physics lecture room. degree. After his release he is deported to the Riga-Kaiserwald concentration camp where he dies in 1944. The department conducts research for the army, for example KPVJGƄGNFUQHVQTRGFQRTQRWNUKQPRGVTQNKPLGEVKQPCPF substitute fuels for car and aircraft engines. Non-military research is continued on a small scale. The Munich Documentation Centre for the History of National Socialism is currently conducting a study on the history of the department during the Nazi era. Moreover, both the department and the whole university are debating how to deal with awards of honorary doctorates and honorary senatorships which were either conferred during the Nazi era or were conferred later on individuals who had been active Nazis.

*GTOCPP)ÒTKPI0C\K/CTUJCNQHVJG4GKEJNGCXKPIVJGnFKGUCECFGOKEWUo at the Technical University, 1935.

Design for the Technical University’s new building in Nymphenburg, 1938.

18 The History of the Department

1940 The Chair of Materials in Mechanical Engineering is carved out from Chemistry in 1940 and is assigned to the Department of Mechanical and Electrical Engineering. 1942 The Chair of Aircraft Construction is established at VJG6*/WPFGTVJGFKTGEVKQPQH,WNKWU-TCW»6JGƄTUV attempt at setting up such a chair had taken place in 1929 but had failed due to funding problems. Kraus had been a Senior Lecturer since 1936. From 1942 onwards, lectures are held on the subjects of aircraft components, aircraft design, aircraft stability CPFKPƅKIJVOGCUWTKPIVGEJPKSWGUCPFTGUGCTEJQP these subjects is conducted. 1945 Discontinuation of teaching at the THM. Closing down of the Chairs of Aircraft Engines and Engine Science and of Aircraft Design.  $GIKPPKPIQHVJGnFGPC\KƄECVKQPoRTQEGFWTGUCVVJG THM. This initially causes the loss of two thirds of its university lecturers. There are 24 lecturers employed by the Department of Mechanical Engineering in 1945/46. Thirteen of these are dismissed, four of whom are reinstated by 1953.

After the Second World War, many academics tried to hide their Nazi past by making false declarations in the obligatory questionnaire concerning involvement in the Nazi party.

6QDGIKPYKVJVJG#OGTKECPOKNKVCT[IQXGTPOGPVVQQMCXGT[JCTFNKPGYKVJTGICTFVQFGPC\KƄECVKQPCPFQTFGTGFVJGOCLQTKV[QHVJGVGCEJKPIUVCHH to be dismissed. According to the list of lecturers, the former rector Lutz Pistor was arrested, while the subsequent rector Hans Piloty was cleared.

19 The History of the Department

The ‘Bockerlbahn’ train transporting rubble away from the university building.

1945/46 Both staff and students are involved in the reconstruction of the badly damaged university. Students team up in construction crews with the prospect of being given priority in re-enrolment in exchange for their help. 1946 Resumption of teaching at the THM. About 3,000 students are accepted – most of them war veterans. Besides studying, the students have to commit VJGOUGNXGUVQƄHV[JQWTUQHCWZKNKCT[UGTXKEGYQTMRGT semester. Applicants who have completed school in 1946 are not admitted. 1950 Renaming and realignment of the Chair of Aircraft University applicants carrying out reconstruction work on the university Engines and Engine Science which had been set premises, 1946. Those applicants who had not participated in the war had to clear rubble for many months, before they were accepted for a course up in 1936. It is then called Chair of Internal Com- of study. bustion Engines and is headed by Wilhelm Endres. During the following years it goes through more changes in name. For many years, for example, it is called Chair of Internal Combustion Engines and Motor Vehicles. Today, this chair exists under the name Chair of Internal Combustion Engines 1951 Gustav Niemann establishes the Chair of Machine 'NGOGPVUCPFYQTMUKPVJGƄGNFUQHVQQVJGFYJGGNU and gear manufacturing on which he publishes some pioneering works.

6JG5VWFGPV#PEKNNCT[5GTXKEGJQWTECTFQHVJGCRRNKECPV-CTN4KJC\GM 1947/48. This applicant worked for 1,058 hours, before he was able to start his studies.

20 The History of the Department

1952 Ernst Schmidt succeeds Wilhelm Nußelt. He gains CTGRWVCVKQPEJKGƅ[YKVJJKUTGUGCTEJKPCNNƄGNFUQH heat transmission, gas turbine design and water vapour research. The ‘Schmidt number’ is named after him which describes the ratio between diffusive momentum transport and diffusive mass transfer. During Schmidt’s tenure the Chair of Thermal Engines, Refrigeration Technology, Heating and Ven- tilation is extended and renamed Chair of Technical Thermodynamics. 1953 Establishment of the Chair of Process Engineering with Friedrich Kneule and Hans von Seybel. Process GPIKPGGTKPICUCƄGNFQHUVWF[JCFDGGPUGVWRD[ Friedrich Kneule and Hans von Seybel in 1950. 1954 After the signing of the ‘Paris Agreements’, West Pneumatic measuring device testing at the Institute of Machine Tools, 1959 Germany regains its air sovereignty. This leads to a Chair of Aircraft Construction being established with CPCHƄNKCVGF+PUVKVWVGQH.KIJVYGKIJV%QPUVTWEVKQP and Aeronautical Engineering. Julius Kraus, who had already worked at the Chair of Aircraft Design in 1942 and had been dismissed in 1945 is appointed as professor at the newly-created Chair of Aircraft Design. During the 1960s the department puts its focus on aerospace technology. In 1964 the Chair of Aircraft Construction is converted into a Chair of Lightweight and Aircraft Design and, from 1978 onwards, into a Chair in Lightweight Design. 1955 The Chair of Theory of the Wheel Gear and Kine- matics is renamed Precision Engineering and Micro Technology and is headed by Richard Unterberger and Rudolf Beyer. Students in front of the Materials Testing Institute for Mechanical 1956 The Chair of Thermal Engines, Refrigeration Technol- Engineering, 1961 ogy, Heating and Ventilation is extended in size and is renamed Chair of Technical Thermodynamics. 1957/58 The Chair of Technical Mechanics and the Institute of Fluid Mechanics are both taken over by Erich Truckenbrodt. 1962 Establishment of the Chair of Ergonomics under the direction of Heinz Schmidtke. In 1965, the Institute of Labour Physiology is set up, headed by Wolf Müller-Limmroth. After the latter has been conferred emeritus status in 1990, the two merge to form the joint Chair of Ergonomics. 1965 The Chair of Engineering Design is newly-estab- lished. Based on machine elements and working with examples of outstanding machines and engines, it aims to convey the skills necessary for designing by retracing their design steps. The THM KUVJWUVJGƄTUV)GTOCPWPKXGTUKV[VQKORNGOGPVVJKU /CTGP*GKP\GTNKPIOGEJCPKECNGPIKPGGTKPIƄPCN[GCTUVWFGPVYQTMKPICV new discipline. VJG6GNGHWPMGP4#CPCNQIWGEQORWVGT

21 The History of the Department

6JGOCEJKPGJCNNCVVJG+PUVKVWVGHQT'NGEVTKECN&TKXG/CEJKPGUCPF5[UVGOUKPVJG.WKUGPUVTCUUG #TEJ)*CUUGPRƅWI

Set-up for drawing electron and ion paths Demonstration of gyrostatics. Professor Kurt Magnus (1912–2003), (Institute for Technical Electronics) Chair B of Mechanics, giving a lecture for beginners, 1980

22 The History of the Department

1965/66 Introduction of the Chair of Aerospace Engineer- Use of Microprocessors – ing. Both Franz Josef Strauß, the future Bavarian New Perspectives for Mechanical Engineering State Premier and his fellow party member, State 6JGƄTUVOKETQRTQEGUUQTUGPVGTVJGOCTMGVCVVJGDGIKPPKPI Secretary Erwin Lauerbach, played a particularly of the 1970s. They open up new perspectives for mechanical important part in this. engineering and, during the following years, serve as tools 1967 The Institute of Machine Tools and Industrial HQTUKIPKƄECPVN[GPJCPEKPIVJGRQUUKDKNKVKGUKPOGEJCPKECN engineering. Processor-controlled machines enable greater Engineering moves the focus of its research to precision. Computer calculations and simulations speed up information technology and production engineering. TGUGCTEJCPFTGFWEGKVUEQUVUCVVJGUCOGVKOG6JGƄGNF 1968 Establishment of the Chair of Metal Forming and of robotics emerges and the automation of even complex Casting. Its main focus is on the use of novel, high- production steps is made possible. Information technology is strength materials and aluminium in sheet metal an integral part of mechanical engineering. parts production. 1970 THM is renamed Technische Universität München 1977 Research at the Chair of Precision Engineering and (TUM). (Technical University of Munich or TUM). /KETQ6GEJPQNQI[KUPQVEQPƄPGFVQVJGENCUUKE topics such as equipment design based on either Electrical Engineering purely electronic or electromechanical principles. +PVJGƄTUV%JCKTQH'NGEVTKECN'PIKPGGTKPIKUGUVCDNKUJGF +VCNUQQRGPUWRPGYƄGNFUUWEJCUKPMRTKPVKPI at the department. Electrical engineering is initially viewed microsystems engineering, propulsion technology, as part of mechanical engineering. However, it grows increasingly more independent. In 1948 the department is split optical measurement technology, etc. into two independent parts consolidated in the department, 1981 The Chair and Institute of Machine Tools and one for mechanical engineering and the other for electrical Industrial Management Technologies puts a focus engineering. During the 1960s there are discussions about the on two new research topics: industrial robotics and department’s separation into two independent ones, and this assembly technology. KUƄPCNN[GZGEWVGFKP 1989 The collaborative research centre no. 255 ‘Transat- mospheric Flight Systems – Basics of Aerother- 1974 The different divisions at the Department of Mechan- modynamics, Propulsion Systems and Flight ical Engineering are set up with chairs, laboratories Mechanics’ is set up, co-ordinated by Gottfried and institutes combined to form major institutes: Sachs. Its objective is the development of capabil- ■ Labour Physiology ities for aerodynamically borne, stable maximum ■ Precision Engineering, Design, Machine Elements URGGFƅKIJVYKVJCKTDTGCVJKPIRTQRWNUKQPU[UVGOU ■ Automotive Technology, Materials Handling and while meeting extreme performance requirements Agricultural Engineering with regard to both workload and range. ■ Aerospace Technology 1990(QTVJGƄTUVVKOGVJG67/DWFIGVGZEGGFUVJG ■ Mechanics, Thermodynamics, Hydraulics and threshold of one billion German marks. Energetics The proposed relocation of the Department of ■ Process Engineering Mechanical Engineering to Garching meets with ■ Materials Science and Processing Sciences. resistance from students. In June 1990 they stage The Department is split into a Department of a bicycle demonstration to point to Garching’s poor Mechanical Engineering and a Department of transport connection. Electrical Engineering and Information Technology. Almost 5,000 students are enrolled at the Depart- 1976 Establishment of a Chair of Joining Technology ment of Mechanical Engineering. headed by Gerd Habenicht. The central research 1991 Restructuring of the department: chairs who conduct focus of this chair is the joining of components of research on the same topics are combined to form different shapes and functions and materials in a institutes: manner which is suitable for both their functions and ■ Institute of Mechatronics for production. ■ Institute of Materials and Processing ■ Institute of Production Technology ■ Institute of Process Technology ■ Institute of Mechanical and Automotive Engineering ■ Institute of Astronautics ■ Institute of Energy Engineering

23 The History of the Department

1992 Establishment of the Chair of Information Tech- nology in Mechanical Engineering. This takes into CEEQWPVVJGKPETGCUKPIUKIPKƄECPEGQHKPHQTOCVKQP technology in mechanical engineering. ‘[Our aim is] not only to utilise the potential for innovation connected with the arrival of information technology in mechanical engineering but to make the problems which accompany the new technologies controlla- ble. Only if we succeed in this will our mechanical engineering be able to maintain its leading position’, founding professor Klaus Bender emphasises. 1993 The collaborative research centre no. 365 ‘Environ- mentally Compatible Drive Technology for Vehicles’ is set up headed by Bernd-Robert Höhn. The objec- VKXGQHVJKUURGEKCNƄGNFQHTGUGCTEJKUVJGUKOWNCVKQP layout and design of the Full Hybrid. The new Audimax under construction, 1992 1997 Inauguration of the new department building on the Garching research campus with approximately USOGVTGUƅQQTURCEG

Garching The construction of the department’s new campus in Garching is unique at the time – it is not public building authorities which carry out the project planning but BMW which is intended to speed up building. After a construction phase of only six years – and without exceeding the budget – the new campus is completed in 1997. The building is aligned along a central covered axis which provides access to all chairs, the lecture halls, library, CFOKPKUVTCVKQPQHƄEGUCPFVJGECHGVGTKC+VUCTEJKVGEVWTGHQNNQYU an exact requirement analysis and is optimised for use as a place of research and study while exceeding the boundaries of the laws governing the construction of university buildings in force at the time. Even the students are involved in the Demonstration by mechanical engineering students against the building by designing the seating of the lecture halls. However, department’s move to Garching in June 1990 not all plans are implemented. For a while, there were discussions about setting up a ‘Pilsstube’ (a kind of pub), directly on the main axis. $GNQY#GTKCNRJQVQQHVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI

24 The History of the Department

2000 The new Chair of Automotive Technology is created from parts of the Chair of Internal Combustion Engines and Motor Vehicles established in 1936 and the Chair of Agricultural Machinery and is led by Bernd Heißing. Thus, the automotive sector which shapes the department is given a dedicated profes- sorship. 2000/01 The department begins to implement the so-called ‘Bologna reform’ process. One Bachelor’s and one Master’s degree course each in mechanical engineering are set up alongside the traditional degree courses. 2001 The collaborative research centre no. 582 ‘Market- oriented Production of Customised Products’ is set Testing hall at the Institute for Machine Tools and Industrial Management up, headed by Udo Lindemann. The Chair of Hydraulic Machines at TUM is granted the sum of 400,000 DM for research on, and the FGXGNQROGPVQHnƄUJHTKGPFN[oVWTDKPGU 2006 The TUM is awarded the status of ‘Excellent Univer- sity’ within the framework of the ‘excellence cluster’ CoTeSys (Cognition for Technical Systems), scien- tists at the Department of Mechanical Engineering conduct research on the basics of perception-cou- pled motion control and its implementation through information processing mechanisms.

Digitisation in Mechanical Engineering – a new Paradigm? Moore’s law states that the computing power of processors FQWDNGUGXGT[QPGVQVYQ[GCTU&WTKPIVJGƄTUVFGECFGQH Students in the department’s computing room, 2008 the new millennium the affordable computing power attains speeds which enable a redesign, even the re-thinking, not only of communication and media but also of technology and, in particular, mechanical engineering. Computers are no longer just tools in mechanical engineering but are becoming the core of previously unthinkable new applications.

2008 The collaborative research centre no. 768 ‘Managing Cycles in Innovation Processes – Integrated Develop ment of Product Service Systems Based on Technical Products’ is set up, headed by Udo Linde- mann. Birgit Vogel-Heuser is appointed head of this centre in 2013, leading it into its third funding period. The collaborative research centre TRR 40 ‘Techno- logical Foundations for the Design of Components of Future Aerospace Transportation Systems Subject Turboshaft engine testbed to High Thermal and Mechanical Stress’ is set up, headed by Nikolaus Adams. The main research focus of this collaborative research centre is on new technologies for chemical main stage rocket engines for future generations of civilian launchers.

25 The History of the Department

20116JGFGRCTVOGPVKUVJGƄTUVKPUVKVWVKQPCV67/VQDG In 2015, Cevotec, a spin-off from the Technische GXCNWCVGF6JGCUUGUUQTUEQPƄTOKVUQWVUVCPFKPI Universität Munich, is set up by scientists of the research results. During the following years the Chair of Carbon Composites at the Department of department succeeds in considerably enhancing its Mechanical Engineering and wins the important UEKGPVKƄERTQƄNG start-up competition ‘Weconomy’ in 2016. The Under the project management of Markus Lienkamp, Cevotec founders develop a fully automated manu- TUM presents the MUTE at the IAA Motor Show for facturing method that not only makes the production VJGƄTUVVKOGsCLQKPVRTQLGEVD[FGRCTVOGPVCN QHECTDQPRCTVUOQTGGHƄEKGPVDWVCNUQTGFWEGUVJG professorships. The MUTE is solely electrically-pow- amount of material required. ered. It has a maximum speed of 120 km/h and a 2016 A new helmet-mounted sighting instrument minimum range of 100 kilometres. developed by scientists at the Chair of Helicopter 2014 The eLi14 is a vehicle designed by the TUFast Technology is introduced. The ‘augmented reality’ student group. It sets the Guinness world record as device enables helicopter operations in poor n/QUV'HƄEKGPV'NGEVTKE8GJKENGo visibility, increasing the safety of both pilots and any 2015 Nikolaus Adams wins the ERC Advanced Grant passengers on board. ‘NANOSHOCK – Manufacturing Shock Interactions 20176JGFGRCTVOGPVUGVUWRKVUƄTUVETQUUEJCKTENWUVGT for Innovative Nanoscale Processes’. This research ‘Additive Manufacturing’. In addition to investments project examines which mechanisms and properties made by the chairs involved, the department enable the controlled formation of shocks in very contributes more than €500.000 in start-up aid to complex environments – such as living organisms. establish this pioneering topic. These questions are to be studied and answered  5WEEGUUHWNOCKFGPƅKIJVQHVJG5CIKVVCWPOCPPGF with the help of modern computer simulation models ƅ[KPIYKPI1VJGTRCTVKEKRCPVUKPVJKUnQRGPKPPQ- and some carefully selected experiments. vation initiative’ by aircraft manufacturer Airbus, 2016 Travelling from one place to another at almost the besides TUM, are research institutes of the German speed of sound – that is the idea behind the‘Hyper- Aerospace Centre DLR, the Universität der Bundes- loop Pod Competition’ of visionary Elon Musk. Out wehr in Munich, the Technical University in Ingol- of initially 700 teams, 30 teams are selected to build stadt and the TU Chemnitz. a prototype at the end. The WARR study group at 2018#HVGTGPJCPEKPIVJGFGRCTVOGPVoUUEKGPVKƄERTQƄNG the Department of Mechanical Engineering at TUM is following its evaluation in 2011, the department has one of these teams. In August 2017, the team wins consistently maintained top level positions in major the maximum speed competition with its Hyperloop international research rankings; no. 1 in Gemany in Pod II and establishes a new speed record with 324 both the Times Higher Education Ranking and the km/h. NTU Ranking – continuously among the Top 10 in and the Top 40 worldwide.

5VWFGPVUQHVJG9#44*[RGTNQQRVGCO SAGITTA unmanned demonstrator

26 The History of the Department

Science – Politics – Industry

The Department in a Field of Tension n+VoUCFKHƄEWNVTGNCVKQPUJKRVJGKPFWUVTKCNUGEVQTCPFJKIJGT education, time and time again.’ (Prof. Hajek) – ‘Applied research and basic research don’t always have to con- tradict each other.’ (Prof. Lienkamp) – ‘We have to accept political decisions.’ (Prof. Adams).

It is not just questions of research, external funds and higher education bureaucracy that the faculty is con- cerned with. There are also major issues of responsibility, HTGGFQOCPFVJGDGPGƄVUQHUEKGPEG*QYKUTGUGCTEJ funded? Who makes decisions about issues and the UWDLGEVUQHTGUGCTEJ!9JCVKPƅWGPEGFQUQEKCNFGXGNQR- The Munich Polytechnic School in the Damenstiftstrasse, founded in 1827 OGPVUQTRQNKVKECNFGEKUKQPUJCXGQPUEKGPEG!%QPƅKEVKPI concepts soon emerge: contract research versus free production in Upper Franconia – and Augsburg – the research; fundamental research versus application-ori- textile industry – played an important role. Additionally, ented research; research trends versus research tradition. the example of Paris awakened a desire for more, with its These questions are not new; they have been the subject École Polytéchnique, which had been in existence since of discussion in the sciences, at TUM and in the depart- 6JGƄTUVCVVGORVKP$CXCTKCJCFCNTGCF[HCKNGFCHVGT ment for generations. six years. In 1833, the ‘Polytechnische Centralschule’ closed its doors again. From then on, technical training in Here we take a look back at the history of the department, Munich focussed on architecture. Instead, polytechnics and through exemplary stories show how former gener- opened in Nuremberg and Augsburg, with a focus on ations answered these questions. The different ways in VJGOCKPCTGCUQHUEKGPVKƄEKPVGTGUVQHVJGKTTGURGEVKXG which these issues are currently being tackled will then be locations. In Nuremberg, these were the casting and metal QWVNKPGFQPVJGDCUKUQHKPVGTXKGYUYKVJƄXGRTQHGUUQTU works, while in Augsburg, wool and cotton manufacture. +P/WPKEJCn(CEWNV[HQT*KIJGT6GEJPKECN1HƄEGTUoYCU established at the University of Munich, with archi- The Founding of the Department tecture and the preservation of historical monuments DGKPITGVCKPGFCUVJGƄGNFQHUVWF[+P/CZKOKNKCP The industrialisation of continental Europe began in the II, the third Bavarian king, took over the government. early years of the 19th century. In Bavaria, too, factories He promoted commerce and the industrial sector and sprang up with industrial production methods, and from founded the State Ministry of Trade and Public Works, VJGTCKNYC[HQNNQYGFYKVJVJGƄTUVNKPGVTCXGNNKPI the precursor to today’s Ministry of Economic Affairs. DGVYGGP0WTGODGTICPF(ØTVJ#UJQTVVKOGNCVGTVJGƄTUV Ludwig II, who occupied the Bavarian throne after 1864, Bavarian shipping company was founded and canal con- made a second attempt in 1868 and founded the Munich struction was driven forward. Industrial companies were Polytechnic School. Department IV of the School, the established such as the locomotive factory J.A. Maffei or Mechanical-Technical Department, is where life began for the Sander’sche Maschinenfabrik und Eisengießerei, the today’s Department of Mechanical Engineering. There, Sander machine works and iron casting company and the knowledge about fundamental mechanical principles was Maschinenfabrik Klett & Comp. machine works, both of to be gathered, expanded and disseminated. Specialists which were the forerunners of MAN. During the second YGTGVQDGVTCKPGFYKVJCURGEKƄEVGEJPKECNRGTURGEVKXG half of the 19th century, Bavaria experienced a veritable on the world. Both on the part of the state, whose political wave of industrialisation. YKNNVQFGUKIPVGEJPQNQI[JCFKPVGPUKƄGFCUYGNNCUQHVJG industrial sector, which was rapidly prospering, demand At the same time, from 1805, political visions were being for these specialists was increasing. Against this political created; Bavaria became a kingdom. It was a political goal and economic background, the second attempt at found- of the Bavarian kings to promote technology in Bavaria. ing a technical training facility was a success. In particular, the territorial gains of Franconia – linen

27 The History of the Department

Contract Research vs. Free Research

1871 Laboratories Working on Behalf IWKUJGFGZRGTVKPVJGƄGNFQHVGEJPKECNVJGTOQF[PCOKEU of the Industrial Sector HWTVJGTGZRCPFGFVJKUOCKPƄGNFQHCEVKXKV[6JGKPFGRGPF- GPVUEKGPVKƄEYQTMQHVJG6GEJPKECN7PKXGTUKV[OGCPVVJCV In 1871, Johann Bauschinger founded the Mechanical- industrial products obtained a type of quality seal after Technical Laboratory. Today, it is known as the State they had been inspected. Over the years, this became one Material Material Testing Agency for Mechanical Engineer- of the department’s most important areas of work. ing (Staatliche Materialprüfamt für den Maschinenbau; MPA), which regards itself as a service provider for the Almost all publications about theoretical mechanical industrial sector. Bauschinger’s original plan envisaged engineering were written on behalf of the industrial sector. something different. From his perspective, the laboratory Around 80 percent of the articles published by Schröter was intended above all to promote mechanical engineer- were about steam engines and turbine inspections. This ing research. It was only gradually that it began to be used activity was also criticised in specialist circles: Hans differently. The original additional objective of inspecting Lorenz, a contemporary of Schröter and Professor for materials and construction parts in exchange for money Mechanical Engineering at the University of Halle, argued increasingly replaced the research activity. that: ‘Schröter contents himself with publishing extensive acceptance tests without drawing any notable conclu- A similar development occurred with Carl von Linde’s sions from them, which was always the risk entailed by Laboratory of Machine Science. While it was also orig- the impetus from the industrial sector with its commercial inally intended as places of research and learning, his interests.’ laboratory established in 1875 quickly became a hub for inspecting and testing industrial products and providing As well as testing the functioning of machines, the advice to companies. Moritz Schröter in particular, who mechanical engineering professors also produced assess- succeeded von Linde in 1879 and who was a distin- ment reports. These could be presented as evidence in cases of dispute, technical failure or accidents, or patent proceedings. Linde stressed that: ‘For the lack of under- UVCPFKPICOQPIOGODGTUQHVJGRCVGPVQHƄEGFGRCTVOGPV in question, there is less to be gained from strictly physical proof (which they are unfortunately unable to comprehend) than through a certain explanation regarding the resulting facts of the case from an authoritative agency.’ Linde was EQPXKPEGFD[VJGDGPGƄVUQHCUUGUUOGPVTGRQTVU+PC letter to his teacher, Gustav Zeuner, he wrote that the task of science was to assist in ensuring that justice prevailed with the aid of non-partisan judgements. However, in daily practice, the independent nature of the professors, who CUUVCVGQHƄEKCNUGZWFGFCPCWTCQHPQPRCTVKUCPUJKRYCU considerably limited, as Linde’s example shows.

On Linde’s initiative, in 1887 the Munich Polytechnic Association built a test station for refrigeration machines, which was supervised by Schröter. At the test station, other producers of refrigeration machines were to be given the opportunity of having the quality of their machines tested. Since the test station was in effect under Linde’s control, however, and thus under the control of one of the owners of the Gesellschaft für Linde’s Eismaschinen AG (‘Linde’s Ice Machine Company’), other companies did not trust the independent nature of the test station. During the Konrad Klebe, an assistent at the Mechanical-Technical Laboratory from UVCVKQPoUƄXG[GCTGZKUVGPEGQPN[VJTGGEQORCPKGUJCF 1871-1911, at the Werder tensile and bending testing machine their refrigeration machines tested there, apart from those produced by Linde’s company.

28 The History of the Department

Testing facility for diesel motors at the Maschinenfabrik Augsburg, around 1899

Just how important these independent assessment 2018 Sample Contracts and Acquired Freedom TGRQTVUYGTGHQTPGYFGXGNQROGPVUYCUTGƅGEVGFKPVJG story of Rudolf Diesel. When Diesel presented his engine, (KXGRTQHGUUQTUsƄXGRQUKVKQPUQPVJGKUUWGQHKPFWUVTKCN VJGKPPQXCVKXGRQVGPVKCNQHJKUKPXGPVKQPYCUEQPƄTOGFD[ TGUGCTEJXGTUWUUEKGPVKƄEKPFGRGPFGPEGEQOOQPCNKVKGU several professors – Schröter, Linde and Zeuner. Although and differences. Diesel’s thermodynamic predictions were incorrect, he TGEGKXGFUWHƄEKGPVUWRRQTVHQTJKUKPXGPVKQPHTQOVJG 6JGƄXGRTQHGUUQTUEQPUKFGTVJGKUUWGHTQOFKHHGTGPVRGT- industrial sector. This can be traced back in part to the spectives, with a view to the entire department, and with OCLQTKPƅWGPEGQHVJGCUUGUUOGPVTGRQTV+PVJKUTGRQTV a focus on their own professorial chair. They all regard for example, Carl von Linde emphasised that: ‘[I] can VJGOUGNXGUCUDGKPIHTGGCPFWPKPƅWGPEGFD[VJGKPFWU- QPN[EQPƄTOO[XKGYCNTGCF[GZRTGUUGFXGTDCNN[VQ[QW trial sector. With regard to their own professorial chairs, that the path you have taken is taking you directly and they stress that the origin of the questions initially plays no accurately to your goal of achieving the fuel consumption role; it is important that questions are being asked of the required for mechanical work which according to our TGURGEVKXGƄGNFQHURGEKCNKUOCVCNN6JG[ENCKOVJCVEQO- current knowledge of physics and taking into account the current state of mechanical engineering should be regarded as the most ideally suitable.’ However, Carl von We don’t have to accept Linde noted that the calculations made by Diesel were everything that the industrial too optimistic, and that, in the best scenario, a third of the sector offers us. That’s a XCNWGQHVJGVJGQTGVKECNFGITGGQHGHƄEKGPE[ECNEWNCVGFD[ very positive situation here in him could be achieved. the department. Prof. Werner

29 The History of the Department

mercial businesses can make a considerable contribution here. In most cases, it is not a question of being told what If we only had money for to do by the industrial sector, but a case of constructive ourselves and could do collaboration (Wachtmeister). Werner emphasises that: what we wanted with it, ‘We are not obliged to take on all the requests made then nothing much would by the industrial sector.’ Lienkamp regards it as being a result from it. We need the task of the TUM to be a thorn in the side of the industrial sector. ‘We don’t get involved in the industrial sector’s problems of the industrial everyday business’ (Hajek). When approaching problems, sector to develop further. there are generally differences between the industrial sec- Prof. Lienkamp tor research departments and the faculty. In the industrial sector, experience plays a far greater role. At the univer- situation one to two generations of professors ago – is sity, however, problems are considered at greater depth no longer an extended workbench, as Adams described and in a more analytical way. However, the independence it. The distance from the industrial sector is increasing, of their work is not just a result of the strength of their own possibly because an increasing number of professors are professorial chair and of the professor involved. Through- from academic backgrounds and have not worked in the out the university, contracts have been developed which industrial sector. The earnings from working in the private must be signed by the partners and external funders. sector are far higher than at the university. At the same These contracts secure extensive freedoms for the higher time, proximity to the industrial sector is increasing, since educational institution, the department and the research- more and more institutes are founding start-ups in order ers. These include the freedom to publish and freedom to market their products themselves. regarding personnel. There is agreement when it comes to the sense and RWTRQUGQHVJGKTYQTM9KVJQWVUEKGPVKƄEYQTMCVVJG I found it strange how self department, the industrial sector would be lacking assured the TUM was in its important input; without the external funds provided by contracts with its industrial the industrial sector, important means would be lacking partners. However, there’s not just for research, but also for teaching. There is also CDGPGƄVKPVJCV9GCTGPQV agreement with regard to the fact that the industrial sector CPGPIKPGGTKPIQHƄEGVJCV only provides a portion of external funds. One third comes is being signed up. We are directly from the industrial sector, one third are public funds intended to promote the teaching of mechanical scientists. Prof. Hajek engineering, while one third comes from a combination of public funding and industrial participation. Adams stresses With regard to the general development of the depart- in this context that the Department of Mechanical Engi- ment, there are clear differences of opinion among the neering is the strongest department at TUM with regard to professors. The spectrum ranges from: proximity to the DFG funding, and currently has two collaborative research industrial sector is increasing in the department, and the centres. KPFWUVTKCNUGEVQTKUCVVGORVKPIVQKPETGCUGKVUKPƅWGPEG over the department, in the view of Werner, to: independ- ence is increasing and today’s department – unlike the We are not an extended workbench. Prof. Adams

30 The History of the Department

Fundamental Research vs. Applied Research

1895 The Dispute Between At the time of the dispute between theoreticians and Theoreticians and Practitioners practitioners at the Technical University of Munich, the teaching of mathematics was also adjusted to the needs When professors of German higher education institutions, of the engineers. The university was therefore following a including the well-known cinematographer and mechan- RCVJQHDGPGƄEKCNEQORTQOKUGCPFYCUCDNGVQIQUQOG ical engineer Franz Reuleaux – the academic teacher of way to meeting the demands of the ‘Aachen resolutions’. Carl von Linde – visited the World Exhibition in Chicago in 1893, they were presented with the USA as a forerunner in In 1895, mechanical engineer Egbert von Hoyer was made technical sciences. The German higher education teach- Director of the Technical University of Munich. While he ers visited the large machine and electrical technology was not a radical defender of the rights of the practition- laboratories and sat in on teaching units with demon- ers, he did commit to increasing strations and experiments. They took these impressions the practical element in the teach- back to Germany with them, and in 1895, together with ing programme in Munich. Walther the Association of German Engineers, (Verein Deutscher von Dyck, Professor of Mathemat- Ingenieure, or VDI), they wrote the ‘Aachen resolutions’. ics at the Technical University of Munich, was outraged: ‘The mere In these resolutions, the professors of mechanical suspicion that someone wishes engineering demanded the construction of modern to teach more than simply pure laboratories and a practical orientation in teaching and RTCEVKECNCRRNKECVKQPUKUUWHƄEKGPV study. The basic subjects such as mathematics should to severely impair our mission.’ be downgraded to auxiliary sciences. According to the Walther von Dyck, 1899 Together with mathematicians from authors of the resolutions, the teaching at the technical other technical universities, as well universities was too theoretical. Young engineers received as mathematics-oriented engineers, he did all he could to extensive tuition in mathematics, while experiments and EQPXKPEGVJGnRTCEVKVKQPGTUoQHVJGDGPGƄVUQHCDCUKEGFW- practical tests were a rarity. The German mathematicians cation in mathematics. He succeeded in retaining mathe- resisted these demands. They stressed the importance matics as a basic science in mechanical engineering. of mathematics as a basic science and warned against making research and teaching too application-oriented 6JGFKURWVGƅCTGFWRCICKPYJGPFWTKPIVJG CPFUWRGTƄEKCN university year, technical physics was introduced as a subject in the general department. Rudolf Diesel Members of the Munich Technical University also got expressed his admiration for the idea: ‘What a wonderful, involved. At that time, the Department of Mechanical Engi- PGYƄGNFVJCVJCUCVVTCEVGFVQQNKVVNGCVVGPVKQPVQFCVGo neering has its own machine laboratory. Carl von Linde The development was not met with much appreciation by had established the laboratory in 1875, around 20 years mechanical engineering professors Paul von Lossow and earlier than at other technical universities in Germany. Otto von Grove. In their view, the technical departments Linde had taken on the idea from the ETH Zürich, separat- alone should be responsible for educating engineers who ing the teaching of mechanical engineering from machine would later work in the industrial sector. construction and dividing the teaching into descriptive and theoretical mechanical engineering. While descriptive The dispute between theoreticians and practitioners teaching overlapped with some areas of machine con- died down at the turn of the century. Both sides were struction, the theoretical teaching of mechanical engi- given the right to award doctorates. Also, after 1895, the neering comprised three focal content areas – kinematics, laboratories were made subordinate to the theoretical engines and mechanical heat theory. With this approach, mechanical engineering faculty. In this way, the position of Linde created the precursors of kinematics and hydraulics, the theoreticians was strengthened instead of that of the refrigeration technology and thermodynamics as subjects. practitioners as had been expected.

31 The History of the Department

2018 Consolidation of Fundamental Research who tend to prefer fundamental research is necessary, he claims, in order to develop and realise new ideas – in the In 2018, the subject is no longer disputed along such ideal scenario in an interdisciplinary manner and beyond fundamental lines. The practical element has been department boundaries. established in teaching, although the question of how much mathematics is necessary as a minimum has still PQVDGGPƄPCNN[TGUQNXGFVQFC[sRCTVKEWNCTN[YKVJCXKGY Currently, we are too strong to the reduced teaching plans as part of the eight-year KPVJGƄGNFQHCRRNKECVKQP grammar school syllabus. In research, the relationship research. But this is subject between fundamental research and applied research has to cycles and it will change DGGPUWDLGEVVQUVTQPIƅWEVWCVKQPUQXGTVJGFGECFGU+P again. Prof. Werner IGPGTCNsCPFJGTGVJGƄXGRTQHGUUQTUKPVGTXKGYGFCITGG – the excellence initiative has led to a situation in which the reputation of fundamental research has improved and today, more research is being conducted on fundamental topics. Lienkamp and Adams stress that the actual question should be how the department or the university overall 4GUGCTEJD[QWTEJCKTKU should react to these new demands of increasing inter- up to 90 percent applica- disciplinarity. Should it be left to the commitment of the tion-oriented. However, the individual researcher and their networking skills, or should tendency is moving very new structures be created? strongly towards funda- mental research, including for mechanical engineering. 2TQH|9CEJVOGKUVGT

However, what exactly is fundamental research? Adams explains that fundamental research deals above all with the development of mathematical and physical simula- tion models, while applied research tends to focus on experiments. Wachtmeister puts it in a similar, albeit less abstract, way. In his sector, he says, fundamental research tends to deal with mechanics, thermodynamics, etc., while applied research looks at gears, production technol- QI[CPFGPIKPGUYJGTGD[VJGƄXGRTQHGUUQTUTGICTFVJG polarising comparison as being problematic and possibly no longer in keeping with the times. The collaboration between application-oriented researchers and researchers

Not everyone can conduct fundamental research. But when the applied research- ers collaborate with funda- mental researchers, new results emerge. That’s our opportunity in mechanical engineering, since we have the people who understand the application. 2TQH|#FCOU

32 The History of the Department

6JG+PƅWGPEGQH2QNKVKEU

1954 The Establishment of Air and and test facility of the German Federal Ministry of Defence Space Travel at the Department (IABG) was founded in Ottobrunn. In 1963, a division at the Max Planck Institute for Physics and Astrophysics 6JGTGCTGEQWPVNGUUGZCORNGUQHVJGKPƅWGPEGQHRQNKVKEU was turned into a separate sub-institute – the Max Planck and society on research at the Technical University of Institute for Extraterrestrial Physics – and one year later Munich in its 150-year-old history. The creation of the was moved to Garching. Institute for Aviation and Astronautics after the Second World War is one. At this point in time, the professorial chair for aircraft construction was further expanded – supported by the In 1954, Julius Krauß received the professorship for aero- aircraft industry companies. In Ernst Schmid, who in 1952 plane construction, which was associated with an institute became Professor for Theoretical Mechanical Engineering for lightweight construction and aviation technology. and Technical Thermodynamics, the THM already had an Krauß had already been Professor Ordinarius for aircraft expert in combustion processes in aircraft engines and construction at the THM from 1942 to 1945. Without politi- VGORGTCVWTGOGCUWTGOGPVCVJKIJƅ[KPIURGGFU+P cal decisions being made at the highest level – the Federal Erich Truckenbrodt, who had formerly been the head of Minister for Special Affairs at the time, and later Minister of the aerodynamic division of the aviation company Heinkel, Defence, Franz Josef Strauß, was an enthusiastic amateur was brought to the department. Shortly after his arrival, he pilot – the establishment of the professorial chair would had three new wind channels built for aerodynamics tests. not have been possible. 6JGUEKGPVKƄEEQWPEKNCVVJG6*/TGEQIPKUGFVJGPGY opportunities presented by the political developments, #VƄTUVVJGRTGEQPFKVKQPUHQTVJGETGCVKQPQHUWEJC and suggested that a professorial chair for astronautics research focus appeared unfavourable. While before and should be established. Truckenbrodt, who at that time was during the Second World War, there had already been the dean of the faculty, then succeeded in having an insti- aviation research at THM, it was forced to close at the tute for aviation and astronautics technology established end of the war following pressure by the Allies. In 1950, at the department, which traditionally was not involved in the Bavarian federal state government had already begun aviation. He was supported by the CSU in his endeavour, ƄTUVFKUEWUUKQPUYKVJVJG#NNKGUTGICTFKPIVJGTGUWORVKQP in order to create a link between the Bavarian aviation and of aviation research. The German federal government was astronautics industry with science. Now, Munich was the also highly interested in developing its own aviation and fourth German federal higher education centre for aviation astronautics industry and research. Here, the key player and astronautics, alongside Aachen, Braunschweig and was Franz Josef Strauß. The passionate pilot was particu- Stuttgart. larly committed to re-establishing the aviation industry and aviation research, and ensured that this branch industry Just a short time later, the professorial chairs of the CPFTGUGCTEJYCUNQECVGFKP$CXCTKCURGEKƄECNN[KPCPF institute were given complex research tasks. Between around Munich. 1965 and 1970, the chair researched aircraft engines on DGJCNHQHVJG(GFGTCN/KPKUVT[QH&GHGPEGQPƅCVGPIKPGU Finally, on 23 October 1954, the ‘Paris Agreements’ were YKVJFGƅGEVKQPEQODWUVKQPEJCODGTUHQTCRNCPPGF861. signed, which brought the Allied occupation status in the aircraft. Research contracts were also received from other Federal Republic of Germany to an end. Now, German countries, from the Research and Technology Agency research could again participate in national and interna- (RTA), a sub-organisation of the NATO Military Committee. tional aviation and astronautics projects. The reaction In this way, under the aegis of Truckenbrodt, important of the THM was immediate; that same year, Krauß was PWOGTKECNOGVJQFUHQTVTCPUKGPVCPFUVCVKQPCT[ƅQYRTQ- awarded the professorship for aircraft construction. EGUUGUYGTGTGUGCTEJGFCUYGTGJ[RGTUQPKEƅQYUYJKEJ were of great importance to the astronautics projects that In the years that followed, Munich became a centre for were just beginning in the Federal Republic at that time. aviation and astronautics. Strauß consciously pursued technology- and industry-oriented policies. He persuaded the entrepreneur Ludwig Bölkow to relocate his company, Bölkow Entwicklungen KG, from Stuttgart to Ottobrunn near Munich, which he did in 1958. In 1961, the analysis

33 The History of the Department

2018 Politics and the Future of Mobility upturn in its fortunes. During the 13 years (four in industry, nine at the TUM) in which Leinkamp has been working Science does not occur in a vacuum. Politics, which is on the topic, electromobility has been through some FGUKIPGFVQFGƄPGVJGIWKFGTCKNUQHUQEKCNCEVKXKV[UGVU FKHƄEWNVVKOGUn0QYVJGUWDLGEVJCUTGCNN[VCMGPQHHoJG the general direction. Here, higher education institutions says. However, unexpectedly, and contrary to what the during the National Socialist period, with their inhumane politicians have been saying, the level of state funding for approach, are a negative example. Like the example of conducting research into the combustion engine has been CXKCVKQPCPFCUVTQPCWVKEUFGUETKDGFCDQXGPGYƄGNFUQH raised recently rather than decreased. TGUGCTEJECPDGSWKEMN[GUVCDNKUJGFWPFGTVJGKPƅWGPEG of politics. Sometimes, however, politics reacts in unfore- seeable ways. In 2007, for example, the professorial chair The combustion engine for nuclear technology was established. At that time, can be a component for power generation through nuclear power stations was the mobility of the future. still considered to be future-oriented technology, which With new fuels produced from regenerative energy, the combustion engine will Colleagues may be asked for contribute to saving CO2. political advice, but even so, 2TQH|9CEJVOGKUVGT science doesn’t play a key role, either in the decision against the use of nuclear With regard to the issue of what mobility will look like energy or when it comes to in the future, there is agreement in part between the professorial chairs. For the years to come, they forecast whether or not we should that both technologies will be used alongside each other. only drive with batteries in The statement that the combustion engine has a future the future. We have to adjust (total energy balance, CO2-neutral fuels, the mathematical to that fact. 2TQH|#FCOU impossibility of e-mobility that covers all requirements) contrasts with the claim that the use of the combustion engine will come to an end in the foreseeable future (total would make an important contribution to securing energy energy balance, new battery technology, local emission supplies in Germany. In 2011, in the wake of the Fukush- elimination, properly functioning infrastructure). ima catastrophe, the German federal government decided to phase out nuclear energy. 2GTJCRUJGTGRQNKVKEUYKNNJCXGVJGƄPCNYQTF*QYGXGT VJGTGKUQPGHWTVJGTKPƅWGPVKCNHCEVQTVJCVECPPQVDGECNEW- Currently, a question about the future is again under dis- lated: the consumer. As was the case with digital cameras cussion: the issue of the future of mobility. Is the combus- QTƅCVUETGGPUVJKPIUECPEJCPIGXGT[SWKEMN[ tion engine here to stay, or does the future belong to the electric engine? In the view of Wachtmeister and Lien- MCORJGTGVJGKPƅWGPEGQHRQNKVKEUQXGTVJGFGRCTVOGPV can be clearly felt. The chair for vehicle technology under Lienkamp, with its focus on electromobility, is enjoying an

The subject of electromobil- ity has now really taken off. But we’ve also been through FKHƄEWNVVKOGUYKVJTGICTFVQ electromobility. Prof. Lienkamp

34 Selected Highlights 2017

Geothermal drilling site in Unterhaching

35 Selected Highlights 2017

The Department of Mechanical Engineering Opened an ‘Additive Manufacturing Cluster’

colloquium, allowing the department to discuss their work with industry representatives. From Q3 2018 onwards, interested parties will also be CDNGVQƄPFKPHQTOCVKQPCDQWVVJGRCTVKEKRCVKPIFGRCTV- OGPVUCPFVJGKTCFFKVKXGOCPWHCEVWTKPIGSWKROGPVQPVJG cluster webpage.

Life Sciences, Aerospace, Manufacturing Processes 6JGFGRCTVOGPVCNTGCF[JCUCUKIPKƄECPVDTGCFVJCPFFGRVJ QHGZRGTKGPEG6JTGGUWDƄGNFUQHCFFKVKXGOCPWHCEVWTKPI JCXGDGGPKFGPVKƄGFNKHGUEKGPEGUCGTQURCEGOCPWHCEVWT- KPIRTQEGUUGU(QTGZCORNGVJG&GRCTVOGPVQH#GTQURCEG 'PIKPGGTKPIJCUFGXGNQRGFKVUQYPWPKXGTUCN&RTKPVKPI Impression of the second seminar of 26/01/2018 for scientists and RNCVHQTOVJCVEQODKPGUVJTGGFKHHGTGPVCFFKVKXGOCPWHCE- technicians VWTKPIVGEJPKSWGU6JG&GRCTVOGPVQH/GFKECN'PIKPGGTKPI UVWFKGFVJGRTQFWEVKQPQHnOGFKECNITCFGoRQN[OGTOCVGTKCNU #FFKVKXGOCPWHCEVWTKPIJQNFUCFKXGTUGTCPIGQHQRRQT- D[CFFKVKXGOCPWHCEVWTKPI6JGTGUGCTEJRGTHQTOGFD[VJKU VWPKVKGUHQTOGEJCPKECNGPIKPGGTKPICPFVJG6GEJPKECN FGRCTVOGPVURCTMGFQHHCUVCTVWREQORCP[HQTOCPWHCE- 7PKXGTUKV[QH/WPKEJ+PTGEQIPKVKQPQHVJKURQVGPVKCNVJG VWTKPIJKIJVGEJOGFKECNRTQFWEVU6JG%JCKTQH%CTDQP n67//GEJCPKECN'PIKPGGTKPI#FFKVKXG/CPWHCEVWTKPI Composites took the research into composite materials %NWUVGToYCUNCWPEJGFKP5GRVGODGTYKVJUWRRQTV HWTVJGTD[FGXGNQRKPICUGTKGUQHPQXGNCRRTQCEJGUHQT HTQO2TQHGUUQT/KEJCGN(

D[VJGUGEQPFTQWPFQHUGOKPCTUQPVJ,CPWCT[ Prof. Dr.-Ing. Michael F. Zaeh #EEQTFKPIN[KVYCUFGEKFGFCVVJGGPFQH,CPWCT[VJCVVJG /CEJKPG6QQNUCPF+PFWUVTKCN CEVKXKVKGUQHVJGn#FFKVKXG/CPWHCEVWTKPI%NWUVGToUJQWNF /CPCIGOGPV DGKPVGPUKƄGF+PHWVWTGFGRCTVOGPVYKFGENWUVGTOGGVKPIU www.iwb.mw.tum.de YKNNDGJGNFVJTGGVKOGUC[GCT6JGOGGVKPIKPVJGƄTUV [email protected] 2JQPG  SWCTVGTQHGCEJ[GCTYKNNDGQTICPK\GFCUCPKPFWUVTKCN

36 Selected Highlights 2017

SFB 768: Managing Cycles in Innovation Processes – Integrated Development of Product-Service Systems Based on Technical Products

Visualizing model dependencies within a cross discipline interactive model network

6JG&()HWPFGF%QNNCDQTCVKXG4GUGCTEJ%GPVGT %4%  5VCMGJQNFGT+PVGITCVKQP-PQYNGFIG/CPCIGOGPVCPF n/CPCIKPI%[ENGUKP+PPQXCVKQP2TQEGUUGUoKUEWT- %JCPIG/CPCIGOGPV6JGVTCPUHGTQHTGUGCTEJTGUWNVUVQ TGPVN[KPVJGVJQHHWPFGF[GCTU+VKUDCUGFQPVJG KPFWUVT[CPFVJGVTCPUHGTQHKPFWUVT[GZRGTVKUGVQCEC- EQNNCDQTCVKQPQH6GEJPKECN7PKXGTUKV[CPF.WFYKI/CZ- FGOKCYCUCITGCVDGPGƄVHQTCNNRCTVKEKRCPVU#FFKVKQP- KOKNKCPU7PKXGTUKV[/WPKEJ6JG%4%KPXQNXGUVJG CNN[VJGGXGPVoURCTVKEKRCPVUGZRGTKGPEGFUWDUVCPVKCVGF HQNNQYKPIKPUVKVWVGUQHVJG&GRCTVOGPVQH/GEJCPKECN URGGEJGUHTQOFKHHGTGPVKPFWUVT[FQOCKPUYKVJKPVJG 'PIKPGGTKPI+PUVKVWVGQH#WVQOCVKQPCPF+PHQTOCVKQP EQPVGZVQH225CPF%[DGT2J[UKECN2TQFWEVKQP5[UVGOU 5[UVGOU+PUVKVWVGQH2TQFWEV&GXGNQROGPV+PUVKVWVGQH %225 OQFGTCVGFFKUEWUUKQPUCPFCPCVOQURJGTKEIGV /CEJKPG6QQNUCPF+PFWUVTKCN/CPCIGOGPVCPF%JCKT together. QH#WVQOCVKE%QPVTQN6JG5($RTQXKFGUOGVJQFU 6JG[GCTYCUXGT[HTWKVHWNHQT%4%VJGOCUUKXG and models to manage cyclic innovation processes in an QRGPQPNKPGEQWTUG /11% YCUNCWPEJGFCUYGNNCUVJG interdisciplinary way, including technical, economic and ƄTUVRTQVQV[RGQHCRWDNKEN[CEEGUUKDNGRNCVHQTOECNNGF social perspectives. n)GUVCNVGPRNCVVHQTOo6JKURNCVHQTOEQNNGEVUTGECRVWTGU 6JGHQEWUQHVJG5($KUQPVJGOCTMGVCTGCQHEQO- CPFRTGUGPVUTGUGCTEJTGUWNVUQHVJG%4%QXGTVJG bining products and services to so-called product service NCUV[GCTUVQDGPGƄVENQUGTEQQRGTCVKQPCPFGZEJCPIG U[UVGOU 225 /CPCIKPICPFUJCRKPIKPPQXCVKQPUKP225 between industry and science. WPFGTEQPUKFGTCVKQPQHE[ENKEKPƅWGPEGUKUVJGQDLGEVKXG 6QCEJKGXGJQNKUVKEOCPCIGOGPVQHKPPQXCVKQPRTQEGUUGU QHVJG5($CKOKPIVQUWRRQTV)GTOCPEQORCPKGU VJGRGTURGEVKXGJCUDGGPGZVGPFGFVQCUQEKQVGEJPKECN to evolve their position in the market with methods and XKGY+PUGXGPVGGPUWDRTQLGEVUHTQOOGEJCPKECNGPIK- domain-spanning coupled models. PGGTKPIGEQPQOKEUDWUKPGUUKPHQTOCVKEURU[EJQNQI[CPF +PCPKPFWUVTKCNEQNNQSWKWOYCUUWEEGUUHWNN[QTICP- sociology, a unique interdisciplinary research perspective K\GFYKVJVQRENCUUTGRTGUGPVCVKXGUHTQOINQDCNN[CEVKXG on innovation processes is developed and is being con- companies to discuss and mutually enrich ideas within VKPWQWUN[UVTGPIVJGPGF9KVJKPVJGVTCPUHGTRTQLGEVUVJG VJGKPVGTCEVKXGYQTMUJQRU+PEQPUKUVGPE[/CPCIGOGPV research results are validated using real industry scenarios

37 Selected Highlights 2017

Team of the Collaborative Research Centre SFB 768 at the Kickoff meeting for funding period three

CPFXCNWCDNGHGGFDCEMHTQOFQOCKPGZRGTVUKUDTQWIJV Contact back to academia. $[VTCPUHGTTKPIVJGMPQYNGFIGICKPGFCPFƄPFKPIUVQ Prof. Dr.-Ing. Birgit Vogel-Heuser KPFWUVT[sGIVJTQWIJVTCPUHGTRTQLGEVUYQTMUJQRUQTVJG #WVQOCVKQPCPF+PHQTOCVKQP5[UVGOU industry colloquium mentioned above – managers and www.ais.mw.tum.de FGEKUKQPOCMGTUCTGGPCDNGFVQƄPFVJGDGUVCXCKNCDNG [email protected] 2JQPG  RCVJKPVJGQHVGPEQPHWUKPINCPFUECRGQHRQUUKDNGFGEK- 8KEG%QQTFKPCVQT UKQPUDGVYGGPVGEJPQNQI[QTICPK\CVKQPCPFSWCNKƄECVKQP 2TQH&T+PI)WPVJGT4GKPJCTV 6JWUVJG5($QHHGTUEQORCPKGUGHHGEVKXGEQPEGRVUVQ +PUVKVWVGQH/CEJKPG6QQNUCPF OCPCIGVJGKPPQXCVKQPE[ENGUQHVJGKTU[UVGOUCPF225 +PFWUVTKCN/CPCIGOGPV To integrate students into the multidisciplinary research ƄGNFCPFGPCDNGRCTVKEKRCPVUVQWPFGTUVCPFVJGOGEJ- anisms behind innovations and manage the interde- pendencies in a cooperative interdisciplinary way, the KPVGTFKUEKRNKPCT[NGEVWTGUGTKGUn/CPCIKPI+PPQXCVKQPUoYCU QHHGTGFUWRRQTVGFD[CPQPNKPGEJCPPGNYKVJUGNGEVGF training sessions.

YYYUHDFG

38 Selected Highlights 2017

SFB TRR 40: Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems

Instantaneous snapshots of a nitrogen jet in hydrogen: (a) Temperature; (b) Vapor fraction on a molar basis; (c) Hydrogen density; (d) Relative difference in density

6JG+PUVKVWVGQH#GTQF[PCOKEUCPF(NWKFOGEJCPKEUJCUVJG cepts developed will be tested on sub-scale combustion URGCMGTTQNGYKVJKPVJG&()5($6440GZVIGPGTCVKQP EJCODGTUCPFYKNNDGFGXGNQRGFVQCUVCIGQHCRRNKEC- space transportation systems will be based on rocket DKNKV[+PCFFKVKQPRTKPEKRCNGZRGTKOGPVUCTGIQKPIVQDG propulsion systems which deliver the best compromise conducted to demonstrate new technologies developed DGVYGGPFGXGNQROGPVCPFRTQFWEVKQPEQUVCPFRGTHQT- KPVJG6446JGUEKGPVKƄEHQEWUQHCNNƄXGTGUGCTEJ OCPEG6JG644HQEWUGUQPNKSWKFTQEMGVRTQRWNUKQP CTGCUYKVJKPVJG644KUVJGCPCN[UKUCPFVJGOQFGNKPI systems and their integration into the space transportation QHEQWRNGFU[UVGOU$CUGFQPTGHGTGPEGGZRGTKOGPVU system. detailed numerical models are developed which serve as Critical, thermally and mechanically highly loaded com- VJGDCUKUHQTGHƄEKGPVCPFTGNKCDNGRTGFKEVKXGUKOWNCVKQP RQPGPVUQHUWEJURCEGVTCPURQTVCVKQPU[UVGOUCTGVJG VQQNUHQTFGUKIP EQODWUVKQPEJCODGTVJGPQ\\NGVJGCHVDQF[CPFVJG EQQNKPIQHVJGUVTWEVWTG6JGUGEQORQPGPVUQHHGTVJG Contact JKIJGUVRQVGPVKCNHQTCPKPETGCUGKPGHƄEKGPE[KPVJGGPVKTG U[UVGO*QYGXGTCNNEQORQPGPVUCTGKPENQUGCPFFKTGEV KPVGTCEVKQPYKVJGCEJQVJGT1RVKOK\CVKQPQTVJGHWPFCOGP- VCNN[PGYFGUKIPQHCUKPINGEQORQPGPVFKTGEVN[CHHGEVUCNN other components. Prof. Dr.-Ing. Nikolaus A. Adams 6JGRTQLGEVUHTQO67/496*#CEJGP67$TCWP- #GTQF[PCOKEUCPF(NWKF/GEJCPKEU UEJYGKICPFVJG7PKXGTUKV[QH5VWVVICTVCUYGNNCURCTVPGTU www.aer.mw.tum.de HTQO&.4CPF#+4$75&5KPXGUVKICVGKPKPVGTFKUEKRNKPCT[ [email protected] 2JQPG  GZRGTKOGPVCNCPFPWOGTKECNVGCOU6JGFGXGNQRGFEQP-

39 Selected Highlights 2017

NANOSHOCK* – Manufacturing Shock Interactions for Innovative Nanoscale Processes

6JGn0CPQUJQEMoITQWRCVVJG+PUVKVWVGQH#GTQF[PCOKEU CPF(NWKF/GEJCPKEU 2TQH#FCOU KPXGUVKICVGUVJGJKIJN[ EQORNGZƅQYRJ[UKEUQHUJQEMKPVGTCEVKQPUYKVJKPVGT- HCEGU5JQEMYCXGUCTGFKUEQPVKPWKVKGUKPVJGOCETQUEQRKE ƅWKFUVCVGVJCVECPNGCFVQGZVTGOGVGORGTCVWTGURTGU- UWTGUCPFEQPEGPVTCVKQPUQHGPGTI[#ENCUUKEGZCORNGQH VJGIGPGTCVKQPQHUJQEMYCXGUKUVJGUWRGTUQPKEDQQO QHCPCKTETCHVQTVJGRTGUUWTGYCXGQTKIKPCVKPIHTQOCP GZRNQUKQP

Snapshots of highly-resolved two-dimensional test simulations: implosion test case (left) and Rayleigh-Taylor instability (right). Note the exact symme- try of the simulation result.

improve treatments in cancer therapy or drug delivery D[JCTPGUUKPIVJGGPQTOQWURQVGPVKCNQHUJQEMYCXG induced interactions someday. We continuously develop and improve our numerical OGVJQFUCPFEQORWVGTECRCDKNKVKGUCPFQHHGTQWTUKOWNC- VKQPHTCOGYQTMVQVJGRWDNKE1WTTGUGCTEJEQFGn#.2#%#o KUCXCKNCDNGWPFGTQRGPUQWTEGNKEGPUG YYYCGTOYVWO FGCDVGKNWPIGPPCPQUJQEM +PVGTGUVKPIN[UQNXKPIVJG inviscid and per se unstable Euler equations using spatial schemes with increasingly high order is subject to new EJCNNGPIGU&WGVQVJGHCEVVJCVPWOGTKECNFKUUKRCVKQPPQ NQPIGTUWRRTGUUGUVJGGHHGEVQHƅQCVKPIRQKPVKPCEEWTC- cies, symmetric test cases like an implosion problem or VJG4C[NGKIJ6C[NQTKPUVCDKNKV[VGPFVQNQUGU[OOGVT[9G have improved our numerical algorithms and actual imple- OGPVCVKQPUVQGPUWTGRGTHGEVU[OOGVT[QHNQYFKUUKRCVKXG Interface visualization (blue line) with pressure (upper half) and normalized test problems. streamwise velocity component (lower half) of a water drop after interaction with a shock of Mach number MS=1.47.

(WPFGFD[VJG'WTQRGCP4GUGCTEJ%QWPEKN '4% WPFGT VJG'WTQRGCP7PKQPoU*QTK\QPTGUGCTEJCPFKPPQXC- VKQPRTQITCOYKVJCP#FXCPEGF)TCPVHQT2TQH#FCOUKP this project we are developing numerical methods that are ECRCDNGQHRTGFKEVKPIOWNVKRJCUGUJQEMYCXGKPVGTCEVKQPU CPFCTGEQPVKPWQWUN[QRVKOK\KPIQWTUQHVYCTGHTCOGYQTM HQTVJGNCVGUVJKIJRGTHQTOCPEGEQORWVKPICTEJKVGEVWTGU 1WTOKUUKQPKUVQKORTQXGVJGWPFGTUVCPFKPIQHEQORNGZ RJ[UKECNRJGPQOGPCYKVJVJGJGNRQHPWOGTKECNVQQNU#U CPGZCORNGYGKPXGUVKICVGVJGWPFGTN[KPIOGEJCPKUOU QHCRRNKECVKQPUUWEJCUMKFPG[UVQPGNKVJQVTKRU[YJKEJ Volume-rendered interface visualization of the liquid drop shortly after WNVKOCVGN[KUVJGHWPFCOGPVCNRTQDNGOQHICUDWDDNG exposure to highly-focused energy deposition from a laser pulse EQNNCRUGKORCEVQPKPVGTHCEGUCPFDKQOCVGTKCNU9KVJC FGVCKNGFMPQYNGFIGQHVJGRJ[UKEUYGCKOVQJGNRVQ /GODGTUQHVJGTGUGCTEJITQWRCTG8$QIFCPQX0(NGKUEJ OCPP0*QRRG0*QUUGKPK,-CKUGT#.WPMQX62CWNC * This project has received funding from the European Research Council ,9KPVGT&T+PI5#FCOK2TQH&T+PI0##FCOU (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 667483).

40 Selected Highlights 2017

Communication Activities Contact ■ -CKUGT,#FCOK5#FCOU0#&KTGEV0WOGTKECN 5KOWNCVKQPQH5JQEM+PFWEGF&TQR$TGCMWRYKVJC 5JCTR+PVGTHCEG/GVJQF5[ORQUKWOQP6WTDWNGPEG CPF5JGCT(NQY2JGPQOGPC=65(2? ■ 2CP5#FCOK5*W:#FCOU0#5JQEMDWDDNG Prof. Dr.-Ing. Nikolaus A. Adams +PVGTCEVKQP0GCTC%QORNKCPV6KUUWGNKMG/CVGTKCN #GTQF[PCOKEUCPF(NWKF/GEJCPKEU +PVGTPCVKQPCN5[ORQUKWOQP6WTDWNGPEGCPF5JGCT www.aer.mw.tum.de (NQY2JGPQOGPC=65(2? [email protected] 2JQPG  Master’s Theses ■ 2CWNC6.KSWKFYCVGTFTQRGZRNQUKQPUKOWNCVKQPUWUKPI CUJCTRKPVGTHCEGOGVJQF/CUVGToUVJGUKU67/ ■ 9KPVGT,.GXGN5GV$CUGF/WNVKRJCUG5JQEMYCXG &[PCOKEU7UKPIC/2+2CTCNNGNK\GF/WNVKTGUQNWVKQP %QORTGUUKDNG(NQY5QNXGT/CUVGToUVJGUKU67/ ■ (NGKUEJOCPP00WOGTKECN/QFGNKPIQH5JQEM+PVGT- HCEG+PVGTCEVKQPUWUKPIVJG&KHHWUKXG+PVGTHCEG/GVJQF /CUVGToUVJGUKU67/

41 Selected Highlights 2017

First Flight of the SAGITTA Technology Demonstrator

+P67/TGUGCTEJGTULQKPVN[YKVJVJGKTRTQLGEVRCTVPGTU CUPQXGNCEVKXGƅCRU[UVGOUCTGMG[GPCDNGTUHQTUWEJ HTQOKPFWUVT[CPFCECFGOKCUWEEGUUHWNN[EQPFWEVGFVJG FKCOQPFUJCRGFCKTETCHV+PENQUGEQQRGTCVKQPYKVJVJG ƄTUVƅKIJVECORCKIPQHVJG5#)+66#VGEJPQNQI[FGOQP- +PUVKVWVGHQT#GTQF[PCOKEUCPF(NWKF/GEJCPKEUCTCFKECN UVTCVQT&WTKPIVYQƅKIJVUKP5QWVJ#HTKECVJGƅ[KPIVGUVDGF PGYURNKVƅCRU[UVGOHQTVJGYKPIVKRJCUDGGPFGXGNQRGF UJQYGFKVUUCHGQRGTCVKQPKPƅKIJV/WNVKRNGVGEJPQNQIKGU RTQOKUKPIKPETGCUGFGHƄEKGPEKGUCPFDGVVGTRGTHQTOCPEG QHƄXG67/KPUVKVWVGUYGTGQPDQCTFVJKUCKTETCHV 6JKUƅCRU[UVGOJCUCNTGCF[DGGPVGUVGFFWTKPIVJGƄTUV 6JGCKTETCHVOCPWHCEVWTGT#KTDWU&GHGPEG5RCEG ƅKIJVUQH5CIKVVC KPKVKCVGFKVUQRGPKPPQXCVKQPKPKVKCVKXG5#)+66#KP 5CIKVVCOGCPKPICTTQYKPNCVKPUKIPKƄGUVJGVCTIGVCKT Institute of Aerodynamics and Fluid Mechanics XGJKENGEQPƄIWTCVKQPYJKEJYCUFGUKIPGFGZCEVN[NKMGVJG &KCOQPFUJCRGYKPIUYKVJCJKIJNGCFKPIGFIGUYGGR VKRQHCPCTTQY FKCOQPFYKPI +PXGT[ENQUGEQQRGTCVKQP UJQYURGEKƄEƅQYRJGPQOGPCUWEJCUUGRCTCVGFNGCFKPI DGVYGGPKPFWUVT[CPFOWNVKRNGTGUGCTEJKPUVKVWGUHTQO GFIGXQTVKEGUHQTGZCORNG#DGVVGTWPFGTUVCPFKPIQHUWEJ &.4VJG7PKXGTUKV[QHVJG)GTOCP#TOGF(QTEGUVJG ƅQYEJCTCEVGTKUVKEUCUYGNNCUOGVJQFUVQCEVKXGN[GHHGEV 6GEJPKUEJG*QEJUEJWNG+PIQNUVCFVCUYGNNCUVJG6GEJPKECN VJQUGƅQYEQPFKVKQPUYGTGKPVJGHQEWUQHTGUGCTEJCVVJG 7PKXGTUKVKGUQH%JGOPKV\CPF/WPKEJCTGLQKPVN[FGXGNQR- KPUVKVWVG(QTVJGƅ[KPIVGUVDGFVJGKPUVKVWVGYCUTGURQP- KPIVGEJPQNQIKGUHQTHWVWTGWPOCPPGFCKTXGJKENGU 7#8  UKDNGHQTCNNCGTQF[PCOKEFCVCCPFYKPFVWPPGNOGCUWTG- #URCTVQHVJGRTQLGEVVJGKPFKXKFWCNVGEJPQNQIKGUYGTG OGPVUCOQWPVKPIVQOQTGVJCPFCVCRQKPVUHQT KPVGITCVGFCPFVGUVGFHQTVJGKTCRRNKECDKNKV[QPVJGƅ[KPI OWNVKRNGXCTKCPVUQHVJGEQPƄIWTCVKQP VGUVDGF9KVJKP67/HQWTKPUVKVWVGUCPFQPG67/+#5 (QEWU)TQWREQPVTKDWVGFVQVJGRTQLGEV

Institute of Aircraft Design $GUKFGUVJGQXGTCNNCKTETCHVFGUKIPQHPQXGN7#8UYKVJ NQYYKPIURCPPQXGNƅKIJVEQPVTQNFGXKEGUCUYGNNCU novel propulsion integration and control concepts were KPVJGHQEWUQHTGUGCTEJ0GYOGCPUQHEQPVTQNNKPIVJG air vehicle, such as thrust vectoring techniques, as well

42 Selected Highlights 2017

Institute of Lightweight Structures $GUKFGUVJGUWEEGUUHWNƅKIJVECORCKIPCNCTIGCOQWPVQH (NCRUCPFOQXCDNGFGXKEGUQHCKTETCHVUJQYICRUCPF GZRGTVKUGCUYGNNCUEQPHGTGPEGRWDNKECVKQPUCPFLQWTPCN discontinuities, which result in additional drag and noise articles have been provided to the public domain. With the COQPIQVJGTGHHGEVU6JGFGUKIPOCPWHCEVWTKPICPF TGVWTPQHVJGFGOQPUVTCVQTVQ)GTOCP[VJGTGUGCTEJGTU VGUVKPIQHƅGZKDNGUJCRGCFCRVKXGUVTWEVWTGUYGTGCVVJG CTGGCIGTVQGZVTCEVOQTGXCNWCDNGFCVCHTQOVJGUWEEGUU- EGPVGTQHTGUGCTEJCVVJG+PUVKVWVGHQT.KIJVYGKIJV5VTWE- HWNƅKIJVUVQHWTVJGTRTQEGGFKPVJGTGUGCTEJQP7#8U VWTGUVQENQUGVJGICRUCPFKPETGCUGVJGQXGTCNNGHƄEKGPE[ QHUWEJU[UVGOU

Institute of Flight System Dynamics together with TUM-IAS Focus Group ‘Aircraft Stability and Control’: 1PGMG[EJCNNGPIGHQT7#8KUVQGPUWTGCUCHGƅKIJVCU VJGTGKUPQRKNQVQPDQCTFYJQEQWNFTGCEVVQWPGZRGEVGF DGJCXKQTFWGVQU[UVGOHCKNWTGUGZVGTPCNFKUVWTDCPEGU VWTDWNGPEGIWUVU QTOQFGNGTTQTU6JGTGHQTGVJG+PUVKVWVG QH(NKIJV5[UVGO&[PCOKEUVQIGVJGTYKVJVJG67/+#5 (QEWU)TQWRn#KTETCHV5VCDKNKV[CPF%QPVTQNoFGXGNQRGFCP Contact KPPQXCVKXGCWVQƅKIJVU[UVGO #(5 HQT5#)+66#YJKEJGPC- DNGUHWNN[CWVQOCVKEƅKIJVOKUUKQPUHTQOVCMGQHHVQUVCPF- UVKNNCHVGTNCPFKPI5KPEGVJGPQXGNCKTETCHVEQPƄIWTCVKQP JCFPGXGTDGGPƅQYPDGHQTGKVYCUCOCLQTFGUKIPFTKXGT HQTVJG#(5VQEQRGYKVJVJGYKFGUVRQUUKDNGURGEVTWOQH Univ.-Prof. Dr.-Ing. Mirko Hornung model uncertainties. The researchers were rewarded with #KTETCHV&GUKIP GZVTGOGN[UWEEGUUHWNƅKIJVVGUVU$QVJƅKIJVUQH5#)+66# www.lls.mw.tum.de EQWNFDGCEEQORNKUJGFHWNN[CWVQOCVKECNN[CPFFGOQP- [email protected] 2JQPG  UVTCVGFGZEGNNGPVƅ[KPIEJCTCEVGTKUVKEU

43 Selected Highlights 2017

Geothermal-Alliance Bavaria (GAB)

(WPFGFD[VJG$CXCTKCP5VCVG/KPKUVT[HQT'FWECVKQP 5EKGPEGCPFVJG#TVUCPFEQQTFKPCVGFD[VJG67/5EJQQN QH'PIKPGGTKPIVJTGGOCLQTWPKXGTUKVKGUKP$CXCTKCJCXG LQKPGFHQTEGUKPVJG)GQVJGTOCN#NNKCPEG$CXCTKC )#$  VJG6GEJPKECN7PKXGTUKV[QH/WPKEJVJG(TKGFTKEJ#NGZCP- FGT7PKXGTUKV['TNCPIGP0WTGODGTICPFVJG7PKXGTUKV[QH $C[TGWVJ6JGCKOQHVJGRTQLGEVKUVQRWUJTGUGCTEJKPVJG ƄGNFQHIGQVJGTOCNGPGTI[QPCXCTKGV[QHUEKGPVKƄEƄGNFU such as geology, chemistry, thermal process engineer- KPICPFGNGEVTKECNGPIKPGGTKPIYKVJVJGWNVKOCVGIQCNQH UVTGPIVJGPKPIVJGWUGQHFGGRIGQVJGTOCNGPGTI[CUC domestic energy source. 6QRJCUGQWVPWENGCTCPFHQUUKNHWGNGPGTI[CNVGTPCVKXG YC[UQHRTQXKFKPIFKUVTKEVJGCVKPICPFGNGEVTKEKV[JCXGVQ Drill bit, Source: TUM, Rita Dornmair DGGZRNQTGF+PVJGOQNCUUGDCUKPQHUQWVJGTP$CXCTKCVJG EQPFKVKQPUHQTWUKPIFGGRIGQVJGTOCNGPGTI[TGUGTXQKTUCU 6JGRTQLGEVKUQTICPK\GFKPƄXGUWDRTQLGEVUFGUKIPGFKPC CFQOGUVKECPFTGNKCDNGGPGTI[UQWTEGCTGXGT[HCXQTCDNG JQNKUVKECRRTQCEJVQEQXGTVJGƄGNFUQHIGQVJGTOCNGPGTI[ 6QCEEGUUVJGTGUGTXQKTCPFGZVTCEVVJGVJGTOCNGPGTI[ research as completely as possible. GHƄEKGPVN[CPFGEQPQOKECNN[CXCTKGV[QHTGUGCTEJSWGU- tions need to be addressed. 6JG)#$RCTVPGTUHQEWUQPVJGHQNNQYKPITGUGCTEJ UWDLGEVU ■ VJGFGUKIPQHGHƄEKGPVCPFƅGZKDNGRQYGTRNCPVU ■ VJGFGXGNQROGPVCPFKORNGOGPVCVKQPQHOQPKVQTKPI VQQNUHQTIGQVJGTOCNRQYGTRNCPVU ■ VQKORTQXGVJGWPFGTUVCPFKPIQHFGGRIGQVJGTOCN TGUGTXQKTUKPQTFGTVQOCZKOK\GVJGUWEEGUUTCVGKP GZRNQTCVKQP ■ VQKPETGCUGVJGTGNKCDKNKV[QHVJGVJGTOCNYCVGTE[ENGCPF ■ to better understand the geological requirements HQTRGVTQVJGTOCNTGUGTXQKTUKP0QTVJGTP$CXCTKCCPF investigate their potential.

+PCFFKVKQPVJGLQKPV/CUVGToURTQITCOn)GQ6JGTOKG )GQ'PGTIKGoEQOOGPEGFKP95CVVJG6GEJPKECN 7PKXGTUKV[QH/WPKEJCPFVJG(TKGFTKEJ#NGZCPFGT7PKXGT- UKV[QH'TNCPIGP0WTGODGTI

www.mse.tum.de/gab

Contact

Prof. Dr.-Ing. Hartmut Spliethoff 'PGTI[5[UVGOU www.es.mw.tum.de URNKGVJQHH"VWOFG Drilling site in Unterhaching, Source: H. Angers Söhne Bohr- und Brunnenbaugesellschaft mbH 2JQPG 

44 Selected Highlights 2017

/Øs4GEGPV2TQVQV[RG$WKNVD[#MCƅKGI/ØPEJGP

6JG#MCƅKGIVGCORTQWFN[RTGUGPVUVJGKTPGYRTQVQV[R

1P5GRVGODGTVJGINKFGTRTQVQV[RG/Ø CPFYCUOQFKƄGFD[VJGUVWFGPVUCEEQTFKPIVQVJGTGUWNVU UWEEGUUHWNN[ECTTKGFQWVKVUOCKFGPƅKIJV+VYCUDWKNVD[ QHVJGQTGVKECNCGTQF[PCOKEUVWFKGUCPFYKPFVWPPGNVGUVU UVWFGPVUQHVJGCECFGOKEƅKGTUoENWD#MCƅKGI/WPKEJCV 6JGKORNGOGPVGFCFCRVCVKQPUQHVJGCKTHQKNUCUYGNNCUVJG VJG67/TGUGCTEJECORWUPGCT)CTEJKPI IGQOGVT[QHYKPICPFHWUGNCIG[KGNFKPETGCUGFRGTHQT- #MCƅKGI/WPKEJKUCPCUUQEKCVKQPQHUVWFGPVUHTQOCNN OCPEGD[TGFWEKPIKPFWEGFCPFKPVGTHGTGPEGFTCI6JG VJTGG/WPKEJWPKXGTUKVKGUYJQUJCTGVJGKTEQOOQPRCU- FGUKIPCPFVJGEQPUVTWEVKQPQHVJGKPPGTYKPIUGEVKQPCPF UKQPHQTCXKCVKQP(QWPFGFKPYKVJVJGOQVVQn&GUKIP VJGHWUGNCIGJCXGDGGPFQPGEQORNGVGN[D[VJGUVWFGPVU DWKNFCPFƅ[oVJG#MCƅKGI/WPKEJKUVJGGNFGUVUVWFGPV /CPWHCEVWTGQHVJGƄTUVRCTVUHQTVJGNQCFVGUVUVTWEVWTGU ITQWRCV67//QTGVJCPCKTETCHVRTQVQV[RGUJCXGDGGP UVCTVGFKP&KHHGTGPVNQCFVGUVUYGTGTGSWKTGFD[ FGUKIPGFQHYJKEJVYQVJKTFUJCXGƅQYPUWEEGUUHWNN[ VJGEGTVKƄECVKQPCWVJQTKV[ .$# VQGPCDNGHWNNEGTVKƄEC- 0QYCFC[UƄXGRTQVQV[RGUCTGUVKNNKPTGIWNCTWUGCVVJG VKQPCEEQTFKPIVQVJG,#4TGSWKTGOGPVU6JGCEVWCN ENWDoUCKTƄGNFENQUGVQ-ÒPKIUFQTH6JGQDLGEVKXGQHVJG RTQVQV[RGYCUDWKNVHTQOQPYCTFUCPFRGTHQTOGFKVU UVWFGPVUoCEVKXKVKGUKUVQEQODKPGVJGQTGVKECNMPQYNGFIG ƄTUVƅKIJVKP5GRVGODGT6QVJGITGCVTGNKGHCPFLQ[QH HTQONGEVWTGUYKVJRTCEVKECNGZRGTKGPEGKPVJGFGUKIPCPF VJGVGCOVJG/ØƅGYYKVJQWVFKHƄEWNV[*QYGXGTVJKU VJGOCPWHCEVWTGQHCKTETCHV+PVJGTGEGPVRTQLGEVOQTG KUPQVVJGGPFQHVJGRTQLGEV6JGPGZVUVGRUYKNNKPXQNXGC VJCPUVWFGPVUYGTGKPXQNXGFKPTGUGCTEJFGUKIPCPF XKDTCVKQPVGUVCPFFKHHGTGPVƅKIJVVGUVU6JG[CTGPGEGUUCT[ OCPWHCEVWTKPICEVKXKVKGU%WTTGPVN[CRRTQZKOCVGN[ VQUJQYEQORNKCPEGQHVJGƅ[KPICPFJCPFNKPIEJCTCE- UVWFGPVUCTGCEVKXGN[YQTMKPIQPFKHHGTGPVRTQLGEVU VGTKUVKEUQHVJGCKTETCHVYKVJVJGTGSWKTGOGPVU#UUQQPCU 6JGFGUKIPQHVJGTGEGPVINKFGT/ØCKOUCVFTCI CNNTGSWKTGOGPVUCTGHWNƄNNGFVJGRTQVQV[RGYKNNDGHWNN[ TGFWEVKQPD[QRVKOK\CVKQPQHVJGYKPIHWUGNCIGVTCPUKVKQP EGTVKƄGFCPFKPENWFGFKPƅKIJVQRGTCVKQPU +VKUDCUGFQPVJGUGTKGUCKTETCHV#59JCUCOURCP $GHQTGVJG/ØVJG#MCƅKGIFGUKIPGFCPFDWKNVVJG/Ø n5EJNCETQoYJKEJKUCPCGTQDCVKECPFVQYKPICKTETCHV VJCVƄTUVƅGYKPVJGEWTTGPVEQPƄIWTCVKQPKP6JG EGTVKƄECVKQPRTQEGUUYCUEQORNGVGFKPCPFVJG CKTETCHVKUPQYCFC[UTGIWNCTN[WUGFKPƅKIJVQRGTCVKQPU #NUQVJGHQNNQYQPRTQLGEVJCUCNTGCF[DGGPFGƄPGF6JG UVWFGPVUYCPVVQDWKNFCJKIJRGTHQTOCPEGCGTQDCVKEINKFGT HQTVJGn7PNKOKVGFoEQORGVKVKQPENCUU6JG[CTGEWTTGPVN[ YQTMKPIQPVJGFGUKIPCPFYCPVVQUVCTVOCPWHCEVWTKPIVJG ƄTUVRCTVUVJKU[GCT

Contact

#MCƅKGI/ØPEJGPG8YYYCMCƅKGIOWGPEJGPFG RT"CMCƅKGIOWGPEJGPFG2JQPG  6JG/ØKUQHHVJGITQWPFHQTVJGƄTUVVKOG

45 Selected Highlights 2017

A Big Year for WARR

5GVWRQHVJGET[QIGPKEVGUVTKIYKVJQZ[IGPNKSWGƄGT

n9#44o KP)GTOCPUJQTVHQT5EKGPVKƄE9QTMITQWRHQT 9#44*[RGTNQQRKUCNUQCNNCDQWVJKIJURGGF+P#WIWUV 4QEMGVT[CPF5RCEGƅKIJV KUCUEKGPVKƄEYQTMITQWR VJGVGCOOCPCIGFVQYKPVJG5RCEG:*[RGTNQQR DCUGFCVVJG6GEJPKECN7PKXGTUKV[QH/WPKEJ 67/ +VYCU 2QF%QORGVKVKQPHQTVJGUGEQPFVKOGYKVJCDTCPFPGY HQWPFGFD[UVWFGPVUKP EQPEGRVCPFFGUKIPVJCVYGPVYKVJCVQRURGGFQH Ever since, it has given students the opportunity to gain MOJsVJGHCUVGUVURGGFGXGTTGCEJGFD[C*[RGTNQQR JCPFUQPGZRGTKGPEGKPURCEGVGEJPQNQI[RTQLGEVU RQF#NTGCF[KP,CPWCT[9#44*[RGTNQQRJCFYQP 6QFC[9#44EQPUKUVUQHHQWTOCKPRTQLGEVITQWRU RTK\GUHQTn(CUVGUV2QFoCPFn$GUV2GTHQTOCPEGKP(NKIJVoCV 6JGƄTUVITQWRKU9#444QEMGVT[+P&GEGODGT VJGƄTUV*[RGTNQQR2QF%QORGVKVKQP VJGUVWFGPVUUWEEGUUHWNN[ECTTKGFQWVCVYQYGGMVGUV ECORCKIPQPVJGVGUVKPIITQWPFUQHVJG)GTOCPEGPVTGHQT CXKCVKQPCPFCUVTQPCWVKEU &.4 KP.CORQNFUJCWUGP6JG IQCNYCUVQXGTKH[VJGKTUGNHFGXGNQRGFGPIKPGn$CVVNGUJKRo CJ[DTKFTQEMGVGPIKPGVJCVYKNNDGWUGFHQTVJGRNCPPGF JGKIJVTGUGCTEJTQEMGV9#44'ZYJKEJKUKPVGPFGFVQ TGCEJCOCZKOWOƅKIJVCNVKVWFGQHMOCPFVTKRNGVJG URGGFQHUQWPF 9#445CVGNNKVG6GEJPQNQI[KPEQQRGTCVKQPYKVJVJG %JCKTQH#UVTQPCWVKEU .46 FGXGNQRUC%WDG5CVUCVGNNKVG ECNNGF/18'+++VYCUFGXGNQRGFCPFDWKNVD[OQTGVJCP UVWFGPVUQXGTCRGTKQFQHVYQ[GCTU#VVJGGPFQH 0QXGODGTVJGFGXGNQROGPVƄPCNN[ECOGVQCPGPF /18'++KUTGCF[HQTFGNKXGT[CPFYKNNDGNCWPEJGFD[C (CNEQPTQEMGVKP WARR Hyperloop winning the second SpaceX Hyperloop Pod Competition +PGCTN[&GEGODGTVJG9#445RCEG'NGXCVQT6GCO in Los Angeles

RCTVKEKRCVGFCV52'%CPKPVGTPCVKQPCNEQORGVKVKQPKP Contact /KVQ,CRCP6JGUQECNNGFnQPGVJKTFoURCEGGNGXCVQTYCU 9#44G8EQ.GJTUVWJNHØT4CWOHCJTVVGEJPKM D[HCTVJGHCUVGUVENKODGTKPVJGEQORGVKVKQPCPFUQVJG $QNV\OCPPUVT)CTEJKPIYYYYCTTFG VGCOYQPVJG52'%URGGFCYCTF

46 The Department of Mechanical Engineering

47 Governance

6JG67/&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIRWTUWGU Strengthening of Engineering Science VJGRTKPEKRNGUQHUVTCVGIKEIQXGTPCPEG#UQPGQHVJG XGT[ƄTUVWPKXGTUKVKGUKP)GTOCP[67/DGICPKPVQ 6JGFGRCTVOGPVJCUFGEKFGFVQHQEWUQPVJTGGMG[OGCU- evaluate its units on the departmental and administra- WTGUVQUVTGPIVJGPKVUUEKGPVKƄEHQEWU VKXGNGXGNUsVJGƄTUVFGRCTVOGPVUWDLGEVVQRGGTTGXKGY YCUVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI#UC 5KIPKƄECPEGQH*KIJSWCNKV[2WDNKECVKQPU EQPUGSWGPEGVJGFGRCTVOGPVFGEKFGF K VQUVTGPIVJGP 2GGTTGXKGYGFRWDNKECVKQPUCTGMG[KPFKECVQTUQHUEKGP- KVUUEKGPVKƄEHQEWUCUVJGDCUKUHQTUWUVCKPKPIKVUNGCFKPI VKƄECEEQORNKUJOGPVCPFXKUKDKNKV[9JKNGKPVGTPCVKQPCN VGEJPQNQIKECNEQORGVGPEG KK VQHWTVJGTGPJCPEGKVUKPVGT- university rankings are commonly based on publication PCVKQPCNUVCPFKPICPF KKK VQTGXKUGKVUHCEWNV[CRRQKPVOGPV FCVCDCUGUUWEJCU5EQRWUQT+5+9GDQH5EKGPEGCOQPI RTQEGFWTGUGORNQ[KPIVJGHWNN67/ECTGGTURGEVTWO.CUV )GTOCPWPKXGTUKVKGUETKVGTKCHQTTGNGXCPEGQHUEKGPVKƄE but not least, the graduate and undergraduate education RWDNKECVKQPUQHVGPCTGNGUUUVTKEV6JGFGRCTVOGPVTGNKGU program is being modernized and restructured in order to QPVJGGZVGTPCNOGVTKEUHTQO5EQRWUCPF+5+HQTSWCNKƄEC- RTGRCTGUVWFGPVUHQTHWVWTGGPIKPGGTKPIEJCNNGPIGU VKQPQHCTGNGXCPVUEKGPVKƄERWDNKECVKQPKPQTFGTVQHQNNQY KPVGTPCVKQPCNRTCEVKEG2WDNKECVKQPUNKUVGFKPCVNGCUVQPGQH these indices are rewarded with a budget bonus, which EWTTGPVN[CEEQWPVUHQTCDQWVQHVJGVCPIKDNGOGCPUQH VJGFGRCTVOGPV&QEVQTCNTGUGCTEJGTUCTGQHHGTGFEQWTUGU QPUEKGPVKƄERCRGTYTKVKPIEQPFWEVKPINKVGTCVWTGUWTXG[U and bibliometry.

%QORCTKPIƄIWTGUHTQODGHQTGVJGGXCNWCVKQP   CPFCHVGTKORNGOGPVCVKQPQHVJGOGCUWTGU   VJGPWODGTQHJKIJSWCNKV[RWDNKECVKQPUCNOQUVFQWDNGF HTQOVQRGT[GCTsEKVCVKQPQH67//GEJCPKECN 'PIKPGGTKPIRWDNKECVKQPUOQTGVJCPVTKRNGFHTQOVQ RGT[GCT

48 Governance

5VTGPIVJGPGF2QUKVKQPKPIQH5EKGPVKƄE6JGUGU +PVGTPCVKQPCN2TQƄNG 6JGUGUHTQOWPFGTITCFWCVGITCFWCVGCPFFQEVQTCN UVWFGPVUCTGGUUGPVKCNRCTVUQHVJGUEKGPVKƄEQWVRWVQHVJG 1XGTTGEGPV[GCTUKPVGTPCVKQPCNXKUKDKNKV[QHVJG&GRCTVOGPV FGRCTVOGPV2TQVGEVKQPQHUEKGPVKƄERTQRGTV[CPFSWCNKV[ QH/GEJCPKECN'PIKPGGTKPIJCUITQYPUKIPKƄECPVN[CUC EQPVTQNRTQORVGFVJGFGRCTVOGPVVQGPHQTEGVJGHQNNQYKPI EQPUGSWGPEGQHVJGGXCNWCVKQPKP TWNGU ■ 5KPEGQWVQHVJGPGYN[CRRQKPVGFRTQHGUUQTU ■ Companies, not the candidates themselves, may HQWTJCXGCPGZENWUKXGN[KPVGTPCVKQPCNDCEMITQWPFCPF RTQRQUGVQRKEUHQTCPGZVGTPCNVJGUKULQKPVN[YKVJCP VJTGGOQTGXGT[UKIPKƄECPVKPVGTPCVKQPCNGZRGTKGPEGKP academic lecturer at the department. PQP)GTOCPURGCMKPIEQWPVTKGU+PVQVCNOQTGVJCP ■ #UCVJGUKUKURCTVQHCPGZCOKPCVKQPRTQEGUUVJG JCNHQHVJGEWTTGPVHCEWNV[JCXGUKIPKƄECPVKPVGTPCVKQPCN department cannot accept access restrictions to thesis GZRGTKGPEG content. ■ QHCNNUVWFGPVUCTGKPVGTPCVKQPCNPQVKPENWFKPI ■ +VKUGZRGEVGFVJCVVJGUGUCTGQTYKNNDGRWDNKUJGFCU GZEJCPIGUVWFGPVUUWEJCU'TCUOWUUVWFGPVU6JKU UEKGPVKƄERCRGTU6JG/GFKC67/RNCVHQTORTQXKFGUC EQORCTGUVQKP IQQFUWRRQTVGPXKTQPOGPVHQTVJKURWTRQUG ■ &QEVQTCNECPFKFCVGUYKVJQWVCHWNNEQPVTCEVCUCUEKGP Appointment Process VKƄECUUKUVGPVCTGGZRGEVGFVQKOOGTUGVJGOUGNXGU into the research and educational environment at the 6JGFGRCTVOGPVGXCNWCVKQPRQKPVGFQWVVJGPGGFHQTC FGRCTVOGPVHQTCVNGCUVQHTGIWNCTYQTMKPIJQWTU OKFCPFNQPIVGTOCRRQKPVOGPVUVTCVGI[WVKNK\KPIVJGHWNN ■ The department has licenses a plagiarism check TCPIGQHCRRQKPVOGPVUEJGOGUCV67/6JGFGRCTVOGPV UQHVYCTGRTQITCO RWTUWGUCVJTGGVKOGNGXGNUVTCVGI[HQTUVTWEVWTKPIKVU ■ The department has implemented a compulsory semi- CRRQKPVOGPVRTQEGUUGUGZVGPFKPIHTQOVJGPGCTHWVWTGVQ PCTQPIQQFUEKGPVKƄERTCEVKEGHQTFQEVQTCNECPFKFCVGU CVKOGJQTK\QPQH[GCTUKPVQVJGHWVWTG6JGVJTGGNGXGN CUUWIIGUVGFD[VJGUVCPFCTFEWTTKEWNWOFGXGNQRGFHQT UVTCVGI[GPCDNGUVJGFKHHGTGPVVKOGTCPIGUQHVGPWTGVTCEM VJG&() CPFVGPWTGFCRRQKPVOGPVUVQDGKPVGTVYKPGF#RRQKPV- OGPVUCTGFGTKXGFHTQOVJGNQPIVGTOTGUGCTEJCPF 6QQWTEWTTGPVMPQYNGFIGQPN[HGYQVJGTFGRCTVOGPVUKP VGCEJKPIRQUKVKQPKPIUVTCVGI[QHVJGFGRCTVOGPV )GTOCP[JCXGKORNGOGPVGFUKOKNCTOGCUWTGU

Targeted Support for DFG-funded Projects &()HWPFKPIKUOQTGEQORGVKVKXGVJCPHWPFKPIVJTQWIJ TGUGCTEJEQPVTCEVUDWVQHHGTUOQTGTQQOHQTUEKGPVKƄE ETGCVKXKV[5WEEGUUKP&()HWPFKPINKPGUGURGEKCNN[5(UKU TGICTFGFCUCMG[KPFKECVQTHQTTGUGCTEJUVTGPIVJ#EVKXK- VKGUHQTRTQOQVKPI&()CEVKXKVKGUCTGVYQHQNF ■ 9JGPGXGTVJKTFRCTV[HWPFKPIKUWUGFCUCRCTCOGVGT HQTDWFIGVKPIOGCUWTGU&()HWPFKPIGPVGTUYKVJC HCEVQTQHVYQCUEQORCTGFVQQVJGTPQPRWDNKEHWPFKPI NKPGU1VJGTRWDNKEHWPFKPINKPGU GI'WTQRGCP%QO- OKUUKQPQT(GFGTCN5VCVG/KPKUVTKGU CTGEQWPVGFYKVJC HCEVQTQH ■ 2CTCNNGNVQUWRRQTVD[VJGWPKXGTUKV[EQQTFKPCVKQPQH 5($KUFKTGEVN[UWRRQTVGFD[VJG&GCPVJTQWIJKPETGCU- KPIVJGRGTUQPPGNDWFIGVQHVJGTGURGEVKXGWPKVD[CP additional research assistant position.

6JTQWIJVJGUGOGCUWTGUVJG&GRCTVOGPVQH/GEJCPKECN Engineering is currently the second most important FGRCTVOGPVCV67/YKVJTGURGEVVQVQVCN&()HWPFKPI

49 Facts and Figures

    Staff Total 1,102    (WNN2TQHGUUQTU  30   #UUQEKCVG2TQHGUUQTU 10 10 10 10 5EKGPVKƄE5VCHH     0QPUEKGPVKƄE5VCHH 211  201  #RRTGPVKEGU 28 22 20 

Students Total     $CEJGNQT    2,301 6QVCN5VWFGPVU     Freshmen per year  802   )TCFWCVKQPURGT[GCT /CUVGT     6QVCN5VWFGPVU 838 1,028   Freshmen per year     )TCFWCVKQPURGT[GCT

#FFKVKQPCNECVGIQTKGUKPENWFGFQEVQTCNCPFGZEJCPIGUVWFGPVUCPFQVJGTU

3000



2000



1000



0 /CUVGT $CEJGNQT /CUVGT $CEJGNQT /CUVGT $CEJGNQT /CUVGT $CEJGNQT        

■/CUVGTHGOCNG■/CUVGTOCNG■$CEJGNQTHGOCNG■$CEJGNQTOCNG

Doctoral Programme &GHGPUGU    

Funding 5VCVG$WFIGV     #FFKVKQPCN6WKVKQP(WPFU     Euros 5VCVG2QUKVKQPU     #ESWKTGF4GUGCTEJ(WPFKPI     Euros total     Euros public sources     Euros private sources

50 Department Board of Management

6JG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIKUJGCFGF YCUGUVCDNKUJGFKP+VEQORTKUGUVJGFGCPUCPF D[VJG&GCPVYQ8KEG&GCPUCPFVJG&GCPQH5VWFKGU TGRTGUGPVCVKXGUQHITQWRUQHRTQHGUUQTU6JG&GRCTVOGPV GNGEVGFD[VJGHCEWNV[QHVJGFGRCTVOGPVGXGT[VJTGG[GCTU $QCTFQH/CPCIGOGPVCEVUCUCPCFXKUQTVQVJG&GCPVJG +PQTFGTVQHCEKNKVCVGEQOOWPKECVKQPCPFVQRWVFGEKUKQPU TGURQPUKDKNKV[QHVJG&GRCTVOGPVCN$QCTF n(CMWNVÀVUTCVo  QPVQCDTQCFGTDCUGC&GRCTVOGPV$QCTFQH/CPCIGOGPV TGICTFKPIHQTOCNCECFGOKEOCVVGTUTGOCKPUWPVQWEJGF

Dean

Prof. Dr.-Ing. Prof. Dr. Prof. Dr.-Ing. Nikolaus A. Adams Klaus Bengler Hartmut Spliethoff

Vice Dean

Prof. Dr. Ir. Prof. Dr.-Ing. Prof. Dr.-Ing. Daniel Rixen Michael W. Gee Wolfram Volk

Vice Dean

Prof. Dr. Prof. Dr.-Ing. Prof. Dr.-Ing. Tim C. Lüth Mirko Hornung Ewald Werner

Dean of Studies

Prof. Dr.-Ing. Prof. Dr.-Ing. Prof. Dr.-Ing. Manfred Hajek Boris Lohmann Michael Zaeh

51 Department Council Mechanical Engineering

6JG&GRCTVOGPV%QWPEKNKUVJGEGPVTCNFGEKUKQPOCMKPI +PVJGEWTTGPVNGIKUNCVKXGRGTKQF   DQF[QHVJGFGRCTVOGPVCPFKUJGCFGFD[VJG&GCP*GTG VJGHQNNQYKPIRGQRNGCTGOGODGTUQHVJG&GRCTVOGPV HWPFCOGPVCNFGEKUKQPUCTGOCFGYJKEJGHHGEVVJGFGRCTV- %QWPEKNQHVJG67/&GRCTVOGPVQH/GEJCPKECN'PIKPGGT- OGPVDWVYJKEJCTGPQVVJGTGURQPUKDKNKV[QHVJG&GCP KPI6JG[TGRTGUGPVRTQHGUUQTUUEKGPVKƄEGORNQ[GGU &GCPQH5VWFKGUQTQVJGTFGEKUKQPOCMKPIDQFKGUQHVJG PQPUEKGPVKƄEGORNQ[GGUUVWFGPVUCPFHGOCNGUVCHH+P FGRCTVOGPVUWEJCUVJG'ZCOKPCVKQP$QCTF(WTVJGTOQTG CFFKVKQPVJGTGCTGRGTOCPGPVIWGUVU YKVJQWVXQVKPI VJG&GRCTVOGPV%QWPEKNCEVUCUCEGPVTCNEQOOWPKECVKQP TKIJVU YJQOC[VCMGRCTVKPOGGVKPIUQHVJG&GRCTVOGPV RNCVHQTOYJGTGTGRTGUGPVCVKXGUHTQOVJGFGRCTVOGPV U Council. XCTKQWUFKHHGTGPVOGODGTUJKRITQWRUECPGZEJCPIG KPHQTOCVKQPCPFXQKEGQRKPKQPU

Professors

Prof. Dr.-Ing. Prof. Dr. Sonja Prof. Wolfgang Nikolaus A. Adams Berensmeier Polifke, Ph.D. &GCP 5$GTGPUOGKGT" RQNKHMG" [email protected] lrz.tu-muenchen.de VHFOYVWOFG

Prof. Dr. Ir. Daniel Rixen Prof. Dr.-Ing. 8KEG&GCP Prof. Dr.-Ing. Veit Senner prodekan@ Michael W. Gee senner@ mw.tum.de [email protected] NHGOYVWOFG

Prof. Dr. Tim C. Lüth Prof. Dr.-Ing. Mirko Prof. Dr.-Ing. 8KEG&GCP Hornung Wolfram Volk prodekan@ mirko.hornung@ YQNHTCOXQNM" mw.tum.de tum.de utg.de

Prof. Dr.-Ing. Prof. Dr. mont. Manfred Hajek Prof. Dr.-Ing. habil. Dr. rer. nat. &GCPQH5VWFKGU Markus Lienkamp h. c. Ewald Werner studiendekan@ lienkamp@ werner@ mw.tum.de HVOOYVWOFG wkm.mw.tum.de

Prof. Dr. Klaus Bengler Prof. Dr.-Ing. bengler@ Boris Lohmann NHGOYVWOFG .QJOCPP"VWOFG

52 Department Council Mechanical Engineering

5EKGPVKƄE'ORNQ[GGU Students Permanent Guests YKVJQWVXQVKPITKIJVU

Carmen Aringer-Walch Marcus &GRWV[YQOGPoU Grochowina Felicitas Engel TGRTGUGPVCVKXG grochowina@ Engel@ carmen.aringer@ td.mw.tum.de HUODOYVWOFG tum.de

Dr. Helena Hashemi Farzaneh Dr. Sebastian &GRWV[YQOGPoU Rehfeldt Felix Forster TGRTGUGPVCVKXG UGDCUVKCPTGJHGNFV" HQTUVGT" helena.hashemi@ apt.mw.tum.de HUODOYVWOFG tum.de

Annika Ulherr Franziska &GRWV[YQOGPoU Ochsenfarth TGRTGUGPVCVKXG Dr. Martin Rott QEJUGPHCTVJ" annika.ulherr@ [email protected] HUODOYVWOFG tum.de

Chong Wang PD Dr. &QEVQTCN ECPFKFCVGUo Christian Stemmer Daniel Schneider TGRTGUGPVCVKXG %JTKUVKCP5VGOOGT" dschneider@ chong.wang@ aer.mw.tum.de HUODOYVWOFG tum.de

0QPUEKGPVKƄE'ORNQ[GGU Women’s Re pre sen ta tive Richard Kern &GRWV[FQEVQTCN ECPFKFCVGUo TGRTGUGPVCVKXG richard.kern@ tum.de

Stephanie Frankl Uli Ebner HTCWGPDGCWHVTCIVG" [email protected] mw.tum.de

Cornelia Härtling cornelia.haertling@ tum.de

53 Central Services

9KVJCDQWVUVWFGPVUQXGT|RTQHGUUQTUCPFYGNN management and accounting, are handled by the institutes, QXGTGORNQ[GGUVJG&GRCTVOGPVQH/GEJCPKECN OCP[TGURQPUKDKNKVKGUCTGCNNQECVGFVQVJG&GCPQHVJG 'PIKPGGTKPIKUQHCUK\GEQORCTCDNGVQOCP[WPKXGTUKVKGU FGRCTVOGPV6JKUKPENWFGUTGURQPUKDKNKV[HQTVJGTGUQWTEGU Even though most administrative tasks, including project allocated to the department as well as student services.

Department Management Quality Management Academic Affairs 6JG&GRCTVOGPV/CPCIGOGPVCUUKUVU and Controlling 6JGUGEVKQPn#ECFGOKE#HHCKTUoFGCNU VJG&GCPKPCECFGOKEUGNHCFOKPKUVTCVKQP 6JGUGEVKQPn3WCNKV[/CPCIGOGPV with academic procedures such as CPFVJGEQQTFKPCVKQPQHCFOKPKUVTCVKXG CPF%QPVTQNNKPIoEQQTFKPCVGUVJG JQPQTCT[FQEVQTCVGUCPFRTQHGUUQTUJKRU processes in the department. KORNGOGPVCVKQPCPFHWTVJGTFGXGNQROGPV lectureships, awards and prizes as well QHCSWCNKV[OCPCIGOGPVU[UVGOKPVJG CUFGRCTVOGPVCNGXGPVU+PCFFKVKQP Dr. Till von Feilitzsch %GPVTCN5GTXKEGUFGRCTVOGPV#HWTVJGT VJKUUGEVKQPCUUKUVUVJG&GCPKPDWKNFKPI Dr. Thomas Wagner OCLQTTGURQPUKDKNKV[QHVJKUUGEVKQPKU management and in granting permission to maintain a comprehensive reporting in relation to such management. U[UVGOHQTVJGFGRCTVOGPVCPFVQECTT[ 6JGHQNNQYKPIWPKVUCTGCUUKIPGFVQVJG out budget planning based on the Dieter Grimm, 5GEVKQP*GCF &GRCTVOGPV/CPCIGOGPV reports.

Sandra Greil, 5GEVKQP*GCF Assistance to the Dean Catalina Lala, Finances and Controlling, 6JKUWPKVCUUKUVUVJG&GCPKPFCKN[OCVVGTU 4QQO#FOKPKUVTCVKQP coordinates inquiries in various areas and Antje Asbach&CVCDCUGU VCMGUTGURQPUKDKNKV[HQTCFOKPKUVTCVKXG Cornelia Härtling, $WFIGV2NCPPKPI duties relating to the department and its CPF4GRQTVKPI5[UVGO administration. Stephan Hartl#EEQWPVKPI Atiye Korkmaz, on parental leave Melanie Hügel Rella Recsetar

Information Technology 6JKUWPKVUWRRQTVUEGPVTCNUGTXKEGUUVCHH TGICTFKPI+6OCVVGTU

Robert Klopp, +6#FOKPKUVTCVKQP

Hochbrück Branch This unit acts as a contact point regarding CFOKPKUVTCVKXGKUUWGUQHVJG*QEJDTØEM DTCPEJQHVJGFGRCTVOGPVUWEJCUTQQO assignments or access control.

Cornelia Kirsten, #FOKPKUVTCVKQP

54 Central Services

Central Teaching Unit Student Services Examination Affairs This section deals with central trainings 6JKUUGEVKQPKUVJGEGPVTCNKPHQTOCVKQP 6JGUGEVKQPn'ZCOKPCVKQP#HHCKTUoKU HQTFQEVQTCNECPFKFCVGUCUYGNNCU QHƄEGHQTUVWFGPVUCPFRQVGPVKCNUVWFGPVU VJGEGPVTCNEQPVCEVRQKPVHQTUVWFGPVU VTCKPKPIUQPMG[EQORGVGPEKGUHQT regarding degrees, degree courses regarding all questions concerning $CEJGNQTCPF/CUVGTUVWFGPVUQHVJG abroad and degree course organization. GZCOKPCVKQPUHTQOCFOKUUKQPU FGRCTVOGPV2NGCUGCNUQEHRH +VCNUQCFOKPKUVGTUCPFQTICPK\GUFGITGG procedure, through internships in industry EQWTUGUCPFCFOKPKUVGTUVWKVKQPHWPFU DGHQTGCPFFWTKPIVJG$CEJGNQTRTQITCO Dr. Birgit Spielmann, 5GEVKQP*GCF +PCFFKVKQPKVKUVJGEQPVCEVHQTVJG*GCF VQVJGEQORNGVGCFOKPKUVTCVKQPQHOCTMKPI Franziska Glasl, &GRWV[ QHVJG&GRCTVOGPVRTQHGUUQTUCPFQVJGT CPFGZCOKPCVKQPU Tamaris Pohl, %GPVGTQH DQFKGUQHVJGWPKXGTUKV[TGICTFKPIFGITGG -G[%QORGVGPEKGU course development, planning and Dr. Edda Wenzig, 5GEVKQP*GCF Susanne Lösel, %GPVGTQH organization. -G[%QORGVGPEKGU Bachelor’s Degree Luise Poetzsch, %GPVGTQH Dr. Ingrid Mayershofer, 5GEVKQP*GCF Examination Board -G[%QORGVGPEKGU Saskia Ammon, 5VWFGPV'ZEJCPIG Amelie Zauner%GPVGTQH Dr.-Ing. Anna Reif, 5VWFGPV#FXKUQT[ Arno Buchner, &GRWV[5GEVKQP*GCF -G[%QORGVGPEKGU 5GTXKEG 5GETGVCT[VQVJG'ZCOKPCVKQP$QCTF Po Sang Lam, )TCFWCVG%GPVGT Julia Liebl, #FOKPKUVTCVKQP Maria Schottenheim Stefanija Stiebre, )TCFWCVG%GPVGT Raffaella Zuber Daniela Bösl67/QPNKPG'ZCOKPCVKQP #FOKPKUVTCVKQP

Master’s Degree Examination Board

Anett Geckert5GETGVCT[VQVJG 'ZCOKPCVKQP$QCTF Claudia Matheis Romy Scholz

Internships in Industry

Lisa Lauterbach

Information Technology

+PHQTOCVKQP6GEJPQNQI[CVVJG&GRCTVOGPV QH/GEJCPKECN'PIKPGGTKPIFGUKIPUCPF FQEWOGPVUEGPVTCN+6U[UVGOUQHVJG FGRCTVOGPV+VKUVJGKPVGTHCEGYKVJVJG GZVGTPCNUGTXKEGURTQXKFGFD[VJG67/ 6JG+PHQTOCVKQP1HƄEGT +1 EQQTFKPCVGU VJGWUGQH+6KPVJGFGRCTVOGPVCPF advises the institutes on the development QHCPGHƄEKGPV+6KPHTCUVTWEVWTG%CORWU YKFG+6U[UVGOUCTGEQQTFKPCVGFD[VJG %+1+1DQCTF

N.N., +1QHVJG&GRCTVOGPV

Nicole Siegmund, &GRWV[

55 Honors Awarded During the Department Day

#NYC[UJGNFQPVJGUGEQPF(TKFC[KP,WN[VJG&GRCTVOGPV #HVGTVJCVYJKNGTGCFKPIQWVVJGPCOGUQHVJGITCFWCVGU &C[/GEJCPKECN'PIKPGGTKPIKUVTCFKVKQPCNN[VJGEGTGOQPKCN HQWTRTQHGUUQTUYJQCNNYQTGVJGVTCFKVKQPCNCECFGOKE event which concludes the academic year. The most IQYPUCKFHCTGYGNNVQGCEJITCFWCVGYKVJVJGFGRCTV- important items on the program are the ceremonies in OGPVoUDTQP\GOGFCNQHJQPQTCJCPFUJCMGWPFCRJQVQ YJKEJITCFWCVGUQHVJGRTGXKQWU[GCTCTGJQPQTGFCPF taken on the spot. VCMGVJGKTNGCXGKPVJGRTGUGPEGQHHCOKN[OGODGTUCPF PWOGTQWUIWGUVUQHJQPQTHTQOVJGWPKXGTUKV[CPFKPFWU- +PVJGCHVGTPQQPCEEQORCPKGFD[CLC\\DCPFVJG VT[6JGTGCTGCFFTGUUGUHTQOVJG&GCP&GCPQH5VWFKGU FKIPKVCTKGUHTQOVJGFGRCTVOGPVCPFHTQO67/GPVGTGF TGRTGUGPVCVKXGUQHVJGUVWFGPVUCPF67/6JGEGTGOQPKGU VJGNGEVWTGJCNNYJGTGVJGEGTGOQP[HQTVJGFQEVQTCN CTGHQNNQYGFD[URCTMNKPIYKPGTGEGRVKQPUCPFVJGPVQ ITCFWCVGUCPFIWGUVUQHJQPQTVQQMRNCEG+PJKUCFFTGUU TQWPFQHHVJGFC[VJGFGRCTVOGPVDCNNYKVJCDWHHGVFCPEG &GCP#FCOUURQMGCDQWVVJGPGYN[KPVTQFWEGFUVTCVGI[ music and entertainment. QHVJGFGRCTVOGPVn/9o UGGRJQVQ 6JGUVTCVGI[ EQXGTUVJTGGCTGCUVGCEJKPITGUGCTEJCPFRGTUQPPGN1PG Impressions of the Department Day step already made is to start much earlier in creating new Mechanical Engineering 2017 RTQHGUUQTUJKRUCPFCNUQPGYYC[UVQCEJKGXGVJCV /CUVGToUFGITGGITCFWCVGUCEEGRVGFVJKU[GCToU QHVJGKPXKVGFFQEVQTCVGITCFWCVGUCVVGPFGFVJGEGTG- KPXKVCVKQP#EEQTFKPIVQVJKUITCVKH[KPIKPVGTGUVVJGEGT- mony. Each one was presented to the guests and received emony took place in two lecture halls simultaneously. VJGFGRCTVOGPVoUUKNXGTOGFCNQHJQPQTJCPFGFQXGTD[ +PVJGKTCFFTGUUGU&GCP#FCOUCPF&GCPQH5VWFKGU VJG8KEG&GCP.ØVJ *CLGMEQPITCVWNCVGFVJGITCFWCVGUCPFYKUJGFVJGOC (WTVJGTOQTGUGXGPRTK\GUHQTQWVUVCPFKPIFKUUGTVCVKQPU UWEEGUUHWNHWVWTG(WTVJGTOQTGVJG[RQKPVGFQWVVQVJG CPFPKPGHQTGZEGRVKQPCNCECFGOKECEJKGXGOGPVUKPVJG IWGUVUCPFHCOKN[OGODGTUUQOGHCEVUCPFƄIWTGUCDQWV /CUVGToUFGITGGRTQITCOUYGTGCYCTFGF6JGRTK\G the department. YKPPGTUCTGNKUVGFQPVJGHQNNQYKPIRCIG 6YQTGRTGUGPVCVKXGUQHVJGUVWFGPVUVQQMCJKNCTKQWUNQQM 2TQH.ØVJYCUCYCTFGFVJGPGYN[ETGCVGF'IDGTVXQP DCEMCVNKHGCUCUVWFGPV#UCURGEKCNKVGOQPVJGRTQITCO *Q[GTOGFCNHQTQWVUVCPFKPIOGTKVCVVJGFGRCTVOGPVKP UQOGQHVJGUVWFGPVITQWRUCVVJGFGRCTVOGPVRTGUGPVGF JQPQWTQHJKUCEJKGXGOGPVUCUHQTOGT&GCP their work and their successes in designing, building and driving cars, planes, space rockets and satellites.

56 Honors Awarded During the Department Day

Doctorate Prizes Awarded Study Prizes Awarded

Rudolf Schmidt-Burkhardt Department Prize – Memorial Prize Best Degree Dr.-Ing. Christoph Meier Johannes Ellinger, M.Sc. &KUUGTVCVKQPn)GQOGVTKECNN['ZCEV $GUVQXGTCNNITCFGQHCNN/CUVGToU (KPKVG'NGOGPV(QTOWNCVKQPUHQT degrees 5NGPFGT$GCOUCPF6JGKT%QPVCEV +PVGTCEVKQPo Department Prize Department Prizes – Dr.-Ing. Thomas Emmert Excellent Degrees &KUUGTVCVKQPn5VCVG5RCEG/QFGNKPI Alexander Heilmeier, M.Sc. QH6JGTOQCEQWUVKE5[UVGOUYKVJ 5GEQPFDGUVQXGTCNNITCFG #RRNKECVKQPVQ+PVTKPUKE(GGFDCEMo Robert Scholz, M.Sc. Third-best overall grade Dominik Meier, M.Sc. WITTENSTEIN Prize Fourth-best overall grade Dr.-Ing. Benedikt Schott Alexander Rupp, M.Sc. &KUUGTVCVKQPn5VCDKNK\GF%WV(KPKVG'NG- (KHVJDGUVQXGTCNNITCFG OGPV/GVJQFUHQT%QORNGZ+PVGTHCEG %QWRNGF(NQY2TQDNGOUo WITTENSTEIN Prize Juliane Fischer, M.Sc. /CUVGToUVJGUKUn#IGPVDCUGF#WVQ ARBURG Prize OCVKQP5[UVGOUHQT/CVGTKCN(NQY Dr. rer. nat. Andreas Schmideder 5[UVGOU6JCV'PCDNGCP'CU[4G &KUUGTVCVKQPn-QPVKPWKGTNKEJG$KQ- EQPƄIWTCVKQPQH/CVGTKCN*CPFNKPI RTQ\GUUHØJTWPIKPOKPKCVWTKUKGTVGP /QFWNGUo 4ØJTMGUUGNTGCMVQTGPo

ARBURG Prize Benjamin Winkeljann, M.Sc. RENK Propulsion Technology Prize /CUVGToUVJGUKUn(TKEVKQPCPF9GCTQP Dr.-Ing. Thomas Lohner VJG%QTPGC%QPVCEV.GPU+PVGTHCEG &KUUGTVCVKQPn$GTGEJPWPIXQP6'*& .WDTKECVGFYKVJ$KQRQN[OGTUo -QPVCMVGPWPF'KPNCWHXGTJCNVGPXQP 8GT\CJPWPIGPo

RENK Propulsion Technology Prize Willy Messerschmitt Prize Bastien Proux, M.Sc. Dr.-Ing. Andreas Hein /CUVGToUVJGUKUn&[PCOKUEJG5KOWNC- &KUUGTVCVKQPn*GTKVCIG6GEJPQNQIKGU VKQPXQP9ÀN\NCIGTP\WT%JCTCMVGTKU- KP5RCEG2TQITCOUs#UUGUUOGPV KGTWPIXQP5EJYKPIWPIUCPTGIWPIGP /GVJQFQNQI[CPF5VCVKUVKECN#PCN[UKUo WPFTQVQTF[PCOKUEJGP-QGHƄ\KGPVGPo

Manfred Hirschvogel Prize SGL Group Award Dr.-Ing. Christian Gold Georg Siroky, M.Sc. &KUUGTVCVKQPn/QFGNKPIQH6CMG1XGT /CUVGToUVJGUKUn%QWRNGF#VQOKUVKE 2GTHQTOCPEGKP*KIJN[#WVQOCVGF %QPVKPWWO/QFGNUHQT5VTGPIVJ2TG- 8GJKENG)WKFCPEGo FKEVKQPKP(KDGT2QN[OGT%QORQUKVGUo

57 Ranking Results

6JG&GRCTVOGPVQH/GEJCPKECN Position in Germany

'PIKPGGTKPIKUQPGQHVJGOQUVUWE- 1 1 11 11 EGUUHWNHCEWNVKGUQHKVUMKPFYQTNFYKFG and has occupied top places in VJGOCKPTGUGCTEJTCPMKPIUHQTVJG RCUVUGXGTCN[GCTU6JGDCUKUQHVJKU 2 2 22 2 success is both very good condi- VKQPUHQTVGCEJKPICPFCPGZEGNNGPV research record based on a balanced 3 OKZQHRWDNKEN[CPFKPFWUVT[HWPFGF projects and demonstrated by quality publications and citations.   

■0674CPMKPI /GEJCPKECN'PIKPGGTKPI QS World University ■6*'9QTNF7PKXGTUKV[4CPMKPI 'PIKPGGTKPICPF6GEJPQNQI[ ■359QTNF7PKXGTUKV[4CPMKPI /GEJCPKECN#GTQPCWVKECNCPF/CPWHCEVWTKPI'PIKPGGTKPI Ranking by Subject

6JG359QTNF7PKXGTUKV[4CPMKPI THE World University Taiwan Ranking D[5WDLGEVGXCNWCVGUWPKXGTUKVKGU Ranking according to the academic reputa- 6JG0CVKQPCN6CKYCP7PKXGTUKV[ tion, employer reputation, number 6JG6KOGU*KIJGT'FWECVKQP4CPM- 4CPMKPIKUDCUGFGZENWUKXGN[QPVJG QHEKVCVKQPURGTRWDNKECVKQPCPF ing evaluates universities in their PWODGTQHRWDNKECVKQPUEKVCVKQPU JKPFGZ+PRCUV[GCTUVJG&GRCTV- specialist groups according to their CPFJKPFGZGUsRTKOCTKN[HTQOVJG OGPVQH/GEJCPKECN'PIKPGGTKPIJCU VGCEJKPICPFTGUGCTEJRGTHQTOCPEG RCUVFGECFG+VVJGTGHQTGTGCEVU been placed among the top ones based primarily on citations, teaching XGT[UNQYN[VQCRTQEGUUQHEJCPIG KP'WTQRG EWTTGPVN[CVRQUKVKQP indicators and research volume. 'XCNWCVKQPKUUWDLGEVURGEKƄE KP'WTQRG CPFKPUGEQPFRQUKVKQP #EEQTFKPIVQVJKUTCPMKPI67/oU OGCPKPIRCTVUQHVJG&GRCTVOGPV YKVJKP)GTOCP[ Engineering again occupies the top QH/GEJCPKECN'PIKPGGTKPICTGPQV RNCEGCOQPI)GTOCPWPKXGTUKVKGU CUUGUUGF GIRTQEGUUVGEJPQNQI[ Placement Worldwide for again, with a particular strength CPFOCVGTKCNUUEKGPEG 6JG&GRCTV- Mechanical Engineering: TUM being citations. OGPVQH/GEJCPKECN'PIKPGGTKPIQH /GEJCPKECN'PIKPGGTKPI|  VJG67/FGOQPUVTCVGURCTVKEWNCTN[ 2TGXKQWU;GCTU     Placement Engineering Sciences UVTQPIRGTHQTOCPEGYKVJTGICTFVQ        Wordwide: Engineering Sciences JKIJN[EKVGFRWDNKECVKQPU n*K%KoTCPM |  of the TUM: 20 (2018)  CPFPQYJQNFUVJGVQRRQUKVKQPKP 2TGXKQWU;GCTU   )GTOCP[ |     CHE |      Placement Mechanical |     Engineering worldwide: 6JG%*'s%GPVGTHQT*KIJGT Mechanical Engineering of the Education provides a study-oriented TUM: 37 (2017) TCPMKPIHQTVJG<'+65VWF[)WKFG 2TGXKQWU[GCTU     5GXGTCNKPFKECVQTUCTGCNNQECVGFVQ        ECVGIQTKGUnVQRRGTHQTOKPIITQWRo |  nOGFKWORGTHQTOKPIITQWRoCPFnNQY RGTHQTOKPIITQWRo/QUVKPVGTGUVKPI is a survey amongst students, con- ducted every third year. The latest UWTXG[COQPIUV$CEJGNQTUVWFGPVU RNCEGUVJG67/&GRCTVOGPVQH /GEJCPKECN'PIKPGGTKPIKPVJGVQR ITQWRHQTQWVQHKPFKECVQTU

http://ranking.zeit.de/che2016

58 Research

#VVJG67/&GRCTVOGPVQH/GEJCPKECN aO

Engineering, research addresses aO VJGYJQNGXCNWGEJCKPHTQOUEKGPVKƄE HQWPFCVKQPUWRVQCRRNKECVKQPUEGPCTKQU aO

6JGEQORGVKVKXGPGUUQHTGUGCTEJKU € 30m JCTFVQSWCPVKH[6[RKECNKPFKECVQTUCTG € 20m VJKTFRCTV[HWPFUCPFVJGPWODGTQH publications. € 10m

€ 0m Third-party Funds 6JKTFRCTV[HWPFUKPFKECVGVJCVRWDNKE          2000 2001 2002 2003     2008  2010 2011 2012 2013     ■5VCVG/KPKUVTKGU ■&QPCVKQPU ■6GUV#WVJQTKV[ ■4GXGPWG ■2TKX QVJGT  ■+PFWUVT[ ■(QWPF2TQH bodies, such as the European Com- ■ Foundations ■&()'Z+PK ■&()5($ ■&()1VJGTU ■ EU ■(GF)QX ■5VCVG ■PQVURGEKƄGF OKUUKQPOKPKUVTKGUCPFVJG&()CPF private entities such as industry and Third-party funding of the Department of Mechanical Engineering. Blue: public funds; red: private funds; orange: other funds, usually not regarded as third party-funds HQWPFCVKQPUVTWUVKPVJGEQORGVGPEG CPFEQORGVKVKXGPGUUQHTGUGCTEJ RGTHQTOGFCVVJGFGRCTVOGPV9JKNGKP  VJGFGECFGDGVYGGPCPF VJKTFRCTV[HWPFUYGTGCNOQUVEQPUVCPV  CVO'WTQUKPVJGHQNNQYKPIFGECFG  VJKTFRCTV[HWPFUCVVJGFGRCTVOGPV almost tripled. This compares to a  KPETGCUGQHCNNTGUGCTEJHWPFKPICV )GTOCPWPKXGTUKVKGUHTQODKN /TF  300

'WTQUVQDKN /TF 'WTQUDGVYGGP 200 CPF OQUVTGEGPVFCVC CXCKNCDNG  100 +PTGEGPV[GCTUUKPEGFKTGEV %KVCVKQPU 5EQRWU 0 RTQLGEVHWPFKPIHTQORWDNKEDQFKGU   2008  2010 2011 2012 2013    UWEJCUUVCVGCPFHGFGTCNOKPKUVTKGUVJG

'WTQRGCP%QOOKUUKQPCPFVJG)GTOCP 10,000 4GUGCTEJ(QWPFCVKQPEQPVKPWGFVQ KPETGCUGCVCEQPUVCPVTCVG+PFWUVT[  HWPFKPIJQYGXGTJCUFGETGCUGFD[ 8000 CDQWVGXGT[[GCTUKPEG  Publications  2WDNKECVKQPUCEEGRVGFKPKPVGTPCVKQPCN journals through a peer review process  CTGCMG[RCTCOGVGTHQTUEKGPVKƄE  QWVRWV6JG[CTGTGHGTTGFVQKPOQUV international research rankings. Contri- 3000 DWVKQPUNKUVGFKP5EQRWUYKVJCDQWV 2000 peer-reviewed articles and contributions

VQEQPHGTGPEGUCTGPQYCNOQUVVYKEGCU 1000 many as 10 years ago. %KVCVKQPU 5EQRWU Even more impressive is the increase 0   2008  2010 2011 2012 2013    KPEKVCVKQPUYJKNGKPRWDNKECVKQPU QHHCEWNV[CVVJG&GRCTVOGPVYGTGEKVGF Publications (top) and citations (bottom) of faculty active at the Department of Mechanical Engineer- KPIKPVJGURGEKƄE[GCT&CVCTGVTKGXGFHTQO5EQRWU 1800 times, within one decade, this PWODGTKPETGCUGFD[OQTGVJCPCHCEVQT QHƄXG6JKUKPFKECVGUVJCVTGUGCTEJCV VJGFGRCTVOGPVKUQHVTGOGPFQWUKPVGTGUV VQHGNNQYUEKGPVKUVUCNNQXGTVJGYQTNF

59 CubeSat MOVE-II was developed and built by more than 120 students over a period of two years.

60 Divisions of the Department of Mechanical Engineering

61 Aerospace

■ The entire chain from concepts of operations down to system and component testing in the CGTQURCEGƄGNFKUOCRRGFCVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIsGXGT[VJKPIHTQOQXGTCNN aircraft design down to material and structural principles, propulsion and aerodynamics.

#JCNNOCTMQHVJKUTGUGCTEJƄGNFKUKVUKPVGITCVKQPKPVJG #GTQURCEG-C[UGT6JTGFGCUYGNNCU/WPKEJ#GTQURCEG GZEGNNGPVTGUGCTEJGPXKTQPOGPVKP/WPKEJHGCVWTKPIKPFWU- CLQKPVTGUGCTEJCPFCECFGOKERNCVHQTODGVYGGP67/ VTKCNRCTVPGTUUWEJCU#KTDWU#KTDWU*GNKEQRVGT#KTDWU 7PKXGTUKVÀVFGT$WPFGUYGJT 7PKXGTUKV[QHVJG)GTOCP &GHGPEG5RCEG/67#GTQ'PIKPGU+#$).KGDJGTT #TOGF(QTEGU CPFVJG&.4

First Flight of SAGITTA Technology Demonstrator in South Africa

+P#KTDWU&GHGPEG5RCEGUVCTVGFKVUQRGPKPPQ- XCVKQPRTQLGEV5#)+66#+PCLQKPVTGUGCTEJEQQRGTCVKQP UEKGPVKUVUQHOWNVKRNGWPKXGTUKVKGU&.4CPFKPFWUVT[JCXG VGCOGFWRVQRTQITGUUVGEJPQNQIKGUHQTWPOCPPGFCKT XGJKENGU#HVGTUGXGP[GCTUVJGVGCOECTTKGFQWVVJGƄTUV ƅKIJVQH5#)+66#CVVJG1XGTDGTIVGUVTCPIGKP5QWVJ #HTKEC(KXGKPUVKVWVGUQH6GEJPKECN7PKXGTUKV[QH/WPKEJ contributed to the demonstrator. Within the overall project 67/TGUGCTEJGTUYQTMGFQPQXGTCNNFGUKIPCURGEVU FGVCKNGFCGTQF[PCOKERJGPQOGPCPQXGNƅKIJVEQPVTQN FGXKEGUTQDWUVƅKIJVEQPVTQNCNIQTKVJOUCPFU[UVGOUVJG RTQRWNUKQPU[UVGOCPFPQXGNUVTWEVWTCNEQPEGRVU+PDQVJ ƅKIJVUVJGCKTXGJKENGUJQYGFRTGFKEVGFDGJCXKQWTCPF RGTHQTOGFHWNN[CWVQOCVGFOKUUKQPUKPENWFKPICWVQOCVGF SAGITTA unmanned demonstrator in South Africa VCMGQHHCPFNCPFKPI6JGVGCOUJQYGFKVUECRCDKNKV[VQ JCPFNGGXGPJKIJN[EQORNGZU[UVGOUNKMGVJGOURCP www.aer.mw.tum.de FGOQPUVTCVQTKPCEQNNCDQTCVKXGGPXKTQPOGPV#NNRCTVPGTU www.fsd.mw.tum.de CTGPQYNQQMKPIHQTYCTFVQHWTVJGTGZRNQKVVJGECRCDKNKVKGU www.llb.mw.tum.de VJCVVJGFGOQPUVTCVQTKUCDNGVQRTQXKFGCUCVGUVRNCVHQTO www.lls.mw.tum.de

Collaborative Research Center ‘Fundamental Technologies for the Development of Future Space-Transport-System Components under High Thermal and Mechanical Loads’

6JGHQWTVJDKCPPWCNUWOOGTRTQITCOQHVJG644 5WDLGEVUQHVJGTGUGCTEJRTQLGEVUYGTGHQEWUGFQPVJG %QNNCDQTCVKXG4GUGCTEJ%GPVGTn(WPFCOGPVCN6GEJPQNQIKGU PWOGTKECNRTGFKEVKQPCPFGZRGTKOGPVCNEJCTCEVGTK\CVKQPQH HQTVJG&GXGNQROGPVQH(WVWTG5RCEG6TCPURQTV5[UVGO RJ[UKECNN[EQORNGZƅQYUKPLGEVKQPTGCEVKPIƅQYUEQO- %QORQPGPVUWPFGT*KIJ6JGTOCNCPF/GEJCPKECN.QCFUo DWUVKQPKPUVCDKNKVKGUCPFEQODWUVKQPOQFGNNKPI5[PGTIKGU YCUJGNFFWTKPIVJGOQPVJQH#WIWUVCVVJG6GEJPKECN JCXGDGGPETGCVGFD[GZEJCPIKPIUKOWNCVKQPOQFGNUCPF 7PKXGTUKV[QH/WPKEJWPFGTVJGCWURKEGUQHVJG)GTOCP GZRGTKOGPVCNVGEJPKSWGUOCMKPIUQRJKUVKECVGFEQORWVGT 4GUGCTEJ(QWPFCVKQP &() (KHVGGPTGUGCTEJITQWRUJCXG EQFGUCPFGZRGTKOGPVCNHCEKNKVKGUCXCKNCDNGCPFD[KPVGPUG DGGPETGCVGFD[TGUGCTEJGTUQHVJG644CPFXKUKVKPI GZEJCPIGQHUEKGPVKƄEGZRGTKGPEGCPFMPQYNGFIG# TGUGCTEJGTUDCUGFQPRTQRQUCNUTGEGKXGFHTQO%JKPC VJGOCVKEHQEWUQPUKOWNCVKQPUQHVJGOQFGNEQODWUVKQP (TCPEG5YKV\GTNCPFNPFKC,CRCP%CPCFCCPFVJG75# EJCODGTKPEQORCTKUQPYKVJRTGGZKUVKPIGZRGTKOGPVCN +PCPKPVGPUGHQWTYGGMRGTKQFQHCEVKXKV[VJGUGITQWRU TGUWNVURTQXKFGFHQTD[VJGITQWRQH2TQH1*CKFPCTG FTQXGHQTYCTFVJGKTRTQLGEVUCPFTKIQTQWUN[UETWVKPK\GFVJGKT RCTVQHVJGTGRQTVUGTKGUQHHQNNQYGFD[VJGKPFKXKFWCN RTQEGUUYKVJKPVGTOGFKCVGCPFƄPCNRTQLGEVTGXKGYU2TQLGEV RTGUGPVCVKQPQHVJGTGUWNVUQHVJGTGURGEVKXGRCTVKEKRCVKPI YQTMYCUCEEQORCPKGFD[NGEVWTGUCPFURGEKCNUWDLGEVUQH groups. KPVGTGUVVQVJGTGUGCTEJFGNKXGTGFD[FKUVKPIWKUJGFNGEVWTGTU ■ &T2JKNKRRU6TCP#TKCPG)TQWR2CTKU(TCPEG www.aer.mw.tum.de ■ &T*GPFTKM4KGFOCPP#TKCPG)TQWR/WPKEJ)GTOCP[ YYYNHVOYVWOFG ■ &T5GTIG[(TQNQX5GOGPQX+PUVKVWV4WUUKC

62 Aerospace

Thermoplastic CFRP-Module for a Sounding Rocket with Integrated Fiber Optic Sensors

6JG%JCKTQH%CTDQP%QORQUKVGU .%% FGXGNQRGFCPF KORNGOGPVGFCOCPWHCEVWTKPIEQPEGRVHQTCECTDQP ƄDGTTGKPHQTEGFOQFWNGQHCUQWPFKPITQEMGVKPEQQR- GTCVKQPYKVJVJG)GTOCP#GTQURCEG%GPVGT &.4 6JG %(42OQFWNGYCUSWCNKƄGFHQTƅKIJVCURCTVQHC4':75 UQWPFKPITQEMGVOKUUKQPCPFKUPQYTGCF[HQTVJGNCWPEJ KP/CTEJ 6QKPETGCUGVJGRGTHQTOCPEGQHVJGTQEMGVU.%%FGXGN- QRGFCPFKORNGOGPVGFCOCPWHCEVWTKPIEQPEGRVHQT CVJGTOQRNCUVKE%(42OQFWNGYKVJKPVGITCVGFƄDGT QRVKEUGPUQTUCUCPCNVGTPCVKXGVQVJGGZKUVKPICNWOKPWO modules. #OQFWNGEQPUKUVUQHCVJKPE[NKPFTKECNUJGNNYKVJDWNM[ NQCFKPRWVTKPIUQPDQVJGPFUCUDQNVKPIKPVGTHCEGVQVJG PGKIJDQTKPIUVTWEVWTGU6JGTKPIUYGTGOCPWHCEVWTGFD[ RTGUUHQTOKPINQPIƄDGTVJGTOQRNCUVKEOCVGTKCN .(6 VJG Manufacturing of the cylindrical shell of the module with in-situ consoli- UJGNNUVTWEVWTGD[VJGTOQRNCUVKECWVQOCVGFƄDGTRNCEG- dated TP-AFP tapes OGPV 62#(2 62#(2CNNQYUCPKPUKVWEQPUQNKFCVKQP QHVJGUJGNNQPVJGRTGXKQWUN[OCPWHCEVWTGFTKPIUYKVJQWV 6JG%(42OQFWNGYKVJKPVGITCVGFUGPUQTUCPFOGCUWTG- CFFKVKQPCNCFJGUKXGOGEJCPKECNHCUVGPGTUQTCUWDUG- OGPVU[UVGOKURCTVQH4':75OKUUKQP::+++YKVJCUEJGF- quent autoclave consolidation. WNGFNCWPEJYKPFQYKPOKF/CTEJKP-KTWPC5YGFGP 6JGRTQLGEVYCUHWPFGFD[VJG(GFGTCN/KPKUVT[HQT'EQ- 2QN[GVJGTGVJGTMGVQPG 2''- YCUWUGFCUOCVTKZRQN[OGT PQOKE#HHCKTUCPF'PGTI[CPFRCTVN[HWPFGFD[VJG4':75 due to the high mechanical and thermal loads. OKUUKQP4':75KUTGCNK\GFCUCDKNCVGTCNCITGGOGPV 6GUVUYGTGRGTHQTOGFQPEQWRQPUWDEQORQPGPVCPF DGVYGGP&.4CPFVJG5YGFKUJ0CVKQPCN5RCEG$QCTF HWNNUECNGNGXGNCVTQQOCPFUGTXKEGVGORGTCVWTG and gives universities all over Europe the opportunity to %CRUWNGFƄDGT$TCIIITCVKPI ($) UGPUQTUYGTGKPVG- RGTHQTOGZRGTKOGPVUQPUQWPFKPITQEMGVU ITCVGFKPVJG62#(2NCOKPCVGFWTKPIOCPWHCEVWTKPICV FKHHGTGPVRQUKVKQPU#OGCUWTGOGPVU[UVGOYCUKPUVCNNGF www.lcc.mw.tum.de inside the module to operate the sensors and handle the data. This will allow temperature measurements within the NCOKPCVGFWTKPIƅKIJV

Contact

Coordinator Members 2TQH&T+PI1UMCT*CKFP 2TQH&T+PI7NTKEJ9CNVGT 2TQH&T+PI/KTMQ*QTPWPI 2TQH&T0KMQNCWU#FCOU 5RCEG2TQRWNUKQP)TQWR +PUVKVWVGQH#UVTQPCWVKEU +PUVKVWVGQH#KTETCHV&GUKIP +PUVKVWVGQH#GTQF[PCOKEUCPF YYYNHCOYVWOFG www.lrt.mw.tum.de 2JQPG  (NWKF/GEJCPKEU [email protected] www.aer.mw.tum.de 2TQH&T+PI/CPHTGF*CLGM 2TQH&T+PI/CTMWU www.lls.mw.tum.de +PUVKVWVGQH*GNKEQRVGT

2TQH&T+PI8QNMGT)ØOOGT 2TQH&T+PI*CPU,CMQD +PUVKVWVGQH6WTDQOCEJKPGT[ -CNVGPDCEJ(NQY%QPVTQNCPF CPF(NKIJV2TQRWNUKQP #GTQCEQWUVKEU)TQWR YYYNHCOYVWOFG www.aer.mw.tum.de

63 Automotive

■6JGCWVQOQVKXGƄGNFKUQPGQHVJGOQUVKORQTVCPVQPGUCVVJG&GRCTVOGPVQH/GEJCPKECN Engineering. Almost every institute is involved via a most diverse range of projects.

+PCFFKVKQPVQXGJKENGCPFWUCIGEQPEGRVURCTVKEWNCT emphasis is also placed on the powertrain, driver assis- VCPEGU[UVGOUCUYGNNCUVJGWUGQHPGYOCVGTKCNUCPFVJG RTQFWEVKQPRTQEGUU1PGHQECNCTGCKUJQYVQGPUWTGVJG XKCDKNKV[QHKPFKXKFWCNVTCPURQTVVJTQWIJGHƄEKGPVXGJKENGUKP VJGHCEGQHKPETGCUKPITGUQWTEGUJQTVCIGU 6JG/WPKEJOGVTQRQNKVCPCTGCRTQDCDN[JCUVJGJKIJGUV FGPUKV[QHRTGUVKIKQWUECTOCPWHCEVWTGTUKPVJGYQTNFC XGT[KORQTVCPVHCEVQTHQTVJKUƄGNF-G[UEKGPVKƄEEJCN- lenges lie in understanding combustion processes and the RTQRGTVKGUQHOCVGTKCNU

Project QoStreet Dynamic driving simulator

/CRCPFPCXKICVKQPUGTXKEGUTGRTGUGPVCPKPFKURGPUCDNG Project IMAGinE HQWPFCVKQPHQTOCP[KPPQXCVKXGCRRNKECVKQPUKPVJGXGJKENG +PCFFKVKQPVQUVCVKETQCFKPHQTOCVKQPUWEJCUVTCHƄEUKIPU 9KVJKPVJG2TQLGEV+/#)KP's+PVGNNKIGPVOCPGWXGTCWVQ- CPFVTCHƄENKIJVUF[PCOKEGXGPVUGIVTCHƄELCOUCPF mation – cooperative hazard avoidance in real time, the EQPUVTWEVKQPUKVGUCTGCUUKIPGFVQVJGOCRFCVC0WOGTQWU 67/TGUGCTEJGUVQIGVJGTYKVJCWVQOQVKXGOCPWHCEVWTGTU background data can be processed by the vehicle and UWRRNKGTUCPFUEKGPVKƄETGUGCTEJKPUVKVWVGUEQQRGTCVKXG VJGTGHQTGUWRRQTVVJGQRVKOK\CVKQPQHVJGGPGTI[EQPUWOR- CFXCPEGFFTKXGTCUUKUVCPEGU[UVGOU # 6JGTGUGCTEJ VKQPQTKORTQXGVJGCEVKXGUCHGV[6JGCKOQHVJGRTQLGEV KPKVKCVKXGKUUWRRQTVGFD[VJG)GTOCP(GFGTCN/KPKUVT[ n3Q5VTGGVoKUVQFGXGNQRCPFXCNKFCVGCOGVJQFHQTVJGENCU- QH'EQPQOKEUCPF'PGTI[6JGQDLGEVKXGQHVJGRTQLGEV UKƄECVKQPQHVJGTQCFUWTHCEGDCUGFQPUOCTVRJQPGUGPUQT[ +/#)KP'KUVJGFGXGNQROGPVQHPGY#YJKEJGPCDNG FCVC6JGUWTHCEGV[RGUJQWNFDGFGVGTOKPGFCUYGNNCU XGJKENGUCPFKPHTCUVTWEVWTGVQEQQRGTCVGYKVJGCEJQVJGT VJGSWCNKV[QHVJGTQCF6JKUKUVQDGFQPGYKVJVJGJGNR 6JGTGHQTGVJGGZEJCPIGQHKPHQTOCVKQPCUYGNNCUVJG QHUOCTVRJQPGUGPUQTFCVCYJKEJYGTGTGEQTFGFKPVJG coordination and decision making between intelligent EQWTUGQHPWOGTQWUƅGGVVGUVUCVVJG%JCKTQH#WVQOQVKXG U[UVGOUCPFFTKXGTUYKNNDGTGCNK\GF6JGRTQQHQHEQPEGRV 'PIKPGGTKPI+PRCTVKEWNCTYGCVJGTFCVCKPVJGEQPVGZVQHVJG YKNNDGFGOQPUVTCVGFD[UKZTGRTGUGPVCVKXGHWPEVKQPU $/8+RTQXKFGCFFKVKQPCNKPHQTOCVKQPYJKEJCTGPGEGUUCT[ KPVJGENCUUKƄECVKQPRTQEGUU6JGTGUWNVUECPDGWUGFVQ JVVRKOCIKPGQPNKPGFG KPETGCUGFTKXKPIUCHGV[CPFFTKXKPIEQOHQTV

YYYHVOOYVWOFGGPOCKPTGUGCTEJUOCTV OQDKNKV[SQUVTGGVENCUUKƄECVKQPQHTQCFUWTHCEG quality-with-big-data

Contact

Coordinator Members 2TQH&T+PI)WPVJGT 2TQH&T+PI 2TQH&T+PI/CTMWU 2TQH&T-NCWU$GPINGT 4GKPJCTV+PFWUVTKCN/CPCIG )GQTI9CEJVOGKUVGT .KGPMCOR#WVQOQVKXG Ergonomics OGPVCPF#UUGODN[ +PVGTPCN%QODWUVKQP'PIKPGU Technology YYYNHGOYVWOFG Tech nologies www.lvk.mw.tum.de 2JQPG  www.iwb.tum.de HVO"HVOOYVWOFG 2TQH&T+PI$QTKU.QJOCPP 2TQH&T+PI/KEJCGN(

64 Energy

■ A sustainable energy supply is one of the essential requirements for the future of our society.

The goals of reducing CO2 emissions, achieving cost effectiveness and societal acceptance OCMGHQTCƄGNFHTCWIJVYKVJEQPVTQXGTU[

6JG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIJCUDGGPCJQV- DGFQHTGUGCTEJKPGPGTI[VGEJPQNQI[CPFVJGTOQF[PCOKEU GXGTUKPEGVJGFC[UQH%CTNXQP.KPFGCPF9KNJGNO0W»GNV 6JGFGRCTVOGPVJCUCRCTVKEWNCTN[GZEGNNGPVTGRWVCVKQPKP VJGCTGCUQHEQODWUVKQPVGEJPQNQI[CPFVJGFGXGNQROGPV QHXGT[GHƄEKGPVRQYGTUVCVKQPU1WTTGUGCTEJCPFVGCEJKPI RQTVHQNKQKPTGPGYCDNGGPGTI[JCUDGGPGZRCPFGFEQPUKFGT- CDN[KPTGEGPV[GCTUGIVJTQWIJVJGPGY+PUVKVWVGQH9KPF Energy, although institutes covering biomass, geothermal CPFUQNCTGPGTI[JCXGGZKUVGFHQTGXGPNQPIGT

UVCPFKPIQHYCMGKPVGTCEVKQPUYJKEJGPCDNGUPGYUOCTV CleanTechCampus Garching YC[UQHEQPVTQNNKPIYKPFHCTOUHQTKORTQXGFRQYGTECR- ture and reduced loading. Wind tunnel tests conducted 6JG67/)CTEJKPI%CORWUYKVJOQTGVJCP with scaled wind turbine models are used to validate UVWFGPVUCPFGORNQ[GGUKUCNTGCF[TCPMGFCOQPI simulation tools and to demonstrate control strategies VJGDKIIGUVWPKXGTUKV[NQECVKQPUKP)GTOCP[+HVJGTCRKF RTKQTVQHWNNUECNGVGUVKPI1VJGTCEVKXKVKGUCVVJGKPUVKVWVG ITQYVJQHRTGXKQWU[GCTUEQPVKPWGUVJGTGJCUVQDGC URCPCNNOCKPYKPFGPGTI[TGNGXCPVUEKGPVKƄEFKUEKRNKPGU TGCNKIPOGPVQHVJGGPGTI[UWRRN[+PEQQRGTCVKQPYKVJVJG including aerodynamics, structures, dynamics, materials %JCKTQH4GPGYCDNGCPF5WUVCKPCDNG'PGTI[5[UVGOU CPFFGUKIPYKVJCUVTQPIHQEWUQPOWNVKFKUEKRNKPCTKV[CPF VJG%GPVTGHQT5WUVCKPCDNG$WKNFKPIVJGTGUGCTEJITQWR CU[UVGOGPIKPGGTKPIRQKPVQHXKGY n%QPVTQNQH4GPGYCDNG'PGTI[5[UVGOUoCPFVJG<#'$C[- GTPVJG+PUVKVWVGHQT'PGTI[5[UVGOUFGXGNQRUJQNKUVKECNN[ UWUVCKPCDNGCPFVTCPUHGTCDNGGPGTI[EQPEGRVUVCMKPIVJG Energy Valley Bavaria – )CTEJKPI%CORWUCUCPGZCORNG Flexible Power Stations www.es.mw.tum.de/en/research/projects/cleantechcampus 6JGn'PGTI[8CNNG[$CXCTKCoRTQLGEVEQPUKUVUQHCPKPVGT- FKUEKRNKPCT[VGCOKPXGUVKICVKPIVJGGHHGEVUQHVJGGPGTI[ revolution on generation systems and electricity grids. Wind Energy +PXGUVKICVKXGTGUGCTEJKUECTTKGFQWVCVVJG+PUVKVWVGQH6JGT- OQF[PCOKEUQPKPETGCUKPIVJGƅGZKDKNKV[QHICUVWTDKPGUCPF 6JG9KPF'PGTI[+PUVKVWVGYQTMUVQYCTFUVJGIQCNUQH CPCN[UKUKUECTTKGFQWVCVVJG+PUVKVWVGQH'PGTI[5[UVGOU KPETGCUKPIVJGRGPGVTCVKQPQHYKPFGPGTI[TGFWEKPIKVU QPVJGF[PCOKEDGJCXKQWTQHUVGCOIGPGTCVQTU6JGTGUWNVU cost and mitigating its impacts. Current on-going projects HQTOVJGDCUKUQHF[PCOKERTQEGUUUKOWNCVKQPUYJKEJ CVVJGKPUVKVWVGTCPIGHTQODCUKEUEKGPVKƄEKPXGUVKICVKQPUVQ illustrate all the processes at work in power stations. VJGUQNWVKQPQHCRRNKECVKQPQTKGPVGFRTQDNGOU#PCTGCQH particularly active research is the modeling and under- www.evb.mse.tum.de

Contact

Coordinator Members 2TQH&T+PI*CTCNF-NGKP 2TQH&T+PI6JQOCU 2TQH&T+PI 2TQH&T%CTNQ$QVVCUUQ 2NCPVCPF2TQEGUU6GEJPQNQI[ 5CVVGNOC[GT6JGTOQF[PCOKEU *CTVOWV5RNKGVJQHH Wind Energy www.apt.mw.tum.de www.td.mw.tum.de 'PGTI[5[UVGOU www.wind.mw.tum.de 2JQPG  2TQH&T4CHCGN/CEK½P,WCP 2TQH&T4WFQNH0GW [email protected] 2TQH&T+PI8QNMGT)ØOOGT 2J&0WENGCT6GEJPQNQI[ 2NCUOC/CVGTKCN+PVGTCEVKQP www.es.mw.tum.de Turbomachinery and www.ntech.mw.tum.de www.pmw.mw.tum.de (NKIJV2TQRWNUKQP YYYNVHOYVWOFG 2TQH9QNHICPI2QNKHMG2J& 6JGTOQ(NWKF&[PCOKEU YYYVHFOYVWOFG

65 Materials

■ Materials make the manufacture of constituent parts possible, transmit forces, determine VJGGHƄEKGPE[NGXGNUQHOCEJKPGUCPFVJGEQORCVKDKNKV[QHOGFKECNKORNCPVU#NNVJTGGOCLQT materials categories, polymers/plastics, metals and ceramics as well as those derived from VJGOGIECTDQPEQORQUKVGUCPFQVJGTEQORQUKVGOCVGTKCNURNC[CUKIPKƄECPVTQNGKP research and teaching at the department.

-G[TGUGCTEJCTGCUKPENWFGWNVTCRTGEKUGCPVGPPCGYJKEJ VJG$CXCTKCPIQXGTPOGPV KUCPQVJGTJKIJNKIJVYJKEJ ECPDGWUGFKPURCEGHQTUCVGNNKVGPCXKICVKQPOCPWHCE- illustrates how our wide-ranging material analyses enable VWTKPIOGFKECNEQORQPGPVUKPUVGTKNGGPXKTQPOGPVUHQT deep insights into all solid materials and provide a nat- WUGKPVJGJWOCPDQF[QTVJGCWVQOCVGFOCPWHCEVWTGQH WTCNKPVGTHCEGVQXCTKQWUDTCPEJGUQHKPFWUVT[KPVGTGUVGF NQCFDGCTKPIXGJKENGQTCKTETCHVRCTVU6JG5VCVG/CVGTKCNU KPVJGCRRNKECVKQPQHCFXCPEGFOCVGTKCNUDCUGFQPVJGKT 6GUVKPI.CDQTCVQT[KP/GEJCPKECN'PIKPGGTKPI RCTVQH properties.

DeMAnD ‘Dynamic aircraft MAterial property Database’

VWTGUQHUOCNNCKTETCHV(QTCPWODGTQHCNWOKPWOCPFUVGGN CNNQ[UƄDGTTGKPHQTEGFRQN[OGTOCVTKZEQORQUKVGUCPF HQCOOCVGTKCNUF[PCOKEVGUVUYKNNDGECTTKGFQWVQXGTC YKFGTCPIGQHUVTCKPTCVGUTCPIKPIHTQOSWCUKUVCVKENQCF- KPIWRVQJKIJUVTCKPTCVGUQHU6JGRTQLGEVDTKPIU VQIGVJGTTGPQYPGFGZRGTVUKPVJGCTGCUQHVGUVOGVJQF FGXGNQROGPVUVCVKECPFF[PCOKEVGUVKPIQHCKTETCHV materials and structures as well as simulation and design QHCGTQPCWVKECNETCUJYQTVJKPGUUUVTWEVWTGU(QTGCEJUVTCKP TCVGTGIKOGVJGQRVKOCNVGUVGSWKROGPVYCUKFGPVKƄGFCPF is available within the consortium. The equipment ranges HTQOUVCPFCTFWPKXGTUCNVGUVKPIOCEJKPGU SWCUKUVCVKE NQCFKPI VQURGEKCNUGTXQJ[FTCWNKEJKIJURGGFVGUVKPI OCEJKPGU OGFKWOUVTCKPTCVGU VQURNKV*QRMKPUQPDCTU JKIJUVTCKPTCVGVGUVKPI 6JKUGPUWTGUVJGFGVGTOKPCVKQP QHJKIJSWCNKV[OCVGTKCNFCVCCPFEQORNGVGUVTGUUUVTCKP Tension, torsion and compression split-Hopkinson bars for high strain rate EWTXGUHTQOUVCVKEWRVQJKIJUVTCKPTCVGNQCFKPICNNQY- testing at the Chair of Carbon Composites. KPIVJGFGTKXCVKQPQHVJGUVTCKPTCVGFGRGPFGPVOCVGTKCN DGJCXKQTHQTCNNOCVGTKCNRTQRGTVKGUPGGFGFHQTRTGFKEVKXG 6JG&G/#P&RTQLGEVYCUUGVWRVQECTT[QWVCOGEJCPKECN crashworthiness simulations. material characterization program to deliver a dynamic OCVGTKCNRTQRGTV[FCVCDCUGHQTV[RKECNCKTETCHVOCVGTKCNU (WPFGFD[*QTK\QP YKVJCURGEKCNHQEWUQPUGCVCPFETCUJCDUQTDKPIUVTWE- www.cleansky.eu

Residual stresses

4GUKFWCNUVTGUUGUCPFVJGKTTGFKUVTKDWVKQPOC[UKIPKƄECPVN[ U[UVGOURTQOQVGUVJGHQTOCVKQPQH-GCT9KNUFQTHNQEMU CHHGEVVJGTGUWNVKPIOCVGTKCNEQORQPGPVDGJCXKQTFWTKPI within the gnRJCUGCPFTGUWNVUKPC[KGNFUVTGUUPGCTN[ RTQEGUUKPIHCDTKECVKQPCPFQRGTCVKPINKHG2CTVKEWNCTN[KP PQVFGETGCUKPIQTQHVGPGXGPKPETGCUKPIYKVJKPETGCUKPI EQORQPGPVUQHVJGTOQOGEJCPKECNN[RTQEGUUGFCNNQ[UQH VGORGTCVWTG CPQOCNQWU[KGNFKPIGHHGEV  EQORNGZOKETQUVTWEVWTGUTGUKFWCNUVTGUUGUCEVQPXCTKQWU +PVJKUEQPVGZVTGUGCTEJCEVKXKVKGUCTGHQEWUGFQPVJGGXQ- NGPIVJUECNGU#VGNGXCVGFVGORGTCVWTGUVJGOGEJCPKUOU NWVKQPQHVJGKPVGTITCPWNCTCPFKPVGTRJCUGOKETQUVTCKPUKP governing the microstrain/microstress accumulation may FKHHGTGPVPKEMGNDCUGUWRGTCNNQ[U +PEQPGNCPF*C[PGU UKIPKƄECPVN[EJCPIGGIPKEMGNDCUGUWRGTCNNQ[UGZJKDKV  FWTKPINQCFKPICPFWPNQCFKPICVTQQOVGORGTCVWTG CVJGTOCNCEVKXCVKQPQHEWDGUNKRU[UVGOUKPCFFKVKQPVQ CPFCVGNGXCVGFVGORGTCVWTGU1YKPIVQVJGUKOWNVCPGQWU VJGKTQEVCJGFTCNUNKRU[UVGOU6JGKPVGTRNC[QHVJGUGUNKR CEEGUUKDKNKV[QHFKHHGTGPVET[UVCNNQITCRJKEFKTGEVKQPUCPF

66 Materials

RJCUGUKPUKVWPGWVTQPFKHHTCEVKQPKUVJGOGVJQFQHEJQKEG #PCEEQORCP[KPITKIQTQWUEJCTCEVGTK\CVKQPQHOKETQUVTWE- VWTCNCURGEVUQPFKHHGTGPVNGPIVJUECNGUKUCEEQORNKUJGFD[ NKIJVCPFGNGEVTQPOKETQUEQR[ 5'/6'/ &CVQORTQDG tomography, small angle neutron scattering, as well as :TC[FKHHTCEVKQP

Thermally and mechanically loaded tensile specimen clamped in the Eulerian tensile testing machine mounted on the neutron diffractometer STRESS-SPEC. This setup allows to study of the evolution of intergranular and interphase micro-strains during macroscopic plastic deformation at elevated temperatures up to 800 °C. (Source: FRM II)

High Heat Flux Components for Future Fusion Reactors

*KIJJGCVƅWZEQORQPGPVYKVJVWPIUVGPƄDTGTGKPHQTEGFEQRRGTVWDGCUEQQNKPIEJCPPGNCPFVWPIUVGPCTOQWT NGHV 6JGCEVKXGN[YCVGTEQQNGFEQORQPGPV YCUUWDLGEVGFVQE[ENKEJKIJJGCVƅWZVGUVUUWTXKXKPIRWNUGUCV/9OŽHQTUWPFGTEQPFKVKQPUTGNGXCPVVQCHWVWTGHWUKQPTGCEVQT&WTKPIVGUVKPI (centre: photograph taken in the visible spectral range) the component reaches thermal equilibrium after 5 s at surface temperatures of 1500 °C (right).

+POCIPGVKECNN[EQPƄPGFHWUKQPRNCUOCUVJGJQVRNCUOC 6JGTGUGCTEJQHVJG2NCUOC/CVGTKCNU+PVGTCEVKQP)TQWRKU EQTGKUNCTIGN[UGRCTCVGFHTQOVJGƄTUVYCNN0GXGTVJGNGUU ECTTKGFQWVCVVJG/CZ2NCPEM+PUVKVWVGHQT2NCUOC2J[U- JKIJGPGTI[RCTVKENGUECPGUECRGHTQOVJGEQPƄPGF KEU6JGITQWRFGXGNQRUOGVCNOCVTKZEQORQUKVGUCPF RNCUOCCPFEQNNKFGYKVJVJGUWTTQWPFKPIYCNN#FFKVKQPCNN[ RTGRCTGUOQEMWRUHQTRNCUOCHCEKPIEQORQPGPVUHQTC GNGEVTQOCIPGVKETCFKCVKQPHTQOVJGRNCUOCTGCEJGUVJG HWVWTGHWUKQPTGCEVQTVQIGVJGTYKVJQVJGT'WTQRGCPHWUKQP YCNNOCVGTKCNFGRQUKVKPIUWDUVCPVKCNRQYGT+PVJGECUGQH NCDQTCVQTKGU6JG[CTGVGUVGFKPVJGITQWRoUJKIJJGCVƅWZ DWTPKPIHWUKQPRNCUOCVJGPGWVTQPURTQFWEGFGPVGTVJG PGWVTCNDGCOHCEKNKV[YKVJTGCEVQTTGNGXCPVJGCVNQCFU wall material and alter its characteristics through lattice distortion and transmutation. 5WRRQTVGFD['741HWUKQP YYYGWTQHWUKQPQTI

Contact

Coordinator Members 2TQH2JCGFQP5VGNKQU 2TQH&T4WFQNH0GW 2TQH&T'YCNF9GTPGT 2TQH&T+PI/KTMQ -QWVUQWTGNCMKU 2NCUOC/CVGTKCN+PVGTCEVKQP /CVGTKCNU5EKGPEGCPF *QTPWPI KPVGTKO  %QPVKPWWO/GEJCPKEU www.pmw.mw.tum.de /GEJCPKEUQH/CVGTKCNU .KIJVYGKIJV5VTWEVWTGU www.contmech.mw.tum.de 2JQPG  www.lls.mw.tum.de 2TQH&T+PI8GKV5GPPGT [email protected] 2TQH&T6KO.ØVJ KPVGTKO  5RQTV'SWKROGPVCPF www.wkm.mw.tum.de 2TQH&T-NCWU&TGEJUNGT /GFKECN/CVGTKCNUCPF /CVGTKCNU Carbon Composites /GFKECN+ORNCPV&GUKIP www.spgm.mw.tum.de www.lcc.mw.tum.de www.medtech.mw.tum.de

67 Mechatronics

■ Mechatronics focuses on the analysis, design and construction of active systems enabled by the symbiotic interaction between mechanical components, actuators, sensors and computer control. The TUM Department of Mechanical Engineering hosts several experts dealing with a diversity of applications.

SafetyNet – Train-wide Availability of Local Sensor Data

.QECNHGGFDCEMNQQRUDGVYGGPUGPUQTUCPFEQTTGURQPFKPI NQECNUNKR#VTCKPYKFGOQFGNHQTVKOGETKVKECNCRRNKECVKQPU actuators, e.g. between the speed sensor and the wheel HQTGZCORNGVJGURGGFEQPVTQNKUOKUUKPI6JGCKOQH UNKREQPVTQNCTGUVCVGQHVJGCTVKPVTCKPEQPVTQNU[UVGOU VJGRTQLGEV5CHGV[0GVKUVJGGZCOKPCVKQPQHVTCKPYKFG The communication systems between local controllers communication systems that tackle highest requirements CPFOGEJCVTQPKEVTCKPEQORQPGPVUGPUWTGHWPEVKQPCNKV[KP TGICTFKPIUCHGV[CPFTGCNVKOGVQIGVJGTYKVJRCTVPGTUHTQO RWDNKEVTCPURQTVCVKQPEQPVCKPOGPVQHHCWNVKUOCPFCVQT[ industry. UKPEGGTTQTUEQWNFJCXGCECVCUVTQRJKEKORCEV5JQTVEQO- KPIQHVJGUGNQECNEQPVTQNU[UVGOUCTGXWNPGTCDKNKV[CICKPUV www.ais.mw.tum.de FKUVWTDCPEGUQHNQECNUGPUQTFCVCHQTKPUVCPEGECWUGFD[

3D Printing

+PVJGƄGNFQH&RTKPVKPIVJG%JCKTQH/KETQ6GEJPQNQI[ CPF/GFKECN&GXKEG6GEJPQNQI[CEEQORCPKGUVJGHWT- VJGTFGXGNQROGPVQHVJG#4$74)HTGGHQTOGT7PNKMGKP EQPXGPVKQPCNCFFKVKXGOCPWHCEVWTKPIVGEJPKSWGUYKVJ #4$74)2NCUVKE(TGGHQTOKPI #2( SWCNKƄGFUVCPFCTF granulates are used. The goal is warpage-minimized man- WHCEVWTKPIYJGTGVKP[FTQRNGVUDWKNFVJGRCTVUQPVJGDCUKU QHCRTQEGUUURGEKƄE)EQFGIGPGTCVGFHTQOCP56.ƄNG

www.mimed.mw.tum.de

ARBURG freeformer (Photo: ARBURG)

Contact

Coordinator Members 2TQH&T,WNKGP2TQXQUV5CHG 2TQH&T+PI$KTIKV8QIGN 2TQH&T6KO.ØVJ/KETQ 2TQH&T/KEJCGN)GG 'ODGFFGF5[UVGOU *GWUGT#WVQOCVKQPCPF 6GEJPQNQI[CPF/GFKECN /GEJCPKEUCPF*KIJ www.ses.mw.tum.de +PHQTOCVKQP5[UVGOU &GXKEG6GEJPQNQI[ 2GTHQTOCPEG%QORWVKPI www.ais.mw.tum.de 2JQPG  www.mhpc.mw.tum.de 2TQH&T&CPKGN4KZGP [email protected] #RRNKGF/GEJCPKEU 2TQH&T9QNHICPI9CNN www.mimed.mw.tum.de 2TQH&T2JCGFQP5VGNKQU www.amm.mw.tum.de %QORWVCVKQPCN/GEJCPKEU -QWVUQWTGNCMKU www.lnm.mw.tum.de %QPVKPWWO/GEJCPKEU 2TQH&T+PI8GKV5GPPGT www.contmech.mw.tum.de 5RQTV'SWKROGPVCPF 2TQH&T/CTMWU

68 Medical Technology

■ Medical technology is one of the highest value generating sectors in Germany and across the world.

6JGJKIJN[KPVGTFKUEKRNKPCT[ƄGNFQHOGFKECNVGEJPQNQI[KU cell-based medical technology and biomechanical represented in several chairs and numerous projects at UKOWNCVKQPU6JGRQUUKDKNKVKGUQHCFFKVKXGOCPWHCEVWTKPI VJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI+PCFFKVKQP KPOGFKECNVGEJPQNQI[CNUQQHHGTGZEKVKPIRGTURGEVKXGU VJGTGKUCPKPVGPUKXGGZEJCPIGYKVJENKPKECNKPUVKVWVKQPU +VECPDGWUGFHQTGZCORNGVQCFCRVOGFKECNFGXKEGU GURGEKCNN[VJG-NKPKMWO4GEJVUFGT+UCT(QTOCP[[GCTU anatomically and biomechanically to individual patient VJGRCTVKEKRCVKPIEJCKTUJCXGYQTMGFVQIGVJGTUWEEGUUHWNN[ PGGFUQTVQKORNGOGPVJKIJN[HWPEVKQPKPVGITCVGFU[UVGOU CPFYKVJCUWUVCKPGFKPVGTGUVQHVJGUVWFGPVUKPFGUKIPKPI HQTOKPKOCNN[KPXCUKXGUWTIKECNKPVGTXGPVKQPU.KHGUEKGPEG VJG/CUVGToURTQITCOKPOGFKECNVGEJPQNQI['ORJCUKU YCUVJGTGHQTGGUVCDNKUJGFCUCRKNNCTQHVJGCEVKXKVKGUQHVJG KURNCEGFQPVJGFGXGNQROGPVQHOGFKECNOGEJCVTQPKE PGYN[HQWPFGF(CEWNV[%NWUVGT#FFKVKXG/CPWHCEVWTKPI systems, medical materials, smart medical devices,

Multi-body simulation and FEM analysis to describe the biomechanical conditions in the spine and the intervertebral discs as a basis for the development of biomechanically and patient-individually adapted intervertebral disc implants. 3D printer of the KUMOVIS spin-off for the production of medical plastic parts from the biocompatible high-performance polymer PEEK (polyeth- GTGVJGTMGVQPG 6JGU[UVGOKUEJCTCEVGTK\GFD[CRCVGPVGFNCOKPCTCKTƅQY around the printed part, which allows an exact adjustment of the printing temperature up to 400 °C and clean room conditions as a basis for the production of medical products.

Droplet-based Additive Manufacturing of Metal Parts

/QUVCFFKVKXGOCPWHCEVWTKPIRTQEGUUGUVQFC[CTGDCUGF TGUGCTEJRTQLGEVKPEQQRGTCVKQPYKVJVJG%JCKTQH/GVCN QPRQN[OGTKEDWKNFKPIOCVGTKCNU&GURKVGVJGKTUWRGTKQT (QTOKPICPF%CUVKPI WVI +PVJKURTQLGEVCRPGWOCVKECNN[ RTQRGTVKGUOGVCNUCTGCHCTNGUUEQOOQPDWKNFKPIOCVGTKCN CEVWCVGFFTQRNGVIGPGTCVQTKUWUGFVQIGPGTCVGFTQRNGVUQH HQTVJTGGFKOGPUKQPCNRTKPVKPI &2 #NVJQWIJVJGTGCTG OQNVGPCNWOKPWOCNNQ[UCVVGORGTCVWTGUQHWRVQ|Œ% EQOOGTEKCNRTQEGUUGUHQTVJGCFFKVKXGOCPWHCEVWTKPIQH 6JGFTQRNGVUCTGFGRQUKVGFQPCJGCVGFDWKNFRNCVHQTO metallic products, the high equipment costs impede their which is mounted on a computer-controlled translation YKFGURTGCFCFQRVKQP6JGTGHQTGCPQXGN&2RTQEGUU stage situated in an inert gas atmosphere. This setup DCUGFQPVJGFKTGEVFGRQUKVKQPQHFTQRNGVUQHOQNVGPCNW- CNNQYUHQTEQUVGHHGEVKXG&RTKPVKPIQHCNWOKPWORCTVU OKPWOYCUFGXGNQRGFKPCLQKPV&()HWPFGF .7  without any intermediate steps.

Contact

Coordinator Members 2TQH&T9QNHICPI9CNN 2TQH&T6KO.ØVJ KPVGTKO  2TQH&T6KO.ØVJ/KETQ 2TQH&T1NKXGT.KGNGI %QORWVCVKQPCN/GEJCPKEU &T/CTMWU'DNGPMCOR 6GEJPQNQI[CPF/GFKECN $KQOGEJCPKEU www.lnm.mw.tum.de /GFKECN/CVGTKCNUCPF &GXKEG6GEJPQNQI[ www.bme.mw.tum.de /GFKECN+ORNCPV&GUKIP 2JQPG  www.medtech.mw.tum.de [email protected] www.mimed.mw.tum.de

69 Process Engineering

■ Process engineering is a key technology for all production industries.

2TQEGUUGPIKPGGTKPICVVJG&GRCTVOGPVQH/GEJCPKECN 'PIKPGGTKPIKUHQEWUGFQPVJGTOCNRTQEGUUCPFRNCPV engineering, bioprocess and biochemical engineering, systems biotechnology and bioseparation engineering. The mission is to solve process engineering challenges QHVJGHWVWTGKPCPKPVGTFKUEKRNKPCT[GPXKTQPOGPVCPFYKVJ respect to industry sectors such as chemistry, biotech- PQNQI[RJCTOCCPFGPXKTQPOGPVCNGPIKPGGTKPI2TQEGUU GPIKPGGTKPICVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI HQTOUVJGGPIKPGGTKPIUEKGPEGEQTGQHVJGKPVGTFKUEKRNKPCT[ 67/4GUGCTEJ%GPVGTHQT+PFWUVTKCN$KQVGEJPQNQI[YKVJC Photobioreactors for studying the production of fuels and chemicals from CO (photo: Tobias Hase, TUM) RKNQVRNCPVQPCPOUECNGQRGTCVGFKP)CTEJKPI 2

Kopernikus – SynErgie: Synchronized and Energy Adaptive Production Technology for Flexible Alignment of Industrial Processes Towards Fluctuating Energy Supply

6JGEGPVTCNCRRTQCEJQHVJG$/$(HWPFGF-QRGTPKMWU CUYGNNCU%12UWRRN[ECPDGNQYGTGFUKIPKƄECPVN[YKVJKP RTQLGEV5[P'TIKGKUVQCFCRVKPFWUVTKCNRTQFWEVKQPRTQ- VJGPGZV[GCTU#VVJG+PUVKVWVGQH2NCPVCPF2TQEGUU EGUUGUHTQOUGXGTCNKPFWUVT[UGEVQTUVQƅWEVWCVKPIGPGTI[ 6GEJPQNQI[VJGƅGZKDNGQRGTCVKQPQHCKTUGRCTCVKQPRNCPVU UWRRN[HTQOTGPGYCDNGUQWTEGU6JGTGD[GPGTI[EQUVU (NGZ#57 KUKPXGUVKICVGF

Gasfermentation: CO2 and CO-rich Gases as Carbon Sources for the Production of Chemicals

6JGQDLGEVKXGQHVJKUPCVKQPCNEQNNCDQTCVKXGTGUGCTEJ 6JG+PUVKVWVGQH$KQEJGOKECN'PIKPGGTKPIYQTMUQPVJG

KPKVKCVKXGHWPFGFD[$/$(CTGPGYDKQRTQEGUUGUHQTVJG TGCEVKQPGPIKPGGTKPICPCN[UKUQH%12*2CPF%1EQP- RTQFWEVKQPQHCNEQJQNUCPFNQYOQNGEWNCTYGKIJVECTDQ- version with acetogenic bacteria and on the design and

J[FTCVGU OQPQOGTUHQTRQN[OGTK\CVKQP HTQO%12*2 or EJCTCEVGTK\CVKQPQHPGYDKQTGCEVQTEQPEGRVUHQTEQPVKPW- %1TKEJICUGUWUKPIOGVCDQNKECNN[GPIKPGGTGFDCEVGTKC QWUICUHGTOGPVCVKQPU

SysBioTerp: An Integrated Systems Biology Platform for the Sustainable Production of Structurally Minimized Taxoid Bioactives

The project aims to construct an economically and $KQVGEJPQNQI[ITQWRYQTMUQPVJGQTGVKECNOGVJQFUHQT GEQNQIKECNN[GHƄEKGPVRNCVHQTOHQTVJGUECNCDNGRTQFWEVKQP VJGQRVKOK\CVKQPQHVJGRTQFWEVKQPRTQEGUUCUYGNNCUQP QHVCZQKFPCVWTCNRTQFWEVUHTQOTGPGYCDNGTGUQWTEGU+P VJGQRVKOK\CVKQPQHVJGEGNNWNCTU[UVGO6JG$KQUGRCTCVKQP CPKPVGTFKUEKRNKPCT[ITQWRQHCNVQIGVJGTGKIJVRCTVPGTU HQWT 'PIKPGGTKPIITQWRKUHQEWUGFQPRTQEGUUFGUKIPCUYGNN EQOKPIHTQO67/ VJGQTGVKECNCUYGNNCUGZRGTKOGPVCN CUQPRWTKƄECVKQPUVTCVGIKGUHQTCEQPVKPWQWURTQFWEVKQP UVTCVGIKGUCTGEQODKPGFHQTCTCRKFVGEJPQNQI[VTCPUHGT process. CPFCPCEEGNGTCVGFVKOGVQOCTMGVUEGPCTKQ6JG5[UVGOU

Contact

Coordinator Members 2TQH&T+PI*CTCNF-NGKP 2TQH&T+PI 2TQH&T+PI 2TQH&T5QPLC$GTGPUOGKGT 2NCPVCPF2TQEGUU6GEJPQNQI[ #PFTGCU-TGONKPI &KTM9GWUVGT$QV\ $KQUGRCTCVKQP'PIKPGGTKPI www.apt.mw.tum.de 5[UVGOU$KQVGEJPQNQI[ $KQEJGOKECN'PIKPGGTKPI www.mw.tum.de/stt/ www.biovt.mw.tum.de 2JQPG  [email protected] www.biovt.mw.tum.de

70 Production and Logistics

■2TQFWEVKQPVGEJPQNQI[KUsKPCFFKVKQPVQVJGCWVQOQVKXGKPFWUVT[s)GTOCP[oUVQRGZRQTV and one of the pillars of the Department of Mechanical Engineering since its inception.

For a long time, special emphasis has been placed on VJGSWGUVKQPQHJQYVQUKOWNCVGCPFUWRRTGUUQUEKNNCVKQPU integrating enhancements into the entire process chain, KPRTQFWEVKQPOCEJKPGT[JQYVQKORNGOGPVOQFGNUHQT HTQOVJGFGUKIPRJCUGVQVJGEWUVQOGTTCVJGTVJCP QRVKOK\CVKQPQHVJGFGUKIPCPFRTQFWEVKQPRTQEGUUQTJQY considering individual stages in isolation. Closely related PGYOCVGTKCNUECPDGRTQEGUUGFTGUQWTEGGHƄEKGPVN[# VQVJKUCTGHWPFCOGPVCNTGUGCTEJCPFCRRNKECVKQPUWEJCU UCORNGQHRTQFWEVKQPVGEJPQNQI[JKIJNKIJVUHQNNQYU

+PETGCUKPI'NGEVTKE&TKXG'HƄEKGPE[D[CP1RVKOK\GF2TQFWEVKQP2TQEGUU

+PQTFGTVQEQPXGTVGNGEVTKEKPVQMKPGVKEGPGTI[KPCPGNGEVTKE FTKXGOCIPGVKEƄGNFUOWUVDGIGPGTCVGF6JGTGHQTGVJG OCIPGVKERTQRGTVKGUQHVJGGNGEVTKEFTKXGUoOCKPEQORQ- PGPVVJGUQECNNGFGNGEVTKECNUJGGVOGVCNCTGFGEKUKXGHQT KVUGHƄEKGPE[+VJCUDGGPUJQYPVJCVVJGOCPWHCEVWTKPI RTQEGUUQHVJGGNGEVTKECNUJGGVOGVCNJCUCPGICVKXG KPƅWGPEGQPKVUOCIPGVKERTQRGTVKGU6JKUKUOCKPN[FWG to the residual stresses induced in each processing step. Especially when looking at the blanking process, the OCPWHCEVWTKPIRCTCOGVGTUJCXGCUKIPKƄECPVKORCEVQP the magnetic properties. Using optimized blanking param- eters can decrease the losses and the electricity demand QHCPGNGEVTKEFTKXG 6JKUYQTMKUHWPFGFD[VJG&GWVUEJG(QTUEJWPIUIGOGKP- UEJCHV &())GTOCP4GUGCTEJ(QWPFCVKQP s CPFECTTKGFQWVKPVJGTGUGCTEJWPKVRTQLGEVsn(14 s.QY.QUU'NGEVTKECN5VGGNHQT'PGTI['HƄEKGPV'NGEVTKECN &TKXGUo Microscopic image of an electric drive’s blanked stator

SynErgie – Synchronized and Energy-adaptive Production Technology for Adapting Industrial Processes to a Fluctuating Energy Supply – Project Cluster Production Infrastructure

6JG5[P'TIKGRTQLGEVYKVJKVUOQTGVJCPRCTVPGTU CKOUVQETGCVGYKVJKPVJGPGZVVGP[GCTUCNNVGEJPKECNCPF market requirements in line with legal and social aspects KPQTFGTVQGHHGEVKXGN[U[PEJTQPK\GVJGGPGTI[FGOCPFQH )GTOCPKPFWUVT[YKVJVJGXQNCVKNGGPGTI[UWRRN[5[P'T- IKGVJWUEQPVTKDWVGUVQVJGEQUVGHƄEKGPVTGCNK\CVKQPQH TGPGYCDNGGPGTIKGUCPFGPCDNGU)GTOCP[VQFGXGNQRKPVQ CPKPVGTPCVKQPCNNGCFGTHQTƅGZKDNGKPFWUVTKCNRTQEGUUGUCPF technologies. 6JGRTQLGEVn5[P'TIKGoKUHWPFGFD[VJG(GFGTCN/KPKUVT[QH 'FWECVKQPCPF4GUGCTEJ $/$( 9GYQWNFNKMGVQVJCPM VJG$/$(HQTKVUGZEGNNGPVUWRRQTV(QTOQTGKPHQTOCVKQP see www.kopernikus-projekte.de

7UGQHUOCTVFGXKEGUKPCFCRVKPIKPFWUVTKCNRTQEGUUGUVQCƅWEVWCVKPI energy supply

71 Production and Logistics

5GNH%QPƄIWTKPI#WVQOCVGF KobotAERGO – Adaptive Collaborative Material Flow Systems Robots as an Age-matching Companion for Ergonomic and Flexible Material Handling /CVGTKCNƅQYU[UVGOUCTGOQUVN[QRGTCVGFD[CPKPFKXKFWCN EGPVTCNEQPVTQN#URCTVQHCPKPVGTFKUEKRNKPCT[RTQLGEVVJG EJCKTU#+5CPFHONOQFWNCTK\GFVJGJCTFCPFUQHVYCTGVQ ETGCVGCWVQPQOQWUOQFWNGUYJKEJCWVQOCVKECNN[EQPƄIWTG VTCPURQTVKPVGTHCEGUCPFCOCVGTKCNƅQYUVTCVGI[#UCTGUWNV QHVJGEQOOQPKPVGTFKUEKRNKPCT[RTQLGEVHTQOVJGEJCKT#+5 CPFHONVJGOCVGTKCNƅQYU[UVGOKUGCUKN[EQPXGTVKDNG (WPFGFD[VJG)GTOCP4GUGCTEJ(QWPFCVKQP &()  )781

KobotAERGO demonstrator system for a panoramic sunroof assembly. Copyright: Fraunhofer IPK,

$CUGFQPKPVGNNKIGPVJCPFNKPIU[UVGOUUQECNNGFKPVGNNK- IGPVCUUKUVFGXKEGU +#& QTEQDQVUVJGTGUGCTEJRTQLGEV developed an ergonomic support considering object size as well as user perception related adaptation. The aim /QFWNGUQHEQPXGTVKDNGOCVGTKCNƅQYU[UVGOUECPDGCFFGFTGOQXGF YCUVQGPCDNGRGQRNGVQEQRGYKVJOQTGEQORNGZJCPFNKPI QTEJCPIGFCPFVJGVTCPURQTVKPVGTHCEGUCPFOCVGTKCNƅQYEQPVTQNKU RTQEGUUGUOQTGGHƄEKGPVN[GHHGEVKXGN[CPFUCVKUHCEVQTKN[D[ CWVQOCVKECNN[EQPƄIWTGF applying adaptive support.

aComA

9KVJKPVJGEQQRGTCVKXGRTQLGEVC%QO#VJGKPUVKVWVGU#+5 CPFHONJCXGDGGPYQTMKPIQPVJGFGXGNQROGPVQHCOQF- GNDCUGFCRRTQCEJFGCNKPIYKVJVJGUCOGOQFWNCTKV[QH the mechanical components as well as a layout-oriented GFKVQTVQKORTQXGVJGUQHVYCTGGPIKPGGTKPIQHOCVGTKCNƅQY U[UVGOU6QKORTQXGVJGGZEJCPIGCDKNKV[DGVYGGPVJG OGEJCPKECNEQORQPGPVUCPCRRTQCEJQHCWVQOCVKEDCEM- YCTFUEQORCVKDNGUQHVYCTGJCUDGGPFGXGNQRGFDCUGF QPVJGTGUGCTEJƄGNFnENQPGFGVGEVKQPoHTQOEQORWVGT science. Model-based approach of automatic backwards compatible control (WPFGFD[VJG$CXCTKCP4GUGCTEJ(QWPFCVKQP $(5  UQHVYCTGHQTOCVGTKCNƅQYU[UVGOU #< 

Contact

Coordinator Members 2TQH&T+PI,QJCPPGU 2TQH&T+PI9QNHTCO8QNM 2TQH&T+PI)WPVJGT4GKJCTV 2TQH&T-NCWU$GPINGT (QVVPGT/CVGTKCNU*CPFNKPI /GVCN(QTOKPICPF%CUVKPI /CEJKPG6QQNUCPF+PFWUVTKCN Ergonomics /CVGTKCN(NQY.QIKUVKEU www.utg.mw.tum.de /CPCIGOGPV YYYNHGOYVWOFG YYYHONOYVWOFG www.iwb.mw.tum.de 2TQH&T+PI/KEJCGN(<ÀJ )WPVJGTTGKPJCTV" 2TQH&T+PI-NCWU&TGEJUNGT 2TQH&T+PI$KTIKV8QIGN /CEJKPG6QQNUCPF+PFWUVTKCN iwb.mw.tum.de Carbon Composites *GWUGT#WVQOCVKQPCPF /CPCIGOGPV www.lcc.mw.tum.de +PHQTOCVKQP5[UVGOU www.iwb.mw.tum.de www.ais.mw.tum.de

72 Teaching at the Department of Mechanical Engineering

73 Studying at the Department of Mechanical Engineering

9KVJCDQWVGPTQNNGFUVWFGPVU KPYKPVGTUGOGUVGT #$CEJGNQToUFGITGGRTQITCOCPFVGP/CUVGToUFGITGG  VJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIKU RTQITCOU UGGVCDNG CTGDGKPIQHHGTGFD[VJG&GRCTVOGPV QPGQHVJGNCTIGUVFGRCTVOGPVUQHVJG6GEJPKECN7PKXGTUKV[ QH/GEJCPKECN'PIKPGGTKPI QH/WPKEJ 67/ +PVGTOUQHVGCEJKPIVJGEWTTKEWNC +PCFFKVKQPVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI YJKEJCTGQHHGTGFEQODKPGENCUUKECNKPFGRVJVGCEJKPI EQNNCDQTCVGUYKVJQVJGT67/FGRCTVOGPVUCPFQHHGTU in mechanical engineering with new aspects such as $CEJGNQToUCPF/CUVGToUFGITGGRTQITCOUn6GCEJKPI cutting-edge technology, interdisciplinary research and the CV8QECVKQPCN5EJQQNUs/GVCN'PIKPGGTKPIo RTKOCT[ FGXGNQROGPVQHnUQHVUMKNNUoKPQTFGTVQRTGRCTGUVWFGPVUHQT TGURQPUKDKNKV[67/5EJQQNQH'FWECVKQP CPFn%JGO- VJGKTHWVWTGRTQHGUUKQPUKPTGUGCTEJFGXGNQROGPVCPFQT KECN'PIKPGGTKPIo &GRCTVOGPVQH%JGOKUVT[ /CUVGToU production. RTQITCOUn2QYGT'PIKPGGTKPIo &GRCTVOGPVQH'NGEVTKECN CPF%QORWVGT'PIKPGGTKPI CPFn4QDQVKEU%QIPKVKQP BACHELOR’S +PVGNNKIGPEGo &GRCTVOGPVQH+PHQTOCVKEU VJG$CEJGNQToU DEGREE MASTER’S DEGREE PROGRAMS PROGRAM RTQITCOn'PIKPGGTKPI5EKGPEGUoCUYGNNCUVJG/CUVGToU #GTQURCEG RTQITCOUn+PFWUVTKCN$KQVGEJPQNQI[oCPFn*WOCP(CEVQTU #WVQOQVKXGCPF%QODWUVKQP'PIKPG6GEJPQNQI[ 'PIKPGGTKPIo /WPKEJ5EJQQNQH'PIKPGGTKPI  'PGTI[CPF2TQEGUU'PIKPGGTKPI 1PVJGKPVGTPCVKQPCNNGXGNVJG&GRCTVOGPVQH/GEJCPKECN /GEJCPKECN'PIKPGGTKPI 'PIKPGGTKPIRCTVKEKRCVGUKPVJGLQKPV$CEJGNQToURTQITCO n'PIKPGGTKPI5EKGPEGUoYKVJ2CTKU.QFTQP7PKXGTUKV[ /GEJCPKECN /GEJCPKECN'PIKPGGTKPICPF/CPCIGOGPV Engineering /GEJCVTQPKEUCPF+PHQTOCVKQP6GEJPQNQI[ 5CN\DWTICUYGNNCUVJGLQKPV/CUVGToURTQITCOn#GTQURCEG /GFKECN6GEJPQNQI[CPF'PIKPGGTKPI 'PIKPGGTKPIoYKVJVJG0CP[CPI6GEJPQNQIKECN7PKXGTUKV[ 0WENGCT6GEJPQNQI[ 067 CPFVJG)GTOCP+PUVKVWVGQH5EKGPEGCPF6GEJPQN- 2TQFWEV&GXGNQROGPVCPF'PIKPGGTKPI&GUKIP QI[ )+56 KP5KPICRQTG(WTVJGTOQTGVJGFGRCTVOGPV 2TQFWEVKQPCPF.QIKUVKEU JCUUKIPGFOQTGVJCP'4#5/75CITGGOGPVUYKVJ WPKXGTUKVKGUKPEQWPVTKGUCPFQHHGTUFQWDNGFGITGG Degree programs being offered by and in charge of the TUM Department programs with renowned universities such as the École of Mechanical Engineering. Source: www.mw.tum.de/de/studium/ %GPVTCNG2CTKU'2(..CWUCPPGCPFVJG-6*4Q[CN studiengaenge/bachelor/ and www.mw.tum.de/de/studium/studiengaenge/ master, accessed 12/01/2017 +PUVKVWVGQH6GEJPQNQI[5VQEMJQNO

74 Studying at the Department of Mechanical Engineering

Bachelor’s Degree Program practical courses have been replaced by an additional ‘Mechanical Engineering’ UWRRNGOGPVCT[OQFWNGCPFVJGNGEVWTGn/CVJGOCVKECN 6QQNUo6JKUOQFWNGKORCTVUMPQYNGFIGCDQWVVJG 6JG$CEJGNQToUFGITGGRTQITCOn/GEJCPKECN'PIKPGGTKPIo KORNGOGPVCVKQPQHUEKGPVKƄEGPIKPGGTKPIOQFGNUCPF addresses students interested in natural sciences and OGVJQFUD[OGCPUQHEQPXGPVKQPCNRTQITCOOKPI VGEJPQNQI[9KVJKPVJGVJTGG[GCTRTQITCO UKZUGOGUVGTU  NCPIWCIGU6JGOCKPHQEWUKURNCEGFQP/#6.#$ UVWFGPVUCESWKTGHWPFCOGPVCNMPQYNGFIGDCUKEOGVJQFQ- EQODKPGFYKVJ5KOWNKPMCPF5VCVGƅQY NQIKECNUMKNNUCUYGNNCUUQHVUMKNNUTGSWKTGFHQTCOGEJCPKECN ■ 6JGPGYOQFWNGn7PEGTVCKPV[CPF&CVCKP/GEJCPKECN GPIKPGGT6JGRTQITCOJCUCVQVCNQHETGFKVUQHVJG 'PIKPGGTKPIo TFUGOGUVGT GPCDNGUUVWFGPVUVQOQFGN 'WTQRGCP%TGFKV6TCPUHGTCPF#EEWOWNCVKQP5[UVGO GPIKPGGTKPIRTQDNGOUEQPVCKPKPIWPEGTVCKPV[*CXKPI '%65  UWEEGUUHWNN[RCUUGFVJGEQWTUGUVWFGPVUYKNNDGECRC- DNGQHGUVKOCVKPIRCTCOGVGTUQHRTQDCDKNKUVKEOQFGNU Admission QDVCKPKPIEQPƄFGPEGKPVGTXCNUCPFVGUVKPIJ[RQVJGUGU 6QOCKPVCKPVJGJKIJSWCNKV[UVCPFCTFUQH67/CNNCRRNK- CUYGNNCUKORNGOGPVKPIVJGUGVCUMUKP/#6.#$ cants have to undergo an aptitude assessment procedure ■ The nine week internship in industry can be substituted GXCNWCVKPIVJGKTQXGTCNNRGTHQTOCPEGKPVJGWPKXGTUKV[ by a team project where students learn how to solve GPVTCPEGGZCOKPCVKQPUMPQYNGFIGKPOCVJGOCVKEUCPF mechanical engineering problems. They work together RJ[UKEUNCPIWCIGUMKNNUCPFIGPGTCNOQVKXCVKQP'ZEGNNGPV KPUOCNNITQWRUFWTKPIVJGUGOGUVGTVQGZCOKPGCP CRRNKECPVUCTGFKTGEVN[CFOKVVGFVQVJG$CEJGNQToUFGITGG GPIKPGGTKPIRTQDNGO#EEQORCP[KPIVJGUVWFGPVUo RTQITCO)QQFCRRNKECPVUECPDGCFOKVVGFVQVJG$CEJ- GPIKPGGTKPIYQTMUQHVUMKNNVGCEJKPIEQPVGPVUUWRRQTV GNQToUFGITGGRTQITCOCHVGTFGOQPUVTCVKPIVJGKTUMKNNUCPF them regarding team work, time and project manage- motivation in interviews. ment as well as product presentation. ■ +PCFFKVKQPVQVJG$CEJGNQToUVJGUKUUVWFGPVUJCXGVQ New Curriculum VCMGRCTVKPVJGUGOKPCTn5EKGPVKƄE2TCEVKEGoYJGTG 9KVJVJGDGIKPPKPIQHVJGYKPVGTUGOGUVGTPGY TGUGCTEJUVTCVGIKGU CRRTQCEJVQCPFWUGQHNKVGTCVWTG  5WDLGEV'ZCOKPCVKQPCPF5VWF[4GIWNCVKQPUGPVGTGFKPVQ IQQFUEKGPVKƄERTCEVKEG EQTTGEVYC[VQSWQVG UEKGP- HQTEG VKƄEYTKVKPIKP'PINKUJCPFRTGUGPVCVKQPVGEJPKSWGUCTG taught. What is new? ■ 6JGOQFWNGUn2TKPEKRNGUQH'PIKPGGTKPI&GUKIPCPF 2TQƄNG 2TQFWEVKQP5[UVGOUon(QWPFCVKQPUQH$WUKPGUU &WTKPIVJGƄTUVHQWTUGOGUVGTUQHVJGRTQITCOUVWFGPVU #FOKPKUVTCVKQPoCPFVJGn.CD%QWTUGKP'ZRGTKOGPVCN CESWKTGRTQHQWPFMPQYNGFIGQHOCVJGOCVKEUVJGPCVWTCN 2J[UKEUHQT'PIKPGGTKPIoCTGPQNQPIGTQDNKICVQT[DCUKE UEKGPEGUCPFUGXGTCNHWPFCOGPVCNƄGNFUQHGPIKPGGTKPI UWDLGEVU(WTVJGTOQTGKPVJGVJCPFVJUGOGUVGTU These challenging modules are compulsory and prepare

5GOGUVGT 7 6 2 3 3 4 3 2 1 Mathematics Technical CAD I Information Technical Physics Chemistry Soft I Mechanics I Techn. I Electricity I Skills 6 6 5 5 3 5 2 Mathematics Technical CAD II Information Technical Modeling of Un- II Mechanics II Technology II Electricity II certainty and Data 6 7 6 5 6 3 Mathematics Technical Machine Materials Thermodynamics III Mechanics III Elements I Science I 5 6 9 5 5 4 COURSE FOUNDATION Automatic Fluid Machine Materials Heat Transfer Control Mechanics I Elements II Science II Phenomena

5 5 3 5 12 5 Bachelor Bachelor Supplem. Mathematical Project Module I Module II Course Tools Work BACHELOR OF SCIENCE 5 5 5 3 12 6 Bachelor Bachelor Bachelor Supplem. Bachelor’s Thesis Module III Module IV Module V Course (+ Seminar)

ECTS (total: 180) 30 per semester

Curriculum of the Bachelor’s degree program ‘Mechanical Engineering’ at the TUM Department of Mechanical Engineering.

75 Studying at the Department of Mechanical Engineering

VJGUVWFGPVUHQTOQTGURGEKƄECPFCFXCPEGFUWDLGEVU QWVQHCDQWV RTCEVKECNEQWTUGUKPYJKEJVJG[YQTM +PVJGVJCPFVJUGOGUVGTUUVWFGPVUEJQQUGƄXGQWV individually or in small groups on practical tasks such as QHURGEKCNK\GF$CEJGNQTOQFWNGUHTQOCDTQCFXCTKGV[ RTQITCOOKPIQTECTT[KPIQWVGZRGTKOGPVU(WTVJGTOQTG QHQRVKQPU5RGEKƄETGEQOOGPFCVKQPUHQTVJGFKHHGTGPV UVWFGPVUEJQQUGVJTGGUWRRNGOGPVCT[EQWTUGUCPFUQHV /CUVGToURTQITCOUCTGCXCKNCDNG6JGUGOQFWNGUCUYGNN UMKNNUYQTMUJQRUHTQOCDTQCFXCTKGV[QHQRVKQPU CUVJG$CEJGNQToUVJGUKURTGRCTGUVWFGPVUGKVJGTVQYQTM 1RRQTVWPKVKGUVQICKPKPUKIJVKPVQTGUGCTEJCTGQHHGTGF CUCPGPIKPGGTQTVQEQPVKPWGVJGKTUVWFKGUKPQPGQHVJG YKVJKPVJGnUGOGUVGTRTQLGEVoCPFVJG/CUVGToUVJGUKU VGPURGEKCNK\GF/CUVGToUFGITGGRTQITCOU/QTGQXGTUVW- YJKEJCTGUWRGTXKUGFD[RTQHGUUQTUCPFUEKGPVKƄECUUKU- dents do an internship in industry or a team project. The VCPVU6JGEWTTKEWNWOQHVJG/CUVGToUFGITGGRTQITCOKU EWTTKEWNWOQHVJG$CEJGNQToUFGITGGRTQITCOKUKNNWUVTCVGF KNNWUVTCVGFKPVJGƄIWTGDGNQY KPVJGƄIWTGDGNQY

Facts and Figures Master’s Degree Programs 5KPEGYKPVGTUGOGUVGT 95 VJGVQVCNPWODGT 6JG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIQHHGTUVGP QHUVWFGPVUJCUXCTKGFDGVYGGPCPF#DQWV /CUVGToUFGITGGRTQITCOUYJKEJGPCDNGUVWFGPVUVQ QHVJGUVWFGPVDQF[KUHGOCNG#UUJQYPKPVJGƄTUV FGGRGPVJGKTMPQYNGFIGQHUGNGEVGFFKUEKRNKPGUCESWKTGF ƄIWTGQPRCIGVJGPWODGTQH$CEJGNQToUCPF/CUVGToU FWTKPIVJG$CEJGNQToUFGITGGRTQITCO'CEJQHVJGVYQ FGITGGUVWFGPVUFGETGCUGFKPYKPVGTUGOGUVGTHQT [GCTRTQITCOUJCUCVQVCNQH'%65ETGFKVU VJGƄTUVVKOGUKPEGVJGQNFn&KRNQOoFGITGGRTQITCOYCU TGRNCEGFD[$5ECPF/5ERTQITCOUKP95 Admission 6JGUGEQPFƄIWTGKNNWUVTCVGUVJGPWODGTQHƄTUVUGOGUVGT #NNCRRNKECPVUJCXGVQWPFGTIQCPCRVKVWFGCUUGUUOGPV UVWFGPVUUVCTVKPIVJG$5ERTQITCOCPF/5ERTQITCOU RTQEGFWTGEQPUKUVKPIQHVYQUVCIGU+PVJGƄTUVUVCIGVJG CVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIFWTKPIVJG CRRNKECPVUoITCFGUMPQYNGFIGQHCFXCPEGFOCVJGOCV- NCUVGKIJV[GCTU6JGPWODGTQH$5EHTGUJOGPXCTKGU ics, engineering mechanics, engineering materials and DGVYGGPCPFVJGGZEGRVKQPDGKPIYJGP OCEJKPGGNGOGPVU HQTUQOGRTQITCOUCNUQVJGTOQF[PCO- VYQCIGITQWRUQH$CXCTKCPJKIJUEJQQNRWRKNUUVCTVGF KEUƅWKFOGEJCPKEUJGCVVTCPUHGTRJGPQOGPCCWVQOCVKE UVWF[KPIUKOWNVCPGQWUN[6JGPWODGTQHƄTUVUGOGUVGT EQPVTQNCPFQTKPHQTOCVKQPVGEJPQNQI[ CPFOQVKXCVKQPCTG UVWFGPVUUVCTVKPIVJGKT$CEJGNQToUFGITGGKP/GEJCPKECN GXCNWCVGF#RRNKECPVUYJQCTGPQVCFOKVVGFFKTGEVN[CHVGT 'PIKPGGTKPIJCUPGXGTDGGPNQYGT  VJCPKPVJGYKPVGT VJGƄTUVUVCIGJCXGVQRCUUCYTKVVGPVGUVYJKEJKUVJG UGOGUVGT UGEQPFUVCIGQHVJGCRVKVWFGCUUGUUOGPVRTQEGFWTG 6JGNCUVƄIWTGUJQYUVJGPWODGTQHITCFWCVGUHTQOGCEJ 2TQƄNG QHVJGFGITGGRTQITCOUCHVGTVJGUVCPFCTFFWTCVKQPQH &WTKPIVJGƄTUVVJTGGUGOGUVGTUUVWFGPVUEJQQUGVYGNXG UVWF[YJKEJKUUKZUGOGUVGTUHQTVJG$5EHQWTUGOGUVGTU QWVQHOQTGVJCP/CUVGTOQFWNGUYJKEJCTGURG- HQTVJG/5ECPFVGPUGOGUVGTUKPVJGn&KRNQOoFGITGG EKCNK\GFEQWTUGUEQPUKUVKPIQHCVNGCUVVJTGGOKPWVG programs. WPKVURGTYGGM#FFKVKQPCNN[UVWFGPVUJCXGVQVCMGVYQ

5GOGUVGT 5 5 5 4 11 1 Master Master Master Practical Semester Module I Module II Module III Course I Project 5 5 5 5 4 3 3 2 Master Master Master Master Practical Supplem. Supplem. Module IV Module V Module VI Module VII Course II Course I Course II 5 5 5 5 5 3 2 3 Master Master Master Master Master Supplem. Soft Module VIII Module IX Module X Module XI Module XII Course III Skills I 27 3 4 Master’s 5EKGPVKƄE

Thesis Writing MASTER OF SCIENCE

ECTS (total: 120) 30 per semester

Curriculum of the Master’s degree programs at the TUM Department of Mechanical Engineering.

76 Studying at the Department of Mechanical Engineering





3000

2000

1000

0WODGTQHHWNNVKOGUVWFGPVU 0 95 95 95 95 95 95 95 95

■&KRNQOHGOCNG■&KRNQOOCNG■/CUVGTHGOCNG■/CUVGTOCNG■$CEJGNQTHGOCNG■$CEJGNQTOCNG

Number of full-time students enrolled in degree programs offered by the TUM Department of Mechanical Engineering (at the beginning of each winter semester). Source: http://portal.mytum.de/iuk/bw/studenten/tum_std_html, accessed on 12/08/2017.

1800





1200

1000

800





200

0WODGTQHƄTUVUGOGUVGTUVWFGPVU 0 2010 2011 2012 2013     ;GCTQHEQOOGPEKPIUVWFKGU

■/CUVGTHGOCNG■/CUVGTOCNG■$CEJGNQTHGOCNG■$CEJGNQTOCNG

Number of students starting their studies in the degree programs offered by the TUM Department of Mechanical Engineering. (The number for e.g. 2014 is the sum of students starting in the summer semester 2014 and winter semester 2014/15.) Source: http://portal.mytum.de/iuk/bw/studenten/tum_std_html, retrieved 12/08/2017.





1200

1000

800





200

0WODGTQHITCFWCVGU 0 2010 2011 2012 2013     ;GCTQHITCFWCVKQP

■&KRNQO■/CUVGT■$CEJGNQT

Number of graduates at the TUM Department of Mechanical Engineering. (The number for e.g. 2014 is the sum of students graduating in the winter semester 2013/14 and summer semester 2014.) Source: http://portal.mytum.de/iuk/bw/studenten/tum_std_html, accessed on 12/08/2017.

77 International Students and Students’ Exchange

#UQPGQHVJGNGCFKPIFGRCTVOGPVUKPOGEJCPKECNGPIK- 5VWFGPVUHTQOOQTGVJCPPCVKQPUUVWF[CVVJGFGRCTV- PGGTKPIYQTNFYKFGVJG67/&GRCTVOGPVQH/GEJCPKECN OGPVsVJGDKIIGUVITQWRUDGKPI#WUVTKCPUHQNNQYGFD[ Engineering is dedicated to attracting international %JKPGUGCPF5RCPKUJUVWFGPVU2 UVWFGPVUDQVJCUHWNNVKOGUVWFGPVUCPFVJTQWIJGZEJCPIG RTQITCOUCUYGNNCUVQGPCDNG67/UVWFGPVUVQURGPF 200 RCTVUQHVJGKTUVWFKGUCVRCTVPGTKPUVKVWVKQPUYQTNFYKFG

 Full-Time Students 100 /QTGVJCP 67/ QHVJGFGRCTVOGPVoUUVWFGPV DQF[CTGKPVGTPCVKQPCNUVWFGPVU&WTKPIVJGRCUVUKZ[GCTU  VJGPWODGTQHKPVGTPCVKQPCNUVWFGPVUGPTQNNGFKPVJG$5E 1 CPF/5ERTQITCOUCNOQUVFQWDNGF 0WODGTQHUVWFGPVU 0 2012-13     ❙#WUVTKC ❙ ❙5RCKP ❙ Turkey 1200 ❙+VCN[ ❙ Tunisia ❙+PFKC ❙ France

1000 Development of the prime nationalities of international full-time students  800     

    200    311

0WODGTQHUVWFGPVU 0 2012-13      ■/CUVGTQH5EKGPEG■$CEJGNQTQH5EKGPEG

Development of the number of international full-time students enrolled at  5QWEG4GIKUVTCToUQHƄEG 67/  the Department of Mechanical Engineering 2 See footnote 1

78 International Students and Students’ Exchange

Students’ Exchange &WTKPIVJGYKPVGTVGTOOQTGVJCPQHVJG KPEQOKPIGZEJCPIGUVWFGPVUQH67/JCXGDGGPGPTQNNGF 67/UVWFGPVUCTGQHHGTGFUGXGTCNRQUUKDKNKVKGUHQTURGPF- CVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPICPFCPQVJGT KPIUQOGRCTVQHVJGKTUVWFKGUCDTQCFsXCT[KPIKPTGIKQP UVWFGPVUJCXGDGGPTGIKUVGTGFCUHWNNVKOG/5E FWTCVKQPCPFGFWECVKQPCNIQCN9KVJKPVJGHTCOGYQTMQH UVWFGPVUYKVJKPVJGHTCOGYQTMQHVJG6+/'FQWDNG VJG'WTQRGCP'4#5/75 RTQITCOCPF67/oUYQTNFYKFG degree programs. 67/GZEJCPIGRTQITCOUVWFGPVUJCXGVJGRQUUKDKNKV[ VQUVWF[QPGQTVYQUGOGUVGTUCVQPGQH67/oUOQTG Outgoing Exchange Students VJCPRCTVPGTWPKXGTUKVKGU/QTGQXGT67/JCUUKIPGF 6JG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIPQVQPN[CKOU CDQWVFQWDNGFGITGGCITGGOGPVUYQTNFYKFGVCTIGVKPI at increasing its international student body, but also pur- UVWFGPVUYKVJGZEGNNGPVCECFGOKERGTHQTOCPEGYJQCTG UWGUKVUIQCNVQKPETGCUGVJGOQDKNKV[QHKVUQYPUVWFGPVU interested in doing an additional degree. 9KVJVJGQDLGEVKXGQHDGKPICDNGVQQHHGTGXGT[UVWFGPV 6WKVKQPHGGUCTGYCKXGFHQTFQWDNGFGITGGUVWFGPVUCU the opportunity to spend at least one semester abroad, YGNNCUHQTUVWFGPVUIQKPICDTQCFHQTCPGZEJCPIG*GNR VJGFGRCTVOGPVJCUUKIPGF'4#5/75 CITGGOGPVU regarding administrative issues and housing is usually pro- YKVJWPKXGTUKVKGUKP'WTQRGCPEQWPVTKGU/QUVQHVJG XKFGFD[67/CPFQTVJGRCTVPGTKPUVKVWVKQP'4#5/75  FGRCTVOGPVoURCTVPGTKPUVKVWVKQPUCTGKP(TCPEG  5RCKP and double degree students at EU-partner universities  +VCN[  5YGFGP  CPFVJG7-   CWVQOCVKECNN[IGVVJG'4#5/75 ITCPVYJGTGCU67/GZ- +PVJGPWODGTQHUVWFGPVUIQKPICDTQCFJCU change and double degree students studying overseas UNKIJVN[FGENKPGFHQTVJGƄTUVVKOGUKPEG[GVKV OC[CRRN[HQTUEJQNCTUJKRU PGXGTVJGNGUUUGGOUVQJCXGUVCDKNK\GFCVCNGXGNQHCTQWPF #RCTVHTQOQHHGTKPIVJGGZEJCPIGQRVKQPUOGPVKQPGF 300 outgoing students per year. UGNHQTICPK\GFKPVGTPUJKRUYKVJKP'WTQRGCPFTGUGCTEJ RTQLGEVUQXGTUGCUECPDGƄPCPEKCNN[UWRRQTVGFD[67/  +PHQTOCVKQPCDQWVUWKVCDNGUEJQNCTUJKRUKURTQXKFGFD[ 300 67/CPFVJGFGRCTVOGPV  6JG'4#5/75 UVWFGPVOQDKNKV[CUYGNNCUVJGFQWDNG 200 degree program is by and large organized on departmen- 

VCNNGXGNYJGTGCU67/oU+PVGTPCVKQPCN%GPVGTKUKPEJCTIG 100

QHVJG67/GZEJCPIGRTQITCO#TGEGPVN[KUUWGFDTQEJWTG 

CKOUCVVJGRTQOQVKQPQHFQWDNGFGITGGRTQITCOUCOQPI 0WODGTQHUVWFGPVU 0 VJGFGRCTVOGPVoUUVWFGPVU      ■'4#5/755/5■'4#5/755/2■67/GZEJCPIG■6KOG&& Incoming Exchange Students Development of the number of mechanical engineering students going abroad +PCFFKVKQPVQTGETWKVKPICPKPETGCUKPIPWODGTQHKPVGT- PCVKQPCNHWNNVKOGUVWFGPVUVJGFGRCTVOGPVUWEEGUUHWNN[ +PCFFKVKQPVJGEGPVTCNN[QTICPK\GF67/GZEJCPIG CVVTCEVUCPKPETGCUKPIPWODGTQHKPVGTPCVKQPCNGZEJCPIG RTQITCOGPCDNGUUGNGEVGFUVWFGPVUQHVJGFGRCTVOGPVVQ UVWFGPVUsDQVJHTQOYKVJKP'WTQRGCPFYQTNFYKFG+PYKP- UVWF[QXGTUGCUCVQPGQHOQTGRCTVPGTWPKXGTUKVKGU VGTGZEJCPIGUVWFGPVUHTQOPCVKQPUCTG /QTGQXGTCLQKPVFGITGG$5ERTQITCOn'PIKPGGTKPI UVWF[KPICVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI3 5EKGPEGoCPFCLQKPV/5ERTQITCOn/CVGTKCN5EKGPEGo YKVJ2CTKU.QFTQP7PKXGTUKVÀV5CN\DWTIJCXGDGGPUKIPGF  CPFVGP6+/'FQWDNGFGITGGCITGGOGPVUKP$TC\KN 300 (TCPEG+VCN[5YGFGP5YKV\GTNCPFCPF5RCKPJCXGDGGP  concluded with renowned associate universities such 200 CU)TQWRG'EQNGU%GPVTCNGU-6*5VQEMJQNOCPF'EQNG  2QN[VGEJPKSWG(ÅFÅTCNGFG.CWUCPPG '2(.  100



0WODGTQHUVWFGPVU 0 2012-13      ■'4#5/75■67/GZEJCPIG■6KOG&&

Development of the number of international exchange and double degree 3 Sources: International Center (TUM): Online database ‘Moveon’; students (*winter term 2017/18 only) Studentso Services Department of Mechanical Engineering (TUM) 4 See footnote 3

79 Assistance for Students Offered by the %GPVTCN'ZCOKPCVKQP5GTXKEGU1HƄEG

5KOKNCTN[HQTKPFWUVTKCNKPVGTPUJKRUYGCNUQRTQXKFG GZEGNNGPVUWRRQTVVQUVWFGPVUCUVJG[UGCTEJHQTVJGOQUV TGNGXCPVKPVGTPUJKRHQTVJGO9GQHHGTCUQTVGFNKUVQH NQECVKQPUCPFEQORCPKGUYKVJCTQWPFGPVTKGUYJKEJ applicants and current students can use to gain a head- UVCTVQPƄPFKPICUWKVCDNGGORNQ[GTHQTVJGKTOCPWHCEVWTKPI KPVGTPUJKR6JGNKUVKUPQVNKOKVGFVQEQORCPKGUHTQO )GTOCP[YKVJGPVTKGUHTQOVJTQWIJQWV'WTQRGCPFVJG TGUVQHVJGYQTNF www.mw.tum.de/vorpraktikum

)KXGPVJGPQPPGINKIKDNGRTQRQTVKQPQHUVWFGPVUYJQFTQR QWVQHVJGKTEQWTUGUVJGGCTN[YCTPKPIU[UVGOQRGTCVGF D[#TPQ$WEJPGTVJGUGETGVCT[QHVJG$CEJGNQToUFGITGG GZCOKPCVKQPDQCTFKUQHKPXCNWCDNGCUUKUVCPEG6JGGCTN[ 6JG%GPVTCN'ZCOKPCVKQP5GTXKEGU1HƄEGKUCEGPVTCNK\GF YCTPKPIU[UVGOYCUTGEQIPK\GFD[VJG#ECFGOKEWURTK\G RQKPVQHEQPVCEVVJCVUVWFGPVUECPWUGHQTCNNGZCOTGNCVGF KP UGG#PPWCN4GRQTV +VKUCKOGFCVUVWFGPVU SWGUVKQPUYKVJVJGRCTVKEKRCVKQPQHVJGUGETGVCT[QHVJG YKVJDGNQYCXGTCIGCECFGOKERTQITGUUYJQCTGCVTKUMQH GZCOKPCVKQPDQCTFCPFVJGKPVGTPUJKRQHƄEG+VUCTGCU HCKNKPIVJGKTUVWFKGU QHTGURQPUKDKNKV[KPENWFGCNNGZCOTGNCVGFVQRKEUHTQO admissions procedures during the application process, 6JKUKPVGITCVGFU[UVGOKUHQWPFGFQPGZCOKPCVKQPFCVC to the mandatory industrial internships associated with HTQO67/QPNKPG+VKFGPVKƄGUUVWFGPVUCVTKUMQHGZOCVTKEW CIKXGPFGITGGRTQITCOOGVQITCFKPICPFGZCOKPCVKQP lation at an early stage, opens a dialogue with them, and RTCEVKEGUHQTVJG$CEJGNQToUCPF/CUVGToUEQWTUGUQHHGTGF connects them with supportive resources. This allows D[VJGHCEWNV[6JGQHƄEGRTQXKFGUCFXKEGCPFIWKFCPEGVQ GCTN[UJQTVEQOKPIUCPFVJGTGUWNVKPITKUMUHQTVJGEQPVKPW- CTQWPFUVWFGPVUQHVJG&GRCTVOGPVQH/GEJCPKECN CVKQPQHUVWFKGUVQDGKFGPVKƄGFRTQORVN[5QOGUVWFGPVU Engineering on these topics. have already responded well to the resources proposed VQVJGOCPFJCXGUQWIJVCUUKUVCPEGHTQOVJGTGNGXCPV 6QKORTQXGVJKUUGTXKEGCP(#3RCIGJCUPQYDGGP UQWTEGU6JKUCNNQYGFVJGOVQUKIPKƄECPVN[GPJCPEGVJG RWDNKUJGFQPVJGHCEWNV[JQOGRCIG6JKURCIGKUTGIWNCTN[ TGUWNVUQHVJGKTQYPGHHQTVUCPFGPUWTGVJCVVJGKTUVWFKGU updated and will gradually become a comprehensive WPHQNFUWEEGUUHWNN[*QYGXGTKVYKNNQPN[DGEQOGENGCT UQWTEGQHTGHGTGPEG6JG(#3UCNNQYUVWFGPVUVQƄPF CHVGTCHGYUGOGUVGTUYJGVJGTVJKUU[UVGOECPUWUVCKPCDN[ IGPGTCNKPHQTOCVKQPCDQWVGZCOTGNCVGFSWGUVKQPUQWVUKFG reduce the drop-out rate in the medium term. QHKPFKXKFWCNEQPUWNVCVKQPJQWTU5VWFGPVUECPVJGP EQPVCEVVJGTGNGXCPVRGTUQPUFKTGEVN[KHHWTVJGTENCTKƄECVKQP is needed.

The study equivalence recognition table serves a similar purpose and is also regularly updated. This table lists all GZCOKPCVKQPUCPFFKRNQOCUVJCVCTGEWTTGPVN[TGEQIPK\GF D[VJGQHƄEKCNRTQEGUUNKUVGFD[EQWPVT[CNNQYKPIUVW- dents to plan and evaluate potential study programmes abroad more accurately and determine in advance which programmes are most likely to be recognized when they TGVWTP0QQVJGTWPKXGTUKV[QHHGTUCUEQORTGJGPUKXGCVCDNG QHVJKUV[RG YYYOYVWOFGƄNGCFOKPYDVZYYY.GJTG #PGTMGPPWPIGPACPFGTGA*QEJUEJWNGPA95ARFH

80 Public Funds to Improve Conditions of Study at the Department of Mechanical Engineering

5KPEGYKPVGTUGOGUVGT$CXCTKCPWPKXGTUKVKGUCPF EQNNGIGUTGEGKXGUVCVGHWPFKPIITCPVUVQTGRNCEGEQWTUG HGGUYJKEJYGTGCDQNKUJGFCVVJGGPFQHUWOOGTUGOGUVGT 6JGNGXGNQHVJKUHWPFKPIKUDCUGFQPVJGPWODGTQH UVWFGPVUGPTQNNGFCVVJGWPKXGTUKV[KPSWGUVKQP6JGHWPFU OC[QPN[DGWUGFVQKORTQXGEQPFKVKQPUHQTUVWFGPVUCPF VGCEJKPIUVCHH

#V67/HWPFKPIOC[DGWUGFKPVYQCTGCU

1. Common Areas of Responsibility %QOOQPCTGCUQHTGURQPUKDKNKV[CTGVJQUGVJCVEQPEGTP UGXGTCNQTCNNHCEWNVKGUQPGQTOQTGECORWUGUKP

RCTVKEWNCTGHHGEVKXGRTKQTKV[VGCEJKPIRTQITCOOGUCPF ■ 6GCEJKPICV&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPID[QVJGTHCEWNVKGU university-wide structural programmes to improve KPRCTVKEWNCTOCVJGOCVKEU ■ %GPVGTQH-G[%QORGVGPEGU EQPFKVKQPUQHUVWF[ ■ #FXKEGUGTXKEGCPFCFOKPKUVTCVKQP ■ 'ZEWTUKQPUCPFVTCXGNGZRGPUGU 2. Departmental Areas of Responsibility ■ 6GCEJKPID[RTQHGUUQTUCV&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI HWPFKPIQHUVWFGPVITQWRU &GRCTVOGPVCNCTGCUQHTGURQPUKDKNKV[KPXQNXGKPRCTVKEW- NCTVJGKORTQXGOGPVQHOCVVGTUYJKEJTGNCVGURGEKƄECNN[ Use of public funding at the Department of Mechanical Engineering VQFGITGGEQWTUGUQPQHHGTUWEJCUVJGCOQWPVSWCNKV[ CPFQTICPKUCVKQPQHVWKVKQP GIEQWTUGUEQWTUGTGNCVGF &GRGPFKPIQPVJGPWODGTQHUVWFGPVUCVVJG&GRCTVOGPV OGCUWTGUKPVGTPCVKQPCNKUCVKQPKPHTCUVTWEVWTGGNGCTP- QH/GEJCPKECN'PIKPGGTKPIVJGFGRCTVOGPVTGEGKXGU KPI CPFKPUQOGURGEKCNECUGUCNUQPGYFGITGG E||OKNNKQPGWTQUCPPWCNN[KPVJGHQTOQHVWKVKQPHWPFKPI courses. 6JKUHWPFKPIKUIGPGTCNN[GORNQ[GFCUHQNNQYU

6JGNGICNDCUKUHQTVJGWUGQHVWKVKQPHWPFKPIKUNCKFFQYP #FGVCKNGFNKUVQHRTQLGEVUHWPFGFECPDGFQYPNQCFGFHTQO KPVJG67/UVCVWVGQPVJGWUGQHUVCVGHWPFKPIITCPVU the website www.mw.tum.de. $CUGFQPVJGVWKVKQPHWPFKPIUVCVWVGVJG&GRCTVOGPVQH /GEJCPKECN'PIKPGGTKPIJCUFTCYPWRCVWKVKQPHWPFKPI EQPEGRV2TQLGEVUKPVJGHQNNQYKPICTGCUCTGHWPFGF ■ subject and method competence, e.g. through set- VKPIWRQTDWKNFKPIWRVWVQTKCNURTCEVKECNGZRGTKGPEG sessions and consultation sessions, ■ UQEKCNEQORGVGPEGGIVJTQWIJƄPCPEKPIQHLQD RQUKVKQPUCVVJG%GPVGTQH-G[%QORGVGPEGU ■ RGTUQPCNKV[TGNCVGFEQORGVGPEGGIVJTQWIJGZVGPUKQP QHVJGQRGPKPIJQWTUQHVJG&GRCTVOGPVQH/GEJCPKECN 'PIKPGGTKPI.KDTCT[CPF ■ IGPGTCNEQPFKVKQPUGIVJTQWIJƄPCPEKPICLQDRQUKVKQP CVVJG5VWFGPV#FXKUQT[5GTXKEG

81 Diversity

6JG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIKUFGFKECVGF to increasing diversity, especially with respect to gender CPFKPVGTPCVKQPCNDCEMITQWPF6JKURTQEGUUYCUHQTOCN- ized in a target agreement with the university board in FGƄPKPICUCRQKPVQHTGHGTGPEG 5KPEGVJGUJCTGQHHGOCNGUVWFGPVUJCUKPETGCUGF D[CSWCTVGTHTQOVQ#VVJGUCOGVKOGVJG UJCTGQHHGOCNGTGUGCTEJGTUYKVJCVKOGNKOKVGFEQPVTCEV KG2J&ECPFKFCVGU KPETGCUGFD[CNOQUVVJTGGSWCTVGTU HTQOVQCPFVJGUJCTGQHHGOCNGTGUGCTEJGTU KPCNGCFKPIRQUKVKQP KGYKVJCRGTOCPGPVEQPVTCEVQTCV JKIJGTRC[ITCFGU CNUQD[CNOQUVVJTGGSWCTVGTUHTQOC OGTGKPVQKP'URGEKCNN[VJGKPETGCUG KPUGPKQTUEKGPVKƄEUVCHHIKXGUTKUGVQJQRGVJCVKVYKNNCNUQ DGRQUUKDNGVQICKPOQTGHGOCNGRTQHGUUQTUKPVJGHWVWTG 5KPEGVJGFGRCTVOGPVJCUPQVQPN[DGEQOGOQTG HGOCNGDWVCNUQOWEJOQTGKPVGTPCVKQPCN0QYQH all students are international, more than twice the number KPCPFQHCNNRTQHGUUQTUCTGKPVGTPCVKQPCNsOQTG VJCPJCNHQHVJGOJCXGICKPGFUKIPKƄECPVGZRGTVKUGCDTQCF during their career.

75%+

25%+

18,4% + 15% 75% 10% 12% 11% 6% 2011  2011  2011 

Students 5EKGPVKƄE'ORNQ[GGU Senior Scientists

Percentage of women

100%+

24,6%

150%+ 15% 12% 6% 2011 2011 

Students Professors

Percentage of international students and professors

82 Central Teaching Unit

6JG%GPVTCN6GCEJKPI7PKVVTCKPUHQTFQEVQTCNECPFKFCVGU VJG6WVQTKPI5[UVGOUVWFGPVUVCMGRCTVKPFKHHGTGPVRTQLGEVU CURCTVQHVJG)TCFWCVG%GPVGT/GEJCPKECN'PIKPGGTKPI VQGZRGTKGPEGJQYVQYQTMQPCRTQLGEVCUCVGCO CUYGNNCUVTCKPKPIMG[EQORGVGPEKGUHQT$CEJGNQTCPF 6JGUGYQTMUJQRUYGTGJGNFD[VWVQTUGZRGTKGPEGF /CUVGTUVWFGPVUQHVJGFGRCTVOGPVKPVJG%GPVGTQH-G[ UVWFGPVUYKVJCURGEKCNSWCNKƄECVKQPVQFGUKIPTWPCPF Competencies. GXCNWCVGYQTMUJQRUCPFNGCFVJGKTVGCOUHQTCYJQNG[GCT +PGKIJVFC[UQHVTCKPKPIVJGVWVQTUCTGRTGRCTGFHQTVJG 6JG%GPVGTQH-G[%QORGVGPEKGUKUTGURQPUKDNGHQT YQTMUJQRUD[VTCKPGTUQHVJG%GPVGTQH-G[%QORGVGPEKGU VJGEGPVTCNVTCKPKPICURGEVUQHCNN$CEJGNQTCPF/CUVGT &WTKPIVJGKTVKOGCUCVWVQTVJG[TGEGKXGHGGFDCEMQPVJGKT UVWFGPVUCVVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI YQTMUJQRUVQHWTVJGTFGXGNQRVJGKTUMKNNU6JGEQQTFKPCVQT YKVJVJGCKOVQGZRCPFVJGKTUQHVUMKNNU6JTQWIJFGXGNQR- QHVJGRTQITCOCVVJG%GPVGTQH-G[%QORGVGPEKGUCNYC[U ing their social, methodological and personal competen- RTQXKFGUJGNRCPFUWRRQTVHQTQXGTVWVQTUGCEJUGOGU- cies, young engineers get training to complement their VGT#HVGTQPG[GCTCUCVWVQTVJGRCTVKEKRCPVUFGXGNQR VGEJPKECNMPQYNGFIG6JG%GPVGTQH-G[%QORGVGPEKGU skills in leading a group, project management and giving HQEWUGUQPVJGFGXGNQROGPVQHUMKNNUUWEJCUGHHGEVKXG workshops. VGCOYQTMEQPUVTWEVKXGUQNWVKQPQHEQPƅKEVUQTEQPXKPEKPI RTGUGPVCVKQPU1PGQWVQHQWTXCTKQWUQHHGTUHQEWUGUQP 6JGUGCTGVJGJKIJNKIJVUQH[GCTUQHVJG6WVQTKPI VJGGFWECVKQPQH$CEJGNQTUVWFGPVU'PFKPIYKVJVJGPGY 5[UVGO)CTEJKPI $CEJGNQTYGYCPVVQWUGVJKUQRRQTVWPKV[VQTGXKGYVJG NCUV[GCTUQHVJG6WVQTKPI5[UVGO)CTEJKPI 1996 6JG6WVQTKPI5[UVGO)CTEJKPIYCUHQWPFGFQWV QHCUVWFGPVKPKVKCVKXGCPFYCUUWRRQTVGFD[VJG%JCKTQH 2TQFWEV&GXGNQROGPV+VJCUDGGPWPFGTVJGNGCFGTUJKR QH2TQH&T+PI7FQ.KPFGOCPP&GRCTVOGPVQH2TQFWEV &GXGNQROGPV+VUVCTVGFYKVJGKIJVVWVQTUCPFYCU supervised by the chair.

2007 #HVGTOQTGVJCPVGP[GCTUVJGTGYGTGOQTG RCTVKEKRCPVUVJCPRNCEGUVQQHHGT&WGVQVJKUJKIJ FGOCPFVYQVWVQTKPIITQWRUYKVJVWVQTUGCEJJCXG DGGPGFWECVGFGCEJ[GCTCPFWRVQWPFGTITCFWCVG students have taken part in the program, since summer semester 2008.

2010 6JG6WVQTKPI5[UVGO)CTEJKPINGHVVJG&GRCTVOGPV QH2TQFWEV&GXGNQROGPVCPFYCUCUUKIPGFVQVJG5VWF[ 1HƄEGQHVJG&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI 20 years of Tutoring System Garching – A Shortcut 2011 6JG%GPVGTHQT-G[%QORGVGPEKGUYCUHQWPF VQVTCKPUQHVUMKNNUCVVJG&GRCTVOGPVQH/GEJCPKECN 6JG6WVQTKPI5[UVGO)CTEJKPIJCUDGGPQPGQHVJG 'PIKPGGTKPICPFVQQMQXGTVJGTGURQPUKDKNKV[HQTVJG EQTPGTUVQPGUKPGFWECVKPI&KRNQOCCPF$CEJGNQTUVWFGPVU 6WVQTKPI5[UVGO)CTEJKPI QXGTVJGNCUVVYQFGECFGU#NVJQWIJUQOGCURGEVUOC[ have changed within the last 20 years, one objective has CNYC[UTGOCKPGFVJGUCOG6QUWRRQTV[QWPIRGQRNGKP connecting with each other, handling challenging projects CPFDGKPIRTGRCTGFsHQTWPKXGTUKV[CPFHQTNKHG +PKPVGTCEVKXGYQTMUJQRUUOCNNITQWRUQHUVWFGPVUYQTM VQIGVJGTQPVQRKEUUWEJCUEQOOWPKECVKQPCPFHGGFDCEM presentational skills, time management and learning strategies, teamwork and meeting management. These YQTMUJQRUCTGDCUGFQPUEKGPVKƄEHWPFCOGPVCNUCPFQP CPCEVKXKV[CPFGZRGTKGPEGHQEWUGFCRRTQCEJ6JGOGVJ- QFUKPENWFGFKPVJGYQTMUJQRUEQPUKUVQHKPRWVRTCEVKECN VCUMUTQNGRNC[CPFRGGTEQWPUGNKPI+PVJGUGEQPFJCNHQH

83 Central Teaching Unit

2012 n67614HQTGXGT[QPGo#NNHTGUJOGPUVCTVGFVQVCMG RCTVKPVJG6WVQTKPI5[UVGO)CTEJKPI+PPWODGTUWR VQHTGUJGTUYGTGVTCKPGFD[VWVQTU6JGUVWFGPVU ICKPGFHQWTpUQHVUMKNNUqETGFKVUKPVYQUGOGUVGTUC YQTMUJQRCPFCRTQLGEVUGOGUVGT*GTGVJG[NGCTPGF to plan and construct prototypes just like products to HCEKNKVCVGVJGUVCTVQHVJGFC[sn5VCTVWR[QWTFC[o

2017 9KVJVJGPGY$CEJGNQTRTQITCOYGUCKFIQQFD[G VQVJG6WVQTKPI5[UVGO)CTEJKPI6JG%GPVGTQH-G[ %QORGVGPEKGUUVCTVGFCPGYRGTKQFYKVJn-G[%QORGVGP EKGUHQTVJGUVCTVKPVQ[QWTUVWFKGUo#NNVJQWIJUQOGRCTVU TGOCKPGFVJGUCOGVJGPGYUGOKPCTHQEWUGUQPRTGRCTKPI UVWFGPVUHQTVJGKTNKHGCVWPKXGTUKV[

6JGPCUPQYVJG6WVQTKPI5[UVGO)CTEJKPIRWTUWGUVYQ IQCNUIKXKPIUVWFGPVUCƄTUVQTKGPVCVKQPCVVJGWPKXGTUKV[ YKVJKPVJGKTƄTUVUGOGUVGTCPFGZVGPFKPIVJGKTUQEKCN methodological and personal competencies. We are #PQVJGTXGT[KORQTVCPVRCTVQH2J&ECPFKFCVGUoVCUMU NQQMKPIHQTYCTFVQVJGPGZV[GCTUVQEQOG KUVGCEJKPIQTUWRGTXKUKPIUVWFGPVU#DQWVQHVJG FQEVQTCNECPFKFCVGUURGPFQHVJGKTYQTMKPIVKOG KPVGCEJKPIQTUWRGTXKUKPIUVWFGPVU(QTVJKUTGCUQPKP/C[ Graduate Center QTICPK\CVKQPQHVJGGXGPVn(KVKP6GCEJKPIoUVCTVGFKP EQQRGTCVKQPDGVYGGPFQEVQTCNECPFKFCVGUVJG&GRCTVOGPV #URCTVQHVJG67/)TCFWCVG5EJQQNVJG)TCFWCVG%GPVGT QH6GCEJKPICPF.GCTPKPICPFVJG)TCFWCVG%GPVGT &GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIUWRRQTVUVJG #VVJKUGXGPVFQEVQTCNECPFKFCVGUIGVCFXKEGQPIKXKPI KPUVKVWVGUKPETGCVKPIVJGDGUVRQUUKDNGGPXKTQPOGPVHQT lectures in the academic environment and supervising. FQEVQTCNECPFKFCVGU6JCVKUYJ[VJG)TCFWCVG%GPVGT +PYGQHHGTGFVJG5GOKPCTn(KVKP6GCEJKPIoHQTVJG QHHGTUUGXGTCNUWDLGEVURGEKƄECPFRTQHGUUKQPCNEQWTUGU 10th time and since 2012 about 300 doctoral candidates 6QIWCTCPVGGVJGJKIJUVCPFCTFQHIQQFUEKGPVKƄEYQTM have participated. VJGUGOKPCTn)QQF5EKGPVKƄE2TCEVKEGoKUOCPFCVQT[HQT CNNFQEVQTCNECPFKFCVGUCVVJG&GRCTVOGPVQH/GEJCPKECN 6QRKEUQHVJGYQTMUJQRUFWTKPIVJGGXGPVYGTG 'PIKPGGTKPI+PVJGUGOKPCTYCUQHHGTGFVKOGU ■ *QYVQUWRGTXKUGCPFCUUGUUUVWFGPVTGUGCTEJRTQLGEVU CPFFQEVQTCNECPFKFCVGURCTVKEKRCVGF)QQFUEKGP- ■ 6GCEJKPIVTKEMUsFKIKVCNVQQNUHQTGHƄEKGPVVGCEJKPI VKƄERTCEVKEGKUPQVQPN[CPKORQTVCPVRQKPVHQTFQEVQTCN ■ 'XCNWCVKQPCPFHGGFDCEMsOCPFCVQT[QTCEJCPEG ECPFKFCVGUKVKUCNUQXGT[KORQTVCPVHQTVJGRTQHGUUQTUQH ■ Understanding the unconscious bias, the department, who also give courses on this subject. ■ &KFCEVKERNCPPKPIQHNGEVWTGU 6JGUGOKPCTEQODKPGUVJGUVCPFCTFUHQTIQQFUEKGPVKƄE ■ +PVGTCEVKQPKPNGEVWTGU RTCEVKEGVJGRTQEGUUQHVJGKTQYPTGUGCTEJVQRKEUCPF RTCEVKECNVKRUHQTYTKVKPIVJGKTFKUUGTVCVKQP +PUWOOCT[VJG)TCFWCVG%GPVGTKUTGURQPUKDNGHQTVJG EQPEGRVQHEQWTUGUVQIWCTCPVGGVJGJKIJUVCPFCTFQH %QPVGPVQHVJGUGOKPCTn)QQF5EKGPVKƄE2TCEVKEGo UEKGPVKƄEYQTMQHCNNFQEVQTCNECPFKFCVGU ■ )WKFGNKPGUHQTVJGUCHGIWCTFKPIQHIQQFUEKGPVKƄE practice, Contact ■ %QTGGNGOGPVUQHUEKGPVKƄEYQTMCPFUJCTRGPKPIQPGoU Center of Key Competencies identity in science, 2JQPG  ■ 2JCUGUKPVJGUEKGPVKƄEYTKVKPIRTQEGUU [email protected] ■ 3WQVCVKQPTWNGUCPFTGEQTFUQHUEKGPVKƄERTQITGUU www.zsk.mw.tum.de ■ 'ZRQUÅsJQYVQUVCTVVJGFKUUGTVCVKQP Graduate Center Mechanical Engineering ■ 5EKGPVKƄEGZRTGUUKQPCPFUEKGPVKƄECTIWOGPVCVKQP 2JQPG  strategies. HI\"OYVWOFG YYYHI\OYVWOFG

84 Student Council

6JGVCUMQHVJGn(5/$oVJG5VWFGPV%QWPEKNHQT HQQVDCNNYGTGJGNFQPECORWU(QTVJGVJKTFVKOGKPCTQY /GEJCPKECN'PIKPGGTKPIKUVQTGRTGUGPVCNNQHVJGFGRCTV- VJG5VWFGPV%QWPEKNUWRRQTVGFVJGn67/,WPIG#MCFG- OGPVoUUVWFGPVU+VKUQPGQHVJGNCTIGUVUVWFGPVEQWPEKNU OKGoKPTWPPKPIVJGn67/%CORWU4WPoYKVJPGCTN[ KP)GTOCP[YKVJOQTGVJCPCEVKXGOGODGTU&WTKPI RCTVKEKRCPVU/QTGQXGTVJGFGRCTVOGPVYCUUWRRQTVGFD[ [GCTN[GNGEVKQPUJGNFCEEQTFKPIVQVJG$CXCTKCP*KIJGT VJG5VWFGPV%QWPEKNCVVJGn6CIFGT(CMWNVÀVoITCFWCVKQP 'FWECVKQP.CYVJGUVWFGPVUGNGEVCURGEKƄGFPWODGTQH FC[YJGTGITCFWCVGUEQWNFGPLQ[HTGUJN[OKZGFFTKPMU student representatives, depending on the current count CVVJGEQWPEKNoUEQEMVCKNDCT#HVGTCUGEQPFYQTMUJQR QHUVWFGPVUGPTQNNGFCVVJGFGRCTVOGPV YGGMGPFKPVJGGCTN[YKPVGTOQPVJUKVYCUVKOGHQTUQOG &WGVQVJGXCUVPWODGTQHOGODGTUVJGEQWPEKNKUFKXKFGF OQTGUQNGOPFC[UYJKEJYGTGJKIJNKIJVGFD[VJGHGUVKXG into individual departments, which work in close collabo- %JTKUVOCUVTGGKPVJGHQ[GTQHVJGFGRCTVOGPVCPFVJG ration to improve and ensure good academic conditions at QTICPKUCVKQPQHCDKI%JTKUVOCUOCTMGVKPHTQPVQHVJG QWTHCEWNV[ FGRCTVOGPVDWKNFKPI/CP[QVJGTUOCNNGXGPVUNKMGCRWD crawl and a poker competition aimed at pleasing the students during the year. Event Department

6JGUWOOGTUGOGUVGTUVCTVGFYKVJVJG5VWFGPV Magazine of the Student Council %QWPEKNoUYQTMUJQRYGGMGPFFGFKECVGFVQXCTKQWUVQR- KEUTCPIKPIHTQOKORTQXGOGPVUKPVJGUVWF[EQPFKVKQPUVQ 6JG5VWFGPV%QWPEKNRWDNKUJGFUKZKUUWGUQHKVUOCIC\KPG VJGTCPIGQHEQWTUGU6JTQWIJQWVVJGYJQNG[GCTTGIWNCT n4GKUUYQNHo6JKU[GCTVJGVQRKEUHQTGCEJKUUWGTCPIGF blood donation events were organised in corporation HTQOPGYUCDQWVVJGPGY$CEJGNQTUVWF[TGIWNCVKQP YKVJVJG$CXCTKCP4GF%TQUUCPFVJGKPKVKCVKXGn6CNGPVG TGRQTVUQHXQNWPVCT[YQTMQTECTTGXKGYU6JGVTCFKVKQPCN 5RGPFGPo6JKUYCUCPGZEGNNGPVQRRQTVWPKV[HQTVJG n.GJTUVWJNUGTKGoEQPVKPWGFVQKPVTQFWEGVJGFKHHGTGPVEJCKTU OGODGTUQH)CTEJKPIECORWUVQFQCIQQFFGGF&WTKPI QHVJGFGRCTVOGPV.GUUUGTKQWUVQRKEUYGTGRWDNKUJGFKP VJGYCTOFC[UQH,WPGVJGXCTKQWUFKHHGTGPVUVWFGPV n-NQRCRKGToVJGJWOQTQWUCPFGPVGTVCKPKPIRQUVGTKPVJG EQWPEKNUQP)CTEJKPI%CORWUQTICPKUGFn)#40+:(GUVK- TGUVTQQOUQHVJGFGRCTVOGPV(WTVJGTOQTGCTVKENGUHTQO XCNoKPEQQRGTCVKQPYKVJVJG5VWFGPV%QWPEKNQH6GEJ- university groups contribute to every issue. PKECN7PKXGTUKV[QH/WPKEJ&WTKPIVJG)#40+:XCTKQWU tournaments, such as beach volleyball, basketball and

85 Student Council

Print Shop 9GCTGCNUQXGT[RTQWFQHQWTEQPVTKDWVKQPVQVJGPGY $CEJGNQTTGIWNCVKQPUCPFVJGKORTQXGOGPVUCEJKGXGF #UKPRTGXKQWU[GCTUVJGRTKPVUJQRQHVJG5VWFGPV%QWPEKN PQYGPLQ[GFD[QWTHTGUJOGP RTKPVGFCNNMKPFUQHNGEVWTGPQVGUEQNNGEVKQPUQHQNFGZCOU (WTVJGTOQTGYGYQTMGFQPVJGTGHQTOCVKQPQHCHGY CPFVJGHTGGOCIC\KPGn4GKUUYQNHoKPNCTIGGFKVKQPU6JG KORQTVCPVUVCVWVGUCPFCTGXGT[UCVKUƄGFYKVJVJG NGEVWTGPQVGUCPFEQNNGEVKQPUQHQNFGZCOUEQWNFDG TGUWNVU1PVJGUVWFGPVUKFGYGOCPCIGFVQGPNCTIGQWT purchased in our store, open on working days. national and international relationships by attending the +VYCURQUUKDNGVQQHHGTVJKUNCTIGCOQWPVQHFQEWOGPVU n(CEJUEJCHVGPVCIWPI/CUEJKPGPDCWoVJGn-1/'6oCPF HQTNGEVWTGUUGOKPCTUCPFNCDEQWTUGUVJCPMUVQVJG VJG'WTQRGCP/GEJCPKECN'PIKPGGTKPI5VWFGPV%QWPEKN great cooperation with numerous institutes. This year the Congress. FQEWOGPVUQPQHHGTYGTGKPETGCUGFCUKVYCURQUUKDNG VQICKPPGYUETKRVUKPEQQRGTCVKQPYKVJGZKUVKPICPFPGY institutes. Freshman Department (WTVJGTOQTGVJGFGUKIPQHVJGEQXGTUYCUEJCPIGFCPF VJGNGEVWTGPQVGUCTGPQYEQXGTGFKPHTGUJCPFCRRGCN- 6JGLQDQHVJG(TGUJOCP&GRCTVOGPVKUVQECTGHQTCNNVJG ing colors, and a new printing press was purchased to HTGUJOGPYJQDGIKPVJGKTUVWFKGUCVVJGFGRCTVOGPV(QT KORTQXGCPFGPUWTGVJGSWCNKV[QHQWTUETKRVU VJGVJKTFVKOGVJG219'4sVJGQTKGPVCVKQPYGGMsYCU QTICPK\GFYJKEJKPENWFGFCEKV[TCNN[VJTQWIJ/WPKEJ CVTCFKVKQPCN$CXCTKCPDTGCMHCUVYKVJYJGCVDGGTCPF International Department n9GK»YWTUVoCPFCURQTVGXGPV#NNVJGKORQTVCPVKPHQTOC- VKQPTGICTFKPIUVWF[EQWTUGUCPFWPKXGTUKV[NKHGYGTGIKXGP +PVJG+PVGTPCVKQPCN&GRCTVOGPVVCEMNGFVJGVCUM VQVJGUVWFGPVUKPCVYQFC[KPHQTOCVKQPGXGPVCVVJGUVCTV QHGXCNWCVKPICPFCFLWUVKPIVJGKTRTQITCOCEEQTFKPIVQ QHVJGYKPVGTVGTO UVWFGPVHGGFDCEMHTQORTGXKQWUVGTOU(QTVJGUGEQPF /QTGQXGTYGKPHQTOGFRQUUKDNGHWVWTGUVWFGPVUCVPWOGT- VKOGVJGDWFF[RTQITCOFKFPQVVCMGVJGHQTOQHRGQRNG ous events during the year. meeting up at a Welcome Event, but rather they could sign WRQPNKPG6JKUHCXQTGFUVWFGPVUDGKPIDTQWIJVVQIGVJGT CEEQTFKPIVQVJGKTRTGHGTTGFNCPIWCIGEQWPVT[QTWPKXGT- Public Relations Department sity. 5KPEGVJG9GNEQOG'XGPVYCUQPGQHVJGOQUVKORQTVCPV 6JKU[GCTVJG2WDNKE4GNCVKQP&GRCTVOGPVQTICPKUGFVJG pillars in our program and the meet and greet on those n$#55&oVJG$CUKECPF#FXCPEGF5VWFKGUCPF5EKGPEG evenings was welcomed by all students, we decided to &C[&WTKPIVJKUGXGPVVJGUVWFGPVUYGTGKPHQTOGFCDQWV CFFCPGXGPVCVVJGDGIKPPKPIQHVJGYKPVGTVGTOECNNGF VJGXCTKQWURQUUKDKNKVKGUCXCKNCDNGCHVGTVJGKTDCUKEUVWFKGU n5RGGFHTKGPFKPIo(QTVJCVGXGPVYGRTQXKFGCRNCEGHQT CPFQPJQYVJG[EQWNFIGVOQTGKPHQTOCVKQPCDQWV students to get together and get to know each other in CECFGOKEYQTMCVVJGKPUVKVWVGUCPFVJGYQTMKPINKHGQH UJQTVEQPXGTUCVKQPU6JKUVTKGUVQUKORNKH[UQEKCNPGV- UEKGPVKƄEGORNQ[GGUCPF2J&U YQTMKPIDGVYGGPFQOGUVKECPFKPVGTPCVKQPCNUVWFGPVU+P /QTGQXGTVJG2WDNKE4GNCVKQPU&GRCTVOGPVCPUYGTGF addition we still maintain our regular pub evening program KPEQOKPITGSWGUVVJTQWIJQWVVJG[GCTHTQOUVWFGPVUQHCNN during the winter and summer terms. ages and countries and general requests addressed to the .CUVDWVPQVNGCUVYGJGNFCDKI'TCUOWU%JTKUVOCU 5VWFGPV%QWPEKN 2CTV[CYGGMDGHQTGVJG%JTKUVOCUDTGCM6JGTGYGUGV WRCDWHHGVVCDNGCPFCUMGFGXGT[IWGUVVQDTKPIEWNKPCT[ YYYHUODFG FGNKIJVUHTQOVJGKTJQOGEQWPVT[VQVJGFKPPGT

Department for Higher Education Policy

6QIGVJGTYKVJVJG67/&GRCTVOGPVQH/GEJCPKECN 'PIKPGGTKPIVJG5VWFGPV%QWPEKNYQTMGFQPCHGYOCLQT projects to improve teaching and the learning environ- OGPV+PVJGn5VWFKGP\WUEJWUUMQOOKUUKQPo EQOOKVVGG HQTUVWF[CNNQYCPEGU OQTGVJCPCRRNKECVKQPUYGTG ITCPVGFVQCFXCPEGVJGSWCNKV[QHVGCEJKPI

86 The humanoid robot LOLA is 180 cm tall and weighs approximately 55 kg.

Faculty of the Department of Mechanical Engineering

87 Appointments

+PQPGPGYHWNNRTQHGUUQTCPCFLWPEVRTQHGUUQTCPF Prof. Dr.-Ing. Matthias Gaderer HQWTJQPQTCT[RTQHGUUQTUYGTGCRRQKPVGFVQVJG67/ &GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPI 2TQH)CFGTGT D JGCFQH4GIGPGTCVKXG'PGTI[ 5[UVGOUCVVJG67/5VTCWDKPI%GPVGTQH5EKGPEGJCU DGGPCRRQKPVGFCFLWPEVRTQHGUUQTQHVJG&GRCTVOGPVQH Prof. Dr.-Ing. Markus Zimmermann /GEJCPKECN'PIKPGGTKPIKPQTFGTVQUVTGPIVJGPKVUVKGU VQVJG5VTCWDKPI%GPVGTQH5EKGPEG)CFGTGTUVWFKGF 2TQH.KPFGOCPP JGCFQHVJG%JCKT RTQEGUUGPIKPGGTKPICV67)TC\CPF-6*5VQEMJQNO*G QH2TQFWEV&GXGNQROGPV CPF2TQH subsequently worked in industry on process engineering $CKGT JGCFQHVJG%JCKTQH.KIJVYGKIJV RTQLGEVUKP5YKV\GTNCPFCPF#WUVTKC+PJGVQQMWR 5VTWEVWTGU TGVKTGFCNOQUVUKOWNVCPG- CRQUKVKQPCVVJG$CXCTKCP%GPVGTHQT#RRNKGF'PGTI[ QWUN[KP6JGFGRCTVOGPVVQQMVJKU 4GUGCTEJ <#'$C[GTP KP)CTEJKPI/WPKEJYJGTGJG opportunity to merge both chairs and to was instrumental in setting up a biomass research unit. ETGCVGCPGY%JCKTQH2TQFWEV&GXGN- #HVGTQDVCKPKPIJKUFQEVQTCVGCV67/KPJGYCU QROGPVCPF.KIJVYGKIJV&GUKIPVJWUTCKUKPIVJGRQVGPVKCN TGURQPUKDNGHQTVJGCTGCQHFGEGPVTCNK\GFGPGTI[U[UVGOU VQHQEWUQPFGUKIPCURGEVUQHNKIJVYGKIJVUVTWEVWTGU CPFVJGTOCNDKQOCUUWVKNK\CVKQPCVVJG+PUVKVWVGQH'PGTI[ 6JGOCVGTKCNUCURGEVUQHNKIJVYGKIJVUVTWEVWTGUCTGYGNN 5[UVGOU+P)CFGTGTYCUCRRQKPVGFRTQHGUUQT addressed in other chairs, such as Carbon Composites, QHTGIGPGTCVKXGGPGTI[U[UVGOUCV5VTCWDKPI%GPVGTQH /CVGTKCNU5EKGPEGCPF/GEJCPKEUQH/CVGTKCNUCUYGNNCU 5EKGPEG /GVCN(QTOKPICPF%CUVKPI 6JGFGRCTVOGPVKURTQWFQHJCXKPIYQP2TQH

88 Appointments

Hon.-Prof. Dr.-Ing. Marco Einhaus Hon.-Prof. Dr.-Ing. Alexander Kolb

2TQH'KPJCWU D JCUDGGPCRRQKPVGFVQVJG 2TQH-QND D JCUDGGPCRRQKPVGFVQVJGFGRCTV- FGRCTVOGPVCU*QPQTCT[2TQHGUUQTHQT1EEWRCVKQPCNCPF OGPVCU*QPQTCT[2TQHGUUQTHQT%NKOCVG%QPVTQNCPF +PFWUVTKCN5CHGV[CVVJG%JCKTQH/CEJKPG6QQNUCPF/CP- 4GHTKIGTCVKQPCVVJG%JCKTQH6JGTOQF[PCOKEU*GUVWFKGF WHCEVWTKPI6GEJPQNQI[*GUVWFKGF%KXKN'PIKPGGTKPICPF mechanical engineering and achieved his doctorate at 'PXKTQPOGPVCN6GEJPQNQI[CVVJG7PKXGTUKV[QHVJG#TOGF 67/#HVGTCRQUKVKQPYKVJ9GDCUVQJGOQXGFVQ&'051 (QTEGUKP0GWDKDGTICPFNCVGTCEJKGXGFJKUFQEVQTCVG CPFƄPCNN[DGECOGFKTGEVQTQHVJG&'051'PIKPGGTKPI CV67%JGOPKV\#HVGTXCTKQWURQUKVKQPUYKVJVJGCTOGF %GPVGT0QTVJGTP'WTQRG5KPEG2TQH-QNDJCUDGGP HQTEGUTGNCVGFVQQEEWRCVKQPCNUCHGV[JGDGECOGVGEJPKECN VGCEJKPICWVQOQVKXGENKOCVGEQPVTQNCPFTGHTKIGTCVKQPYKVJ UWRGTXKUQTYKVJVJG/WVWCN+PFGOPKV[#UUQEKCVKQP/GVCN great success. $GTWHUIGPQUUGPUEJCHV/GVCNN0QTF5ØF UWRGTXKUKPI several large-scale construction projects such as the #NNKCP\#TGPC$99GNVCPFQVJGTU5KPEGJGJCU DGGPVGCEJKPIQEEWRCVKQPCNCPFKPFWUVTKCNUCHGV[YKVJ great success.

Hon.-Prof. Dr.-Ing. Matthias Heller

2TQH*GNNGT D JCUDGGPCRRQKPVGFVQVJGFGRCTV- OGPVCU*QPQTCT[2TQHGUUQTHQT*KIJN[#WIOGPVGF#KTETCHV CVVJG%JCKTQH(NKIJV5[UVGO&[PCOKEU*GUVWFKGFCGT- QURCEGGPIKPGGTKPICPFCEJKGXGFJKUFQEVQTCVGCV67/ .CVGTJGYQTMGFYKVJ'#&5%#55+&+#0#KT5[UVGOU ƄTUVCUCTGUGCTEJCPFFGXGNQROGPVGPIKPGGTYKVJKPVJG FGRCTVOGPV(NKIJV/GEJCPKEU(NKIJV)WKFCPEGVJGPCU GZRGTVCFXKUQTKPƅKIJVOCEJCPKEUHQTVJGGPVKTG$7%#5- 5+&+#0#KT5[UVGOU*GJCUDGGPCRRQKPVGF4WFQNH &KGUGN+PFWUVT[(GNNQYQH67/+#5VYKEGKPCPFKP 5KPEGJGJCUDGGPVGCEJKPIƅKIJVF[PCOKEU FGUKIPEJCNNGPIGUQHJKIJN[CWIOGPVGFCKTETCHVCVVJG 67/&GRCTVOGPVQH/GEJCPKECN'PIKPGGTKPIYKVJITGCV personal success.

89 Retirements

Willibald A. Günthner

1P5GRVGODGT2TQH9KNNKDCNF#)ØPVJPGT CEJKGXGOGPVUHTQOJKU[GCTUCUCRTQHGUUQTCV67/CTG 1TFKPCTKWUQHVJG%JCKTHQT/CVGTKCNU*CPFNKPI/CVGTKCN TGUGCTEJTGUWNVUUWEJCUnRKEMD[XKUKQPoRKEMKPIYKVJFCVC (NQY.QIKUVKEUGPVGTGFKPVQTGVKTGOGPV INCUUGUCPFOQTGGHƄEKGPVOQTGTGNKCDNGETCPGGXCNWCVKQP WUKPIVJG01&;#RTQITCOOG)ØPVJPGTTGEQIPKUGFVJG 9KNNKDCNF#)ØPVJPGTECPNQQMDCEMQP trend towards digitalisation in intralogistics at an early CNQPIECTGGTKPNQIKUVKEU#HVGTUVWF[KPI UVCIGCPFYCUCEQKPKVKCVQTQHVJGEQPEGRVQHCPnKPVGT- OGEJCPKECNGPIKPGGTKPIHTQOVQ PGVQHVJKPIUosVJGDCUKEKFGCVJCVURCYPGFVJGHQWTVJ JGICKPGFJKUFQEVQTCVGCVVJG KPFWUVTKCNTGXQNWVKQP +PFWUVT[  %JCKTCPF+PUVKVWVGHQT/CVGTKCNU*CPF NKPIWPFGT2TQHGUUQT5KGIHTKGF$ÒVVEJGT #UYGNNCUNGCFKPIPWOGTQWUTGUGCTEJRTQLGEVUCPF CVVJG6GEJPKECN7PKXGTUKV[QH/WPKEJ TGUGCTEJITQWRU)ØPVJPGTYCUCNUQCEVKXGKPVJG&GRCTV- #VVJGUCOGVKOGJGCNUQEQORNGVGFUVWFKGUKPYQTMCPF OGPVQH/GEJCPKECN'PIKPGGTKPICPFYCUEJCKTOCPQH GEQPQOKEUVWFKGU+P)ØPVJPGTOQXGFVQVJGKPFWU- VJG$CEJGNQTFGITGGGZCOKPCVKQPDQCTF9KVJVJGIQCNQH VTKCNUGEVQTCUCVGEJPKECNOCPCIGTCV/CZ-GVVPGT#HVGT promoting technical logistics as an academic discipline, YQTMKPIHQTVJGEQORCP[HQTHQWT[GCTUJGTGVWTPGFVQ JGHQWPFGFVJGn9KUUGPUEJCHVNKEJG)GUGNNUEJCHVHØT CECFGOKCCURTQHGUUQTHQTOCVGTKCNUJCPFNKPICPFOCVGTKCN 6GEJPKUEJG.QIKUVKMG8 9)6. oVJGUEKGPVKƄEDQF[HQT ƅQYCVVJG6GEJPKECN7PKXGTUKV[KP4GIGPUDWTI+P VGEJPKECNNQIKUVKEUVQIGVJGTYKVJQVJGTNQIKUVKEURTQHGU- JGHQNNQYGFCPKPXKVCVKQPVQLQKPVJG6GEJPKECN7PKXGTUKV[QH UQTU)ØPVJPGTYCUCNUQKPXQNXGFKPVJG)GTOCPHGFGTCN /WPKEJCU$ÒVVEJGToUUWEEGUUQTKPVJG%JCKT CUUQEKCVKQPHQTNQIKUVKEUVJGn$WPFGUXGTGKPKIWPIHØT.QIKU- VKMoCUFGRWV[EJCKTOCPQHVJGUEKGPVKƄECFXKUQT[DQCTF +PVJGPGYN[TGPCOGF%JCKTHQT/CVGTKCNU*CPFNKPI/CVG- CPFYCUCNUQEJCKTOCPQHVJGDQCTFQHVJGn)GUGNNUEJCHV TKCN(NQY.QIKUVKEU)ØPVJPGTRNCEGFCUVTQPIGTTGUGCTEJ 2TQFWMVKQPWPF.QIKUVKMoCOGODGTQHVJG#UUQEKCVKQPQH CPFVGCEJKPIHQEWUQPOCVGTKCNƅQYCPFNQIKUVKEU-G[ )GTOCP'PIKPGGTU 8&+ KPVJGƄGNFQHVGEJPKECNNQIKUVKEU

90 Department Members

Prof. Dr.-Ing. Nikolaus Adams Prof. Dr.-Ing. Klaus Drechsler Aerodynamics and Fluid Mechanics Carbon Composites www.aer.mw.tum.de www.lcc.mw.tum.de ■ Numerical modeling and simulation ■ Composite materials and process QHEQORNGZƅQYU technology ■ Low-speed aerodynamics ■ Textile technology ■ /WNVKRJCUGƅQYUOKETQƅWKFKEU ■ Lightweight design ■ )CUF[PCOKEUECXKVCVKPIƅQYU Page 123 ■ #KTETCHVURCEGETCHVCPFCWVQOQVKXG aerodynamics Page 100

Prof. Dr. phil. Klaus Bengler Prof. Dr.-Ing. Johannes Fottner Ergonomics Materials Handling, Material Flow, www.lfe.mw.tum.de Logistics ■ Micro ergonomics www.fml.mw.tum.de ■ Human-machine interaction ■ +PPQXCVKXGEQPXG[QTVGEJPQNQI[ ■ Digital human modeling ■ Sustainable logistics systems ■ %QQRGTCVKXGU[UVGOUCPF ■ Planning and control of material automation ƅQYU[UVGOU Page 109 ■ Industry 4.0 ■ Humans in logistics ■ Crane engineering and design of load-supporting structures Page 127

Prof. Dr. rer. nat. Sonja Berensmeier Prof. Dr.-Ing. Michael W. Gee Bioseparation Engineering Mechanics and High Performance www.mw.tum.de/en/stt/ Computing bioseparation-engineering www.mhpc.mw.tum.de ■ 5GNGEVKXGUGRCTCVKQPQHDKQ ■ High performance parallel com- molecules puting ■ Downstream processing ■ Fluid-structure interaction ■ Magnetic separation ■ %CTFKQXCUEWNCTDKQOGEJCPKEU Page 115 Page 132

Prof. Dr. Carlo L. Bottasso Prof. Dr.-Ing. habil. Dipl.-Geophys. Wind Energy Christian Große www.wind.mw.tum.de Non-destructive Testing ■ 9KPFGPGTI[U[UVGOFGUKIP www.zfp.tum.de modeling and control ■ Quality control during construction ■ Computational mechanics and ■ Inspection of structures and com- simulation technology RQPGPVUKPEKXKNCPFOGEJCPKECN ■ Numerical and experimental engineering aeroelasticity ■ Structural health monitoring Page 118 Joint Appointment with the Faculty of %KXKN'PIKPGGTKPI Page 137

91 Department Members

Prof. Dr.-Ing. Volker Gümmer Prof. Dr.-Ing. Mirko Hornung Turbomachinery and Aircraft Design Flight Propulsion www.lls.mw.tum.de www.ltf.mw.tum.de ■ 5EGPCTKQCPCN[UKUHWVWTGVTGPFU ■ Aerodynamics of turbomachinery and technologies ■ Propulsor technology ■ #KTETCHVFGUKIP EKXKNCPFOKNKVCT[ ■ Design concepts for gasturbine ■ #PCN[UKUCPFGXCNWCVKQPQHCKTETCHV components concepts ■ Gasturbine systems and cycles Page 160 Page 141

Prof. Dr.-Ing. Oskar J. Haidn Prof. Dr.-Ing. Space Propulsion Hans-Jakob Kaltenbach www.lfa.mw.tum.de Flow Control and Aeroacoustics ■ Thrust chamber technologies www.aer.mw.tum.de ■ High pressure combustion ■ #EVKXGCPFRCUUKXGƅQYEQPVTQN ■ In-space propulsion ■ 2TGFKEVKQPCPFOKVKICVKQPQHƅQY ■ Green propellants noise ■ Combustion dynamics ■ #KTETCHVCWVQOQVKXGCPFTCKNYC[ ■ Turbopump technologies aerodynamics Page 146 Page 166

Prof. Dr.-Ing. Manfred Hajek Prof. Dr.-Ing. Harald Klein Helicopter Technology Plant and Process Technology www.ht.mw.tum.de www.apt.mw.tum.de ■ Aeromechanical modeling and test ■ Process design of rotors ■ 'SWKROGPVFGUKIPOGVJQFU ■ Modelling and simulation of ■ Modeling and thermodynamic TQVQETCHVƅKIJV property data ■ /WNVKTQVQTEQPƄIWTCVKQPU Page 169 Page 151

Prof. Dr.-Ing. Florian Holzapfel Prof. Phaedon-Stelios Flight System Dynamics Koutsourelakis, Ph.D. www.fsd.mw.tum.de Continuum Mechanics ■ /QFGNKPIUKOWNCVKQPCPF www.contmech.mw.tum.de para meter estimation ■ 7PEGTVCKPV[SWCPVKƄECVKQPKPEQO- ■ (NKIJVIWKFCPEGCPFƅKIJVEQPVTQN putational science and engineering ■ 5GPUQTUFCVCHWUKQPCPFP ■ $C[GUKCPHQTOWNCVKQPUHQTKPXGTUG CXKICVKQP problems ■ Trajectory optimization ■ Atomistic simulation of materials Page 154 Page 172

92 Department Members

Prof. Dr.-Ing. Andreas Kremling Prof. Dr. rer. nat. Tim C. Lüth Systems Biotechnology Micro Technology and Medical YYYDKQXVOYVWOFGFGYGKVGTG Device Technology einrichtungen/fg-systembiotechnologie www.mimed.mw.tum.de ■ Mathematical modeling of cellular ■ /GFKECNPCXKICVKQPTQDQVKEUCPF systems control architectures ■ Model analysis and parameter ■ Rapid prototyping KFGPVKƄECVKQP ■ Technology for an aging society ■ Model-based experimental design Page 191 Page 176

Prof. Dr. rer. nat. Oliver Lieleg Prof. Dr. rer. nat. Tim C. Lüth Biomechanics (interim) www.mw.tum.de/de/bme/startseite Medical Materials and ■ Mechanics of biomaterials Medical Implant Design ■ Biological hydrogels www.medtech.mw.tum.de ■ Biomedical/biophysical engineering ■ *GOQEQORCVKDNGCPFCEVKXG Page 179 surfaces and systems ■ Functionalized polymeric implants ■ +ORTQXGFRQN[OGTURTQEGUU tooling and analysis tools Page 196

Prof. Dr.-Ing. Markus Lienkamp Prof. Rafael Macián-Juan, Ph.D. Automotive Technology Nuclear Technology www.ftm.mw.tum.de www.ntech.mw.tum.de ■ Vehicle concepts ■ Nuclear reactor safety ■ 'NGEVTKEOQDKNKV[ ■ Thermal-hydraulic and neutronic ■ Vehicle control and dynamics analysis of nuclear systems ■ &TKXGTCUUKUVCPEGU[UVGOU ■ Radiation transport Page 182 Page 201

Prof. Dr.-Ing. habil. Boris Lohmann Prof. Dr.-Ing. Steffen Marburg Automatic Control Vibroacoustics of Vehicles and www.rt.mw.tum.de Machines ■ Methods and application of non- YYYXKDOYVWOFG NKPGCTCPFRTGFKEVKXGEQPVTQN ■ 'ZRGTKOGPVCNCPFEQORWVCVKQPCN ■ /QFGNKPITGFWEVKQPCPFEQPVTQNQH acoustics distributed parameter systems ■ Vibroacoustic optimization ■ #WVQOQVKXGOWNVKEQRVGTCPFTQDQV ■ 7PEGTVCKPV[SWCPVKƄECVKQP control application QHXKDTQCEQWUVKEU[UVGOU Page 187 ■ /CVGTKCNFCVCKFGPVKƄECVKQP Page 205

93 Department Members

Prof. Dr. Rudolf Neu Prof. Dr. Ir. Daniel Rixen Plasma Material Interaction Applied Mechanics www.pmw.mw.tum.de www.amm.mw.tum.de ■ 'TQUKQPCPFJ[FTQIGPTGVGPVKQPKP ■ Numerical methods for technical plasma facing materials dynamics ■ Tungsten alloys and composite ■ 'ZRGTKOGPVCNUVTWEVWTGF[PCOKEU UVTWEVWTGUHQTJGCVTGOQXCN ■ Multiphysicals models ■ *GCVƅQYVGUVUHQTCPFFGXGNQR- Page 222 ment of plasma facing materials Page 209

Prof. Wolfgang Polifke, Ph.D. Prof. Dr.-Ing. Thomas Sattelmayer Thermo-Fluid Dynamics Thermodynamics www.tfd.mw.tum.de www.td.mw.tum.de ■ Aero- and thermoacoustics ■ %QODWUVKQPCPFTGCEVKXGƅQYU ■ Mixing and reaction in turbulent noise and instabilities ƅQYU ■ Transport phenomena in single- ■ 6YQRJCUGƅQYU CPFVYQRJCUGƅQYU Page 212 ■ 'PGTI[U[UVGOUCPFVGEJPQNQIKGU Page 226

Prof. Dr. Julien Provost Prof. Dr.-Ing. Veit Senner Safe Embedded Systems Sport Equipment and Materials www.ses.mw.tum.de www.spgm.tum.de ■ Fault-tolerant systems ■ New materials (esp. carbon ■ (QTOCNXGTKƄECVKQPCPFXCNKFCVKQP EQORQUKVGU KPURQTVU ■ Distributed control systems ■ +ORTQXGFKPVGTCEVKQPDGVYGGP ■ Diagnosis of automated systems CVJNGVGUCPFURQTVUGSWKROGPV Page 215 ■ 'SWKROGPVHQTTGFWEGFKPLWT[TKUM in sports Page 235

Prof. Dr.-Ing. Gunther Reinhart Prof. Dr.-Ing. Hartmut Spliethoff Industrial Management and Energy Systems Assembly Technologies www.es.mw.tum.de www.iwb.mw.tum.de ■ Systems studies ■ Production management and ■ %QODWUVKQPCPFICUKƄECVKQPQH logistics solid fuels ■ Automation and robotics ■ Steam cycles ■ Assembly technology Page 240 Page 218

94 Department Members

Prof. Dr.-Ing. Karsten Stahl Prof. Dr.-Ing. Wolfgang A. Wall Machine Elements Computational Mechanics www.fzg.mw.tum.de www.lnm.mw.tum.de ■ Gears and transmission ■ /WNVKƄGNFRTQDNGOU components ■ Multiscale problems ■ (CVKIWGNKHGGHƄEKGPE[08* ■ Computational biomechanics and DGJCXKQT biophysics ■ 6GUVKPIOGVJQFUUKOWNCVKQP Page 264 ■ #PCN[UKUEQORWVGTCRRNKECVKQPU Page 243

Prof. Dr.-Ing. Birgit Vogel-Heuser Prof. Prof. h.c. Dr. rer. nat. Automation and Information Ulrich Walter Systems Astronautics www.ais.mw.tum.de www.lrt.mw.tum.de ■ Model-based and integrated ■ Spacecraft and satellite engineering techno logies ■ Distributed control systems ■ Systems engineering ■ Quality management and human ■ Human exploration technologies factors ■ *[RGTXGNQEKV[NCDQTCVQT[ Page 249 Page 268

Prof. Dr.-Ing. Wolfram Volk Prof. Dr. mont. habil. Dr. rer. nat. Metal Forming and Casting h.c. Ewald Werner www.utg.mw.tum.de Materials Science and Mechanics ■ /CPWHCEVWTKPIVQQNKPICPF of Materials measurement technology YYYYMOOYVWOFG ■ &GXGNQROGPVJGCVVTGCVOGPVCPF ■ Materials science of metals and processing of new materials mechanics of materials ■ Virtual manufacturing processes ■ Phase transformations Page 254 ■ #NNQ[CPFRTQEGUUFGXGNQROGPV Page 274

Prof. Dr.-Ing. Georg Wachtmeister Prof. Dr.-Ing. Dirk Weuster-Botz Internal Combustion Engines Biochemical Engineering YYYNXMOYVWOFG YYYDKQXVOYVWOFG ■ Gas and diesel engines ■ Microbial bioprocess engineering ■ Injection processes and industrial biotechnology ■ 'ZJCWUVICUCHVGTVTGCVOGPV ■ Biocatalysis and fermentation Page 259 ■ Bioprocess integration Page 280

95 Department Members

Prof. Dr.-Ing. Michael F. Zaeh Other Academics with Professorial Rights Machine Tools and Manufacturing Technology Hon.-Prof. Nikolaus Bauer www.iwb.mw.tum.de /CVGTKCN*CPFNKPI/CVGTKCN(NQY.QIKUVKEU ■ Machine tools ■ Manufacturing processes Hon.-Prof. Dr. Dr. Hans-Harald Bolt ■ Joining and cutting technologies Thermodynamics Page 284 apl. Prof. Dr.-Ing. habil. Christian Breitsamter Aerodynamics and Fluid Mechanics Prof. Dr. Markus Zimmermann Product Development and Hon.-Prof. Dott. Antonino Cardella Lightweight Design Nuclear Technology www.mw.tum.de/lpl ■ Multi-disciplinary design Hon.-Prof. Johann Dambeck ■ Modelling and simulation of Flight System Dynamics complex systems ■ Design methods and tools and Hon.-Prof. Dr.-Ing. Marco Einhaus processes Machine Tools and Manufacturing Technology Page 288 Hon.-Prof. Dr.-Ing. habil. Raymond F. Freymann Applied Mechanics

Prof. Dr.-Ing. Matthias Gaderer 4GPGYCDNG'PGTI[5[UVGOU 67/%CORWU5VTCWDKPI

Hon.-Prof. Dr.-Ing. Harald Großmann Plant and Process Technology

Hon.-Prof. Dr.-Ing. Ulrich Heiden #WVQOQVKXG6GEJPQNQI[

Hon.-Prof. Dr.-Ing. Matthias Heller Flight System Dynamics

Prof. Dr.-Ing. Hans-Georg Herzog 'PGTI[%QPXGTUKQP6GEJPQNQI[ 67/&GRCTVOGPV'+

PD Dr.-Ing. habil. Xiangyu Hu Aerodynamics and Fluid Mechanics

PD Dr.-Ing. habil. Thomas Indinger Aerodynamics and Fluid Mechanics

Hon.-Prof. Dr.-Ing. Alexander Kolb Thermodynamics

96 Department Members

&KUVKPIWKUJGF#HƄNKCVGF2TQHGUUQTU

PD Dr.-Ing. habil. Christian Krempaszky Prof. Dr.-Ing. Wan Gang /CVGTKCNU5EKGPEGCPF/GEJCPKEUQH/CVGTKCNU /KPKUVGTQH5EKGPEGCPF6GEJPQNQI[QHVJG 2GQRNGU4GRWDNKEQH%JKPC Hon.-Prof. Dr.-Ing. Christian Lammel +PFWUVTKCN/CPCIGOGPVCPF#UUGODN[6GEJPQNQIKGU Prof. Dr. Petros Koumoutsakos '6*

Hon.-Prof. Dr.-Ing. Karl Viktor Schaller #WVQOQVKXG6GEJPQNQI[

Hon.-Prof. Dr. rer. pol. Werner Seidenschwarz 2TQFWEV&GXGNQROGPVCPF.KIJVYGKIJV&GUKIP

PD Dr.-Ing. habil. Christian Stemmer #GTQF[PCOKEUCPF(NWKF/GEJCPKEU

PD Dr.-Ing. habil. Thomas Thümmel #RRNKGF/GEJCPKEU

Hon.-Prof. Dr.-Ing. Peter Tropschuh #WVQOQVKXG6GEJPQNQI[

Hon.-Prof. Josef Vilsmeier #WVQOCVKQPCPF+PHQTOCVKQP5[UVGOU

Prof. Dr.-Ing. Ulrich Wagner 'PGTI['EQPQO[CPF#RRNKECVKQP6GEJPQNQI[ 67/&GRCTVOGPVQH'NGEVTKECNCPF%QORWVGT'PIKPGGTKPI

Hon.-Prof. Dr.-Ing. Walter Wohnig /GVCN(QTOKPICPF%CUVKPI

97 Department Members

Retired Professors

Prof. Dr.-Ing. Horst Baier Prof. Gero Madelung .KIJVYGKIJV5VTWEVWTGU #KTETCHV'PIKPGGTKPI

Prof. Dr.-Ing. Klaus Bender Prof. Dr.-Ing. Dr.-Ing. E. h. mult. Franz Mayinger +PHQTOCVKQP6GEJPQNQI[ Thermodynamics

Prof. Dr.-Ing. habil. Günther Brandenburg Prof. Dr.-Ing. Alfons Mersmann 5RGEKCN#RRNKECVKQPUQH'NGEVTKECN&TKXGU 2TQEGUU'PIKPGGTKPI

Prof. Dr.-Ing. Dr. rer. nat. Otto Brüller Prof. Dr.-Ing. Reimer J. Meyer-Jens /GEJCPKEU .KIJVYGKIJV5VTWEVWTGU

Prof. Dr. rer. nat. Heiner Bubb Prof. Dr.-Ing. Dr.-Ing. E. h. mult. Friedrich Pfeiffer Ergonomics /GEJCPKEU

Prof. Dr.-Ing. Klaus Ehrlenspiel Prof. Dr.-Ing. Dr.-Ing. h. c. Karl Theodor Renius &GUKIPKP/GEJCPKECN'PIKPGGTKPI #ITKEWNVWTCN/CEJKPGU

Prof. Dr.-Ing. habil. Rainer Friedrich Prof. Dr.-Ing. habil. Heinzpeter Rühmann (NWKF/GEJCPKEU Ergonomics

Prof. Dr.-Ing. Willibald A. Günthner Prof. Dr.-Ing. Gottfried Sachs /CVGTKCNU*CPFNKPI/CVGTKCN(NQY.QIQUVKEU (NKIJV/GEJCPKEU

Prof. Dr.-Ing. Dr. rer. nat. Gerd Habenicht Prof. Dr.-Ing. habil. Dr. h. c. Rudolf Schilling ,QKPKPI6GEJPQNQI[ *[FTCWNKE/CEJKPGUCPF2NCPVU

Prof. Dr.-Ing. Dietmar Hein Prof. Dr.-Ing. Karlheinz G. Schmitt-Thomas 6JGTOCN2QYGT2NCPVU /CVGTKCNUKP/GEJCPKECN'PIKPGGTKPI

Prof. Dr.-Ing. Dr.-Ing. E. h. Joachim Heinzl Prof. Dr.-Ing. habil. Günter H. Schnerr 2TGEKUKQP'PIKPGGTKPICPF/KETQ6GEJPQNQI[ )CU&[PCOKEU

Prof. Dr.-Ing. Bernd Heißing Prof. Dr.-Ing. habil. Johann Stichlmair #WVQOQVKXG6GEJPQNQI[ (NWKF2TQEGUU'PIKPGGTKPI

Prof. Dr.-Ing. Hartmut Hoffmann Prof. Dr.-Ing. habil. Johannes Straub /GVCN(QTOKPICPF%CUVKPI Thermodynamics

Prof. Dr.-Ing. Bernd-Robert Höhn Prof. Dr.-Ing. Klaus Strohmeier /CEJKPG'NGOGPVU #RRCTCVWUCPF2NCPV'PIKPGGTKPI

Prof. Dr.-Ing. Eduard Igenbergs Prof. Dr.-Ing. habil. Hans M. Tensi #UVTQPCWVKEU /GEJCPKECN'PIKPGGTKPI

Prof. Dr.-Ing. Boris Laschka Prof. Dr.-Ing. habil. Heinz Ulbrich (NWKF/GEJCPKEU #RRNKGF/GEJCPKEU

Prof. Dr.-Ing. Udo Lindemann Prof. Dr. rer. nat. Dieter Vortmeyer 2TQFWEV&GXGNQROGPV %JGOKECN2TQEGUU'PIKPGGTKPI

98 Reports of the Institutes

99 Aerodynamics and Fluid Mechanics

0WOGTKECNOQFGNKPIUKOWNCVKQPCPFGZRGTKOGPVCNCPCN[UKUQHƅWKFUCPFƅWKFƅQYU

The focus of the Institute of Aerodynamics and Fluid Mechanics in 2016-17 was on further development of a multi-resolution parallel simulation environment for the NANOSHOCK project, QPTGFWEGFQTFGTOQFGNKPIQHƅWKFUVTWEVWTGKPVGTCEVKQPQPVJGCPCN[UKUQHCFXCPEGFCGTQF[PCOKE EQPƄIWTCVKQPUHQTJGNKEQRVGTCKTETCHVCPFCWVQOQDKNGUCPFQPCFXCPEGFUKOWNCVKQPCPFITKFFKPI technologies for exterior and interior aerodynamics.

A highlight in 2016-17 was the successful operation /5E|6JQOCU|2CWNCTGEGKXGFVJG9KNN[/GUUGTUEJOKVV start of the large shock-tube facility, and the kick-off CYCTFHQTJKU/CUVGT6JGUKUCDUQNXGFCVVJG)GTOCP of two interdisciplinary DFG projects with the institutes #UUQEKCVKQPHQT#GTQCPF#UVTQPCWVKEU.CUVDWVPQVNGCUV IWB and FZG, where the institute brings in its expertise HTQOVJG0#015*1%-RTQLGEVVJGƄTUV%(&EQFGURKPQHH QPCFXCPEGFƅQYUKOWNCVKQPOGVJQFQNQI[&T.KP YCUQRGPGFHQTRGTWUCND[VJGUEKGPVKƄEEQOOWPKV[ (WITCFWCVKPIHTQOVJGKPUVKVWVGKPTGEGKXGFC JVVRUYYYCGTOYVWOFGCDVGKNWPIGPPCPQUJQEMPGYU 2QUVFQEVQTCN(GNNQYUJKRHTQO5VCPHQTF7PKXGTUKV[CPF

Experimental and Numerical Investigation of Cavitating 6YQRJCUG(NQYUCPF%CXKVCVKQPKPFWEGF'TQUKQP

1WTQDLGEVKXGKUVQFGXGNQRGHƄEKGPVCPFCEEWTCVGUKOWNC- VKQPCRRTQCEJGUHQTRTGFKEVKPICNNFQOKPCVKPIRJGPQOGPC KPECXKVCVKPIƅQYUKPENWFKPIUJQEMYCXGHQTOCVKQPCPF propagation, with the goal to provide the groundwork for VJGFGUKIPQRVKOK\CVKQPQHHWVWTGVGEJPKECNFGXKEGU

Approach to Solution 9GRGTHQTOHWPFCOGPVCNGZRGTKOGPVUWUKPICUJQEM VWDGCPFUVCVGQHVJGCTVJKIJURGGFECOGTCUUGPUQTUVQ investigate collapse processes of gas und vapor bubbles GODGFFGFKPCNKSWKFNKMGIGN6JGUGGZRGTKOGPVUCTG WUGFVQGPJCPEGRJ[UKECNWPFGTUVCPFKPIQHKPXQNXGFƅWKF F[PCOKEUCPFUGTXGCUTGHGTGPEGFCVCVQQWTPWOGTKECN KPXGUVKICVKQPU(QTCDQWVQPGFGECFGOCVJGOCVKECN OQFGNUCPFPWOGTKECNCRRTQCEJGUHQTGHƄEKGPVCPF 5JQEMVWDGCV#'4sNGPIVJOFKCOGVGTORTGUUWTGUHTQO2C CEEWTCVGRTGFKEVKQPUQHECXKVCVKPIƅQYRJGPQOGPCJCXG VQDCT DGGPFGXGNQRGFCVVJGKPUVKVWVG#UGTKGUQHPWOGTKECN CRRTQCEJGUKPENWFKPIUVCVGQHVJGCTVNCTIGGFF[UKOWNC- Motivation and Objectives VKQP .'5 UEJGOGUGPCDNGJKIJRGTHQTOCPEGEQORWVKPI 6JGHQTOCVKQPQHXCRQTDWDDNGUKPCNKSWKFFWGVQRTGUUWTG YKVJNKPGCTUECNKPIQP*2%U[UVGOUUWEJCU5WRGT/7% TGFWEVKQPKUECNNGFnECXKVCVKQPo(NQYUKPXQNXKPIECXKVCVKQP 1WTCRRTQCEJGUCTGnOQPQNKVJKEoKPCUGPUGVJCVCNNƅWKF HGCVWTGCUGTKGUQHWPKSWGRJ[UKECNRTQRGTVKGUUWEJCU EQORQPGPVUKPXQNXGF NKSWKFXCRQTKPGTVICUGU CTG FKUEQPVKPWQWULWORUKPVJGURGGFQHUQWPFHTQO1   JCPFNGFKPCEQPUKUVGPVYC[5JQEMYCXGHQTOCVKQPFWG OUVQ1  OUCLWORKPFGPUKV[QHWRVQHQWTQTFGTUQH to collapsing vapor patterns is resolved by application of OCIPKVWFGCPFKPVGPUGEQORTGUUKDKNKV[GHHGEVUUWEJCU VKOGUVGRUUOCNNGTVJCPQPGPCPQUGEQPF6JGTGUWNVKPI VJGHQTOCVKQPQHKPVGPUGUJQEMYCXGUYKVJRQUVUJQEM NQCFUQPOCVGTKCNUWTHCEGUsCPFVJWUVJGRQVGPVKCNQH RTGUUWTGUQHOQTGVJCP)2C(NQYUKPXQNXKPIECXKVCVKQP OCVGTKCNGTQUKQPsCTGQDVCKPGFYKVJQWVVJGPGGFHQT QEEWTKPCYKFGTCPIGQHVGEJPKECNU[UVGOU+PRCTVKEWNCT CFFKVKQPCNOQFGNU(WPFCOGPVCNTGUGCTEJKUHWPFGFD[VJG KPLGEVKQPU[UVGOUHQTEQODWUVKQPGPIKPGUJKIJRTGUUWTG 'WTQRGCP7PKQP 2TQLGEVn%C('o YJKNGCRRNKGFTGUGCTEJ J[FTCWNKEUPCXCNRTQRGNNGTUCPFDKQOGFKECNCRRNKECVKQPU KURGTHQTOGFKPEQNNCDQTCVKQPYKVJUGXGTCNCWVQOQVKXG CTGRTQPGVQECXKVCVKQPCPFECXKVCVKQPKPFWEGFOCVGTKCN UWRRNKGTUVJG751HƄEGQH0CXCN4GUGCTEJCPFYKVJVJG GTQUKQP 'WTQRGCP5RCEG#IGPE[

100 Aerodynamics and Fluid Mechanics

Spray angle and erosion analysis in generic injector components.

Key Results 'HƄEKGPVKORNKEKV.'5OGVJQFHQTVJGUKOWNCVKQPQH ■ $WFKEJ$5EJOKFV5,#FCOU0#0WOGTKECN VWTDWNGPVECXKVCVKPIƅQYU,QWTPCNQH%QORWVCVKQPCN 5KOWNCVKQPCPF#PCN[UKUQH%QPFGPUCVKQP5JQEMUKP 2J[UKEU8QNWOGRR %CXKVCVKPI(NQY6QCRRGCTKP,QWTPCNQH(NWKF/GEJCP- ■ ²TNG[(*KEMGN55EJOKFV5,#FCOU0# KEU CEEGRVGF .CTIG'FF[5KOWNCVKQPQHVWTDWNGPVECXKVCVKPIHWGNƅQY ■ $GDCP$5EJOKFV5,#FCOU0#0WOGTKECN KPUKFGCJQNG&KGUGNKPLGEVQTKPENWFKPIPGGFNGOQXG- UVWF[QHUWDOGTIGFECXKVCVKPIVJTQVVNGƅQYU#VQOK\C- OGPV+PVGTPCVKQPCN,QWTPCNQH'PIKPG4GUGCTEJ VKQPCPF5RTC[U   RR RR| ■ 'IGTGT%25EJOKFV5,*KEMGN5#FCOU0#

Numerical Methods for Computational Fluid Dynamics 2J[UKECN%QPUKUVGPE[QH*KIJTGUQNWVKQP%(&

Motivation and Objectives %(&VQQNUKPRJ[UKECNQTGPIKPGGTKPICRRNKECVKQPUECP PGXGTTGCEJPWOGTKECNTGUQNWVKQPNGXGNUYJGTGVJG VTWPECVKQPGTTQTQHVJGFKUETGVK\CVKQPUEJGOGUGPVGTUKVU CU[ORVQVKENKOKV+VVJWUKUQHJKIJRTCEVKECNTGNGXCPEGVQ FGUKIPUEJGOGUVJCVJCXGIQQFUECNGTGUQNWVKQPRTQRGT- VKGUYJGPGXGTPWOGTKECNTGUQNWVKQPKUUWHƄEKGPVHQTTGNGXCPV ƅQYUECNGUCPFYJQUGVTWPECVKQPGTTQTHWPEVKQPUCUC RJ[UKECNN[EQPUKUVGPVUWDITKFUECNGOQFGNYJGPPQV+PVJG RCUVVJKUTGUGCTEJEQPEGRVJCUNGFVQVJGFGXGNQROGPVQH VJGƄTUVRJ[UKECNN[EQPUKUVGPVCPFRTCEVKECNN[UWEEGUUHWN KORNKEKV.'5OQFGN%WTTGPVN[VJGPQVKQPQHGORNQ[KPI OQFGNWPEGTVCKPV[CPFVTWPECVKQPGTTQTUCURJ[UKECNOQFGN UWTTQICVGUKUDGKPIRWTUWGFQPUGXGTCNNGXGNU +PUVCPVCPGQWUEQPVQWTUQHVGORGTCVWTG VQR QH/C UJQEMKORKPIKPIQPC VWTDWNGPVDQWPFCT[NC[GTCPFEQTTGURQPFKPIOGCPƅQY DQVVQO

101 Aerodynamics and Fluid Mechanics

Approach to Solution %QPEGRVUQHRJ[UKECNFGUKIPQHOQFGNKPICPFFKUETGVK\C- VKQPGTTQTJCXGDGGPUWEEGUUHWNN[GORNQ[GFHQTHWTVJGT FGXGNQROGPVQHJKIJTGUQNWVKQPUEJGOGUCPFVCTIGVGF '01UEJGOGUVJCVCTGUWKVCDNGHQTWPFGTTGUQNXGF EQORWVCVKQPUQHVWTDWNGPVCPFPQPVWTDWNGPVƅQYU6JG RJ[UKECNN[EQPUKUVGPVKORNKEKV.'5OQFGN#.&/JCUDGGP applied to turbulent shock-boundary-layer interaction at WPRTGEGFGPVGF4G[PQNFUPWODGTU'ZVGPFKPIVJGIGPGTCN EQPEGRVVQPWOGTKECNOQFGNUHQTƅWEVWCVKPIJ[FTQF[PCO- KEUVJGOCPKRWNCVKQPQHOQFGNKPIGTTQTUYKVJKPVJG FKUUKRCVKXGRCTVKENGF[PCOKEUOQFGNKUKPXGUVKICVGFVQ explore spontaneous long-range correlations in turbulent 8QTVGZTKPIGXQNWVKQPHQTTGCEVKPIUJQEMDWDDNGKPVGTCEVKQPITG[UJCFGU ƅQYU2J[UKECNGHHGEVUQHVTWPECVKQPGTTQTUKPRCTVKENGFKU- correspond to inert-gas mass fraction and red is isosurface of vorticity v ETGVK\CVKQPUOC[CNUQNGCFVQTGNCZCVKQPRTQEGUUGUVJCV CNNQYHQTJKIJN[GHHGEVKXGOGUJIGPGTCVKQPCPFFQOCKP Key Results RCTVKVKQPKPIOGVJQFU$QVJJCXGDGGPFGXGNQRGFVQC ■ 2CUSWCTKGNNQ8*KEMGN5#FCOU0#7PUVGCF[ RTGEQOOGTEKCNK\CVKQPFGOQPUVTCVKQPNGXGN GHHGEVUQHUVTQPIUJQEMYCXGDQWPFCT[NC[GTKPVGTCE- VKQPCVJKIJ4G[PQNFUPWODGT,QWTPCNQH(NWKF/GEJCP- KEU  RROGJTe$KD6G:8QNNVGZV &1+  ■ &KGIGNOCPP(*KEMGN5#FCOU0#6JTGGFKOGP- UKQPCNTGCEVKPIUJQEMsDWDDNGKPVGTCEVKQP%QODWUVKQP CPF(NCOGRROGJTe$KD6G: 8QNNVGZV &1+  ■ (W.*W:;#FCOU0#6CTIGVGF'01UEJGOGU with tailored resolution property for hyperbolic conser- XCVKQPNCYU,QWTPCNQH%QORWVCVKQPCN2J[UKEU   RROGJTe$KD6G:8QNNVGZV &1+  ■ (W.*W:;#FCOU0##RJ[UKEUOQVKXCVGF %GPVTQKFCN8QTQPQK2CTVKENGFQOCKPFGEQORQUKVKQP OGVJQF,QWTPCNQH%QORWVCVKQPCN2J[UKEU RROGJTe$KD6G:8QNNVGZV &1+  ■ 'WTQRGCP2CVGPV#RRNKECVKQP'2*W:(W. Automatic generation of unstructured meshes with high mesh quality *CP.#FCOU0#/GVJQFCPFU[UVGOHQTIGPGTCVKPI DCUGFQPRJ[UKECNRCTVKENGCFXGEVKQPCPCQNQI[ COGUJ

5OQQVJGF2CTVKENG*[FTQF[PCOKEU/GVJQFHQT5KOWNCVKPI(TGG5WTHCEG(NQY

Motivation and Objectives Approach to Solution 5OQQVJGFRCTVKENGJ[FTQF[PCOKEU 52* KUCRWTGN[OGUJ 9GRTGUGPVCNQYFKUUKRCVKQPYGCMN[EQORTGUUKDNG52* HTGG.CITCPIKCPOGVJQFFGXGNQRGFHQTCUVTQRJ[UKECNCRRNK- OGVJQFHQTOQFGNKPIHTGGUWTHCEGƅQYUGZJKDKVKPIXKQNGPV ECVKQPU5KPEGVJGUGRKQPGGTKPIYQTMUVJG52*OGVJQF GXGPVUUWEJCUKORCEVCPFDTGCMKPI6JGMG[KFGCKUVQ JCUDGGPUWEEGUUHWNN[CRRNKGFHQTPWOGTKECNUKOWNCVKQPU OQFKH[C4KGOCPPUQNXGTYJKEJFGVGTOKPGUVJGKPVGTCEVKQP QHUQNKFOGEJCPKEUƅWKFF[PCOKEUCPFƅWKFUVTWEVWTG DGVYGGPRCTVKENGUD[WUKPICUKORNGNKOKVGTVQFGETGCUG KPVGTCEVKQP%QPEGTPKPIVJGEQORWVCVKQPQHJ[FTQF[PCOKE VJGKPVTKPUKEPWOGTKECNFKUUKRCVKQP6JGOQFKƄGF4KGOCPP RTQDNGOUVJGRTGUGPVOGVJQFUGKVJGTNGCFVQXKQNGPV UQNXGTKUCNUQGZVGPFGFHQTKORQUKPIYCNNDQWPFCT[EQP- pressure oscillations or excessive dissipation and are not FKVKQPU0WOGTKECNVGUVUUJQYVJCVVJGOGVJQFTGUQNXGU CDNGVQTGRTQFWEGEQTTGEVRJ[UKECNRJGPQOGPCTGNKCDN[ HTGGUWTHCEGƅQYUCEEWTCVGN[CPFRTQFWEGUUOQQVJ CEEWTCVGRTGUUWTGƄGNFU

102 Aerodynamics and Fluid Mechanics

Three-dimensional dam- DTGCMRTQDNGOUKOWNCVGF YKVJFR * VJGVQVCN ƅWKFRCTVKENGPWODGT N=27000): free-surface RTQƄNGEQORCTGFYKVJ experiment.

Key Results 0##FCOU,QWTPCNQH%QORWVCVKQPCN2J[UKEU ■ #YGCMN[EQORTGUUKDNG52*OGVJQFDCUGFQPC  s NQYFKUUKRCVKQP4KGOCPPUQNXGT%

0WOGTKECN/QFGNKPIQH+PVGTHCEG0GVYQTMU

Motivation and Objectives ƅWKFUCETQUUKPVGTHCEGUGIOGPVU6JGUGKPVGTCEVKQPUECP /WNVKTGIKQPRTQDNGOUECPQEEWTYJGPVJGOQVKQPQH QHVGPDGFGUETKDGFD[NQECNƅWKFRTQRGTVKGU&WGVQVJG OQTGVJCPVYQKOOKUEKDNGƅWKFUKUVQDGFGUETKDGF+PVJKU EQORNGZKV[QHVJGVQRQNQI[PWOGTKECNOQFGNKPIQHVJG ECUGVJGKPVGTHCEGPGVYQTMUGRCTCVKPIVJGFKHHGTGPVƅWKF evolution and interactions near the interface network are TGIKQPUGXQNXGUKPVKOGFWGVQKPVGTCEVKQPUQHVJGFKHHGTGPV NQPIUVCPFKPIEJCNNGPIGUHQTVJGTGUGCTEJEQOOWPKV[

Approach to Solution 9GJCXGFGXGNQRGFCJKIJTGUQNWVKQPVTCPURQTVHQTOWNC- VKQPQHVJGTGIKQPCNNGXGNUGVCRRTQCEJHQTCPKORTQXGF RTGFKEVKQPQHVJGGXQNWVKQPQHEQORNGZKPVGTHCEGPGVYQTMU 6JGCRRTQCEJVJWUQHHGTUCXKCDNGCNVGTPCVKXGVQRTGXKQWU KPVGTHCEGPGVYQTMNGXGNUGVOGVJQF

Key Results ■ *KIJTGUQNWVKQPOGVJQFHQTGXQNXKPIEQORNGZKPVGTHCEG PGVYQTMU5%2CP:;*W0##FCOU%QORWVGT 2J[UKEU%QOOWPKECVKQPCEEGRVGFHQTRWDNKECVKQP ■ *KIJQTFGTVKOGOCTEJKPITGKPKVKCNK\CVKQPHQTTGIKQPCN NGXGNUGVHWPEVKQPU5%2CP::.[W:;*W0# #FCOU,QWTPCNQH%QORWVCVKQPCN2J[UKEUCEEGRVGF for publication 2017 ■ 5KPINGUVGRTGKPKVKCNK\CVKQPCPFGZVGPFKPICNIQTKVJOU HQTNGXGNUGVDCUGFOWNVKRJCUGƅQYUKOWNCVKQPU.(W :;*W0##FCOUCEEGRVGFHQTRWDNKECVKQP %QPUVCPVPQTOCNFTKXGPƅQYQHCPKPVGTHCEGPGVYQTMYKVJVJTGGTGIKQPUCV different time instance

103 Aerodynamics and Fluid Mechanics

Aircraft and Helicopter Aerodynamics

■ -PQVJ(CPF$TGKVUCOVGT%(NQY#PCN[UKUQHC *GNKEQRVGT'PIKPG5KFG#KT+PVCMG,QWTPCNQH2TQRWNUKQP CPF2QYGT8QN0QRR ■ -PQVJ(CPF$TGKVUCOVGT%#GTQF[PCOKE%JCTCE- VGTKUVKEUQH*GNKEQRVGT'PIKPG5KFG#KT+PVCMGU#KTETCHV 'PIKPGGTKPICPF#GTQURCEG6GEJPQNQI[ ■ -PQVJ(CPF$TGKVUCOVGT%#GTQF[PCOKE6GUVKPIQH *GNKEQRVGT5KFG+PVCMG4GVTQƄV/QFKƄECVKQPU#GTQ- URCEG8QNRR ■ -PQVJ(CPF$TGKVUCOVGT%0WOGTKECNCPF'ZRGTK- OGPVCN+PXGUVKICVKQPQHC*GNKEQRVGT'PIKPG5KFG+PVCMG 00(/8QN5RTKPIGTRR ■ 2KSWGG,CPF$TGKVUCOVGT%0WOGTKECNCPF'ZRGTK- OGPVCN+PXGUVKICVKQPUQHCP'NCUVQ(NGZKDNG/GODTCPG /QFGNQH$.7'%126'4EQPƄIWTCVKQPOQWPVGFKPVJGVGUVUGEVKQPQHYKPF 9KPICVC4G[PQNFU0WODGTQH#GTQURCEG tunnel A. 8QNRR ■ 2KSWGG,5CGGFK/$TGKVUCOVGT%9ØEJPGT4CPF Motivation and Objectives $NGV\KPIGT-70WOGTKECN+PXGUVKICVKQPQHCP'NCUVQ 6JGNQPIVGTOTGUGCTEJCIGPFCKUDCUGFQPVJGEQPVKPWGF (NGZKDNG/GODTCPG#KTHQKN%QORCTGFVQ'ZRGTKOGPVU KORTQXGOGPVQHƅQYUKOWNCVKQPCPFCPCN[UKUECRCDKNKVKGU 00(/8QN5RTKPIGTRR KPVJGEQPVGZVQHCKTETCHVCPFJGNKEQRVGTRGTHQTOCPEG ■ 4Q\QX8*GTOCPWV\#$TGKVUCOVGT%CPF*QTPWPI GPJCPEGOGPVCPFFTCITGFWEVKQP5RGEKƄETGUGCTEJ /#GTQGNCUVKE#PCN[UKUQHC(NWVVGT&GOQPUVTCVQTYKVJ activities are dedicated to the reliable prediction of CXGT[(NGZKDNG*KIJ#URGEV4CVKQ5YGRV9KPI+(#5& ƅQYUGRCTCVKQPQPUGVCPFRTQITGUUKQPKPVJGEQPVGZVQH  XQTVGZFQOKPCVGFƅQYCPFEQPVTQNQHNGCFKPIGFIGXQTVGZ ■ 9KPVGT/*GEMOGKGT(CPF$TGKVUCOVGT%%(& U[UVGOUFGXGNQROGPVQHCPQXGN41/HTCOGYQTMHQT $CUGF#GTQGNCUVKE4GFWEGF1TFGT/QFGNKPI4QDWUV aeroelastic analysis, helicopter drag reduction of rotor hub VQ5VTWEVWTCN2CTCOGVGT8CTKCVKQPU#GTQURCEG5EKGPEG CPFGPIKPGKPVCMGD[UJCRGQRVKOK\CVKQPCPFƅQYEQPVTQN CPF6GEJPQNQI[8QNRR FGXGNQROGPVQHRTQRGNNGTRGTHQTOCPEGCPFQRVKOK\CVKQP ■ 9KPVGT/CPF$TGKVUCOVGT%%QWRNKPIQH4GEWTTGPV VQQNEJCKPYKVJTGURGEVVQGNGEVTKECNN[FTKXGPƅKIJVXGJKENGU CPF5VCVKE0GWTCN0GVYQTM#RRTQCEJGUHQT+ORTQXGF CPFƅWKFUVTWEVWTGKPVGTCEVKQPQHOGODTCPGV[RGNKHVKPI /WNVKUVGR#JGCF6KOG5GTKGU2TGFKEVKQP00(/8QN UWTHCEGUCRRNKGFVQYKPFVWTDKPGTQVQTU 5RTKPIGTRR ■ 9KPVGT/CPF$TGKVUCOVGT%#RRNKECVKQPQH7PUVGCF[ Approach to Solution #GTQF[PCOKE4GFWEGF1TFGT/QFGNKPI6GEJPKSWGUVQC 6JGKPXGUVKICVKQPUJCXGDGGPRGTHQTOGFWUKPIDQVJYKPF %QORNGZ%QPƄIWTCVKQP+(#5& VWPPGNGZRGTKOGPVUCPFUVCVGQHVJGCTVPWOGTKECNUKOWNC- VKQPU+PJQWUGEQFGUCTGEQPVKPQWUN[GNCDQTCVGFHWTVJGT in the context of aeroelasticity analysis with respect to VKOGCEEWTCVGHWNN[EQWRNGFUKOWNCVKQPUCUYGNNCUVJG CRRNKECVKQPQHPQXGNPGWTQHW\\[DCUGFTGFWEGFQTFGT OQFGNU%QOOGTEKCN%(&EQFGUCTGCRRNKGFVQƅQY EQPVTQNRTQDNGOUCPFJGNKEQRVGTCGTQF[PCOKEUCFFTGUUKPI WPUVGCF[NQCFUCPCN[UKUCPFCGTQCEQWUVKEU

Key Results ■ $W\KEC#$CTVCUGXKEKWU,CPF$TGKVUCOVGT%'ZRGT- KOGPVCNKPXGUVKICVKQPQHJKIJKPEKFGPEGFGNVCYKPIƅQY EQPVTQN'ZRGTKOGPVUKP(NWKFU8QN ■ $W\KEC#CPF$TGKVUCOVGT%'ZRGTKOGPVCNCPF 0WOGTKECN+PXGUVKICVKQPQP&GNVC9KPI2QUVUVCNN(NQY 6GUVDGFQHCPGNCUVQƅGZKDNGOGODTCPGYKPIEQPƄIWTCVKQPOQWPVGFKPVJG %QPVTQN00(/8QN5RTKPIGTRR test section of wind tunnel A

104 Aerodynamics and Fluid Mechanics

Modal Decomposition for Vehicle Aerodynamics

6JG&TKX#GTTGHGTGPEGOQFGNKPPQVEJDCEMEQPƄIWTCVKQP YKVJUVTWEVWTGFWPFGTDQF[GPIKPGDC[ƅQYQRGPYJGGN JQWUGUCPFQRGPTQVCVKPITKOUKUUKOWNCVGFKPYKPFVWPPGN EQPFKVKQPUYKVJCTQNNKPITQCFU[UVGO6JGTGUWNVUHTQO %(&CTGRTQEGUUGFWUKPIVJG&/&CRRTQCEJFGUETKDGF CDQXGCPFVJGOQUVFQOKPCPVƅQYUVTWEVWTGUCTGXKUW- CNK\GFCPFFKUEWUUGF5OCNNUECNGFGVCEJOGPVUVJCVCTG IGPGTCVGFHCTWRUVTGCOQHVJGOGCPFGVCEJOGPVNKPG QHVJGXGJKENGoUTGCTGPFVTCXGNFQYPUVTGCOCNQPIVJG UWTHCEGVTKIIGTKPINCTIGUECNGUVTWEVWTGUKPVJGYCMG Iso-surfaces of the streamwise 6JGHTGSWGPE[QHVJQUGUVTWEVWTGUKUCNUQFQOKPCPVKPVJG velocity component of the most HTGSWGPE[URGEVTCQHVJGKPVGITCVGFHQTEGEQGHƄEKGPV dominant DMD mode at 9Hz

Publications #PGYOQFCNFGEQORQUKVKQPCRRTQCEJKUGORNQ[GF ■ -KGYCV*CCI+PFKPIGT

105 Aerodynamics and Fluid Mechanics

.COKPCTVWTDWNGPV6TCPUKVKQPYKVJ%JGOKECN 0QP 'SWKNKDTKWOKP*[RGTUQPKE$QWPFCT[.C[GT(NQYU

Key Results ■ #&K)KQXCPPKCPF%5VGOOGT0WOGTKECN5KOWNCVKQPU QHVJG*KIJ'PVJCNR[$QWPFCT[.C[GTQPC)GPGTKE %CRUWNG)GQOGVT[YKVJ4QWIJPGUU0GY4GUWNVUKP 0WOGTKECNCPF'ZRGTKOGPVCN(NWKF/GEJCPKEU:+ 0QVGU QP0WOGTKECN(NWKF/GEJCPKEUCPF/WNVKFKUEKRNKPCT[ &GUKIP %QPVTKDWVKQPUVQVJGVJ56#$ &).45[ORQUKWO$TCWPUEJYGKI)GTOCP[RR  ■ %5VGOOGT/$KTTGTCPF0##FCOU&KUVWTDCPEG &GXGNQROGPVKPCP1DUVCENG9CMGKPC4GCEVKPI *[RGTUQPKE$QWPFCT[.C[GT,QWTPCNQH5RCEGETCHVCPF 4QEMGVU   RRCPFRR

Computational setup for a roughness patch on a re-entry capsule

Motivation $NWPVDQFKGUTGVWTPKPIHTQOURCEGCTGUWDLGEVVQKOOGPUG JGCVNQCFUNGCFKPIVQCDNCVKQP4QWIJPGUUGUQPVJGUG CDNCVKPIUWTHCEGUECPKPFWEGNCOKPCTVWTDWNGPVVTCP- UKVKQPKPCPQVJGTYKUGNCOKPCTƅQY.COKPCTVWTDWNGPV VTCPUKVKQPKPETGCUGUVJGJGCVNQCFQPVJGUWTHCEG6JKU UGNHGPGTIK\KPIGHHGEVECPNGCFVQCECVCUVTQRJKEHCKNWTG QHVJGURCEGETCHV6JGTQNGQHVJGEJGOKECNOQFGNNKPI KPJKIJVGORGTCVWTGDQWPFCT[NC[GTUKPGSWKNKDTKWOCPF PQPGSWKNKDTKWOKUVJGOCKPHQEWUQHVJGPWOGTKECNYQTM

Approach to Solution &KTGEVPWOGTKECNUKOWNCVKQPU &05 CTGEQPFWEVGFQP PCVKQPCN*2%HCEKNKVKGUUWEJCU5WRGT/7%CPF*.45 &05TGUWNVUHTQOXQTVKECNFKUVWTDCPEGUKPFWEGFD[UWTHCEGTQWIJPGUUKP 4GUWNVUUJQYVJCVTQWIJPGUUYCMGUCTGUWDLGEVVQCP CTGCEVKPIGPXKTQPOGPV6JGYCMGQHVJGTQWIJPGUUGNGOGPVUDGEQOGU WPUVCDNGCPFNCOKPCTVWTDWNGPVVTCPUKVKQPVCMGURNCEG KPETGCUGFKPUVCDKNKV[KPVJGRTGUGPEGQHEJGOKECNTGCEVKQPU CPFPQPGSWKNKDTKWOGHHGEVU

106 Aerodynamics and Fluid Mechanics

6JQOCU*QRHGU/5E Research Foci 0KNU*QRRG/5E ■ 0WOGTKECNƅWKFCPFƅQYOQFGNKPICPF 0CGKOGJ*QUUGKPK/5E UKOWNCVKQP :KCQDKP*W/5E ■ %QORNGZƅWKFU

107 Aerodynamics and Fluid Mechanics

Selected Publications 2017 ■ -PQVJ($TGKVUCOVGT%#GTQF[PCOKE ■ 9KPVGT/$TGKVUCOVGT%%QWRNKPIQH ■ $GDCP$5EJOKFV5,#FCOU 6GUVKPIQH*GNKEQRVGT5KFG+PVCMG4GVTQ 4GEWTTGPVCPF5VCVKE0GWTCN0GVYQTM 0#0WOGTKECNUVWF[QHUWDOGTIGF ƄV/QFKƄECVKQPU#GTQURCEG 8QN|   #RRTQCEJGUHQT+ORTQXGF/WNVKUVGR ECXKVCVKPIVJTQVVNGƅQYU#VQOK\CVKQP 2017 #JGCF6KOG5GTKGU2TGFKEVKQP+P CPF5RTC[U   RR ■ 2CP5#FCOK5*W:#FCOU &KXGTUG *TUI 0GY4GUWNVUKP0WOGTK ■ $W\KEC#PFTGK$CTVCUGXKEKWU, 0#5JQEMDWDDNG+PVGTCEVKQP0GCTC ECNCPF'ZRGTKOGPVCN(NWKF/GEJCPKEU $TGKVUCOVGT%'ZRGTKOGPVCNKPXGUVK %QORNKCPV6KUUWGNKMG/CVGTKCN+PVGT :+5RTKPIGTRR| gation of high-incidence delta-wing PCVKQPCN5[ORQUKWOQP6WTDWNGPEG ■

108 Ergonomics

&GƄPKVKQPCPFGXCNWCVKQPQHJWOCPOCEJKPGKPVGTCEVKQPCPFCPVJTQRQOGVTKENC[QWVQHVGEJPKECNU[UVGOU 5CHGV[GHƄEKGPE[QHWUGCPFWUGTUCVKUHCEVKQP

■ The focus of the Chair of Ergonomics in 2017 was to further increase the activities in the area of cooperative interaction between human and vehicle or human and robot on a global level. National and internationally funded project proposals were successful to continue the fundamental research at the institute.

The second focus was to intensify the developments humans. The driving simulators at the Chair of Ergonomics and research activities on digital human modeling and helped to answer these questions. Within the scope of automated driving. Regarding this, the research in digital further national and international projects, the cooperation human modeling examined research questions about and interaction of vehicles and pedestrians was examined. future vehicle concepts. In addition, further funded pro- For this purpose, the pedestrian simulator of the chair was jects investigated automated driving and its impacts on used.

*WOCP/QFGNKPI

Product and workspace designs belong to the main tasks of ergonomics. Today, emerging ergonomic problems can DGUQNXGFQTGXCNWCVGFOQTGGHƄEKGPVN[CPFEQORGVKVKXGN[ with digital human models. The development of biome- chanical, physiological, anthropometrical and cognitive models is the main task of the research group ‘Human Modeling’. Biomechanics, physiology and anthropometry can already be precisely modelled and simulated. There- HQTGTGNKCDNGRTGFKEVKQPUQHVJGKPƅWGPEGQHUKPINGHCEVQTU on discomfort, load, workload and human performance Research Project RAMONA: How can autonomous buses be part of the are possible. Human beings are complex systems, whose public transportation system? (Reference: Ingrid Bubb, TUM, 2017) RCTCOGVGTUECPKPƅWGPEGGCEJQVJGT(QTKPUVCPEGFKU- comfort and workload depend on an interaction of factors. 6JG4#/10#TGUGCTEJRTQLGEV4GCNKUCVKQPQH However an interdisciplinary approach for a holistic human #WVQOCVGF/QDKNKV[%QPEGRVUKP2WDNKE6TCPURQTVCVKQP model is still missing. Basic research, crosslinking individual systems, modeling By using autonomous buses, local authorities and oper- approaches and application-oriented studies are used for CVQTUJQRGVQOCMGRWDNKEVTCPURQTVOQTGGHƄEKGPVUCHG a further development of physical, numerical and theoreti- CPFƅGZKDNG*QYGXGTCPWODGTQHSWGUVKQPUCTGTCKUGF ECNOQFGNU&KHHGTGPVƄGNFUQHCRRNKECVKQPHQTCUJQNKUVKE regarding the potential use of such vehicles: How do pas- as possible models are automotive, mobility, production, sengers deal with the new situation? What are possible logistics and sports. The human modeling considers in QRRQTVWPKVKGUCPFTKUMUECWUGFD[CWVQOCVGFCPFƅGZKDNG addition to objective parameters of load, also workload mobility concepts? What frameworks are necessary for a and subjective measures, as comfort and discomfort in successful application? the following projects: The research project RAMONA (Start: July 2017, End: ■ .KHVKPI#KFs&GXGNQROGPVCPF8GTKƄECVKQPQH$QF[ June 2020) tries to answer these and other questions. The worn Lifting Equipment for Work Support (BMBF, project will not focus on the technical feasibility of auton- completed 2017) omous systems but rather on how automated mobility ■ UDASim – Global Discomfort Assessment for Vehicle concepts can be integrated into existing public transport Passengers by Simulation (BMBF/KMU Innovativ, systems and how passengers will accept those systems. completed 2017) The project will work with a Wizard-Of-Oz method, in ■ RAMONA – Realisation of Automated Mobility Con- which the user thinks they are operating with an autono- cepts in Public Transportation (BMWi, started in July mous system. However, in reality, a hidden operator drives 2017) the bus. Alongside this investigation, the project consor- ■ Truck 5.0 – Concepts of Truck Cabins for 2030/35 tium will perform virtual experiments to evaluate possible (MAN.TUM, started April 2016) interaction and communication models between different

109 Ergonomics

road users (e.g. pedestrian and bus) and to design the interior and exterior of an autonomous bus. The Chair of Ergonomics will work on this project together with the German Aerospace Center (DLR, Institute for Transport Research, Institute for Vehicle Concepts, and +PUVKVWVGHQT6TCHƄE5[UVGO6GEJPQNQI[ VJG*QEJUEJWNG Esslingen, the Berlin Transport Company (BVG), the Asso- ciation of German Transport Companies (VDV) and the Berlin Senate Department for the Environment, Transport and Climate Protection.

6TWEMs%QPEGRVUQH6TWEM%CDKPU HQT(WVWTG8GJKENGU

In this day and age, the automobile industry has to OCPCIGCJWIGEJCNNGPIGQPVJGQPGJCPFVTCHƄECPF transport volume is increasing more and more; on the other hand fuel consumption has its limits. This trade-off is well known, but the problem it presents has not yet been UQNXGF2CTVKEWNCTN[VTWEMUYKVJVJGKTJKIJFTCIEQGHƄEKGPV are not exactly known to be environmentally friendly. To improve the environmental footprint of the trucks, the legal length regulations will be changed so that the cabs have a more aerodynamic shape. An aerodynamic exterior design has a natural effect on the interior of the vehicle and consequently on the driver’s workplace. Against this background and in the context of the three-year research project “Concepts of Truck Cabins for Future Vehicles” funded by MAN Truck & Bus AG, fundamental investigations into future drivers’ workplaces will be carried out. This fundamental investigation can be summarised in three main aspects; view and seating Truck ingress model (Reference: Tobias Hase, TUM, 2017) position, roominess and cabin layout, and ingress and egress motion. The subtopic ‘view and seating position’ with new cabin layouts and their impact on the driver’s focuses on the effects of the lateral and vertical movement feeling of roominess. Finally the truck ingress will be of the seating position on the direct view of a truck driver. investigated in terms of motion strategies and the desired The work package ‘roominess and cabin layout’ deals entering geometry.

#WVQOCVGF&TKXKPI

Next to the advances in sensor and actuator technologies, successfully handing back the driving task to a human the human factors aspect of automated driving keeps driver in case such a system reaches its functional limit on contributing towards the goal of self-driving cars. The has been and continues to be a complex endeavor. Chair of Ergonomics has had its share so far in adding to /WNVKRNGKPƅWGPEGUNKMGFKUVTCEVKQPVJTQWIJUGEQPFCT[ the research base that will one day allow fully autonomous tasks, basic trust in such systems and the danger of systems to be built. UNGGRKPGUUVJTQWIJCPKPUWHƄEKGPVN[EJCNNGPIGFJWOCP Complying with the international known SAE J3016 driver, have been the focus of research on highway roads. UVCPFCTFFGƄPKVKQPOQUVTGUGCTEJEQPEGPVTCVGFQP.GXGN Pushing forward new environments, like urban areas as – conditionally automated driving, in which an automated YGNNCUVJGKPVGTCEVKQPYKVJCYKFGTTCPIGQHFKHHGTGPVVTCHƄE system controls the vehicle in both lateral and longitudinal participants, pose new challenges for the development of direction under normal circumstances. The challenge of automated cars.

110 Ergonomics

In addition, new concepts of dividing the driving task will be conceived to support the driver in complex urban between the machine and the human become the settings, which are characterized by a high information center of attention for the ongoing research. Finally, the density and short response time. The demonstration human-centered approach of designing automated driving of these automated driving functions will be realized in functions raises issues of how to take into account every exemplary pilot applications. driver’s individual preferences on the road.

2#-Q5s2GTUQPCNK\GF#FCRVKXG%QQRGTCVKXG5[UVGOU "%KV[s#WVQOCVGF%CTUCPF+PVGNNKIGPV6TCHƄEKPVJG%KV[ HQT#WVQOCVGF8GJKENGU

(Reference: Consortium @City, 2017) (Reference: Consortium PAKoS, 2016)

The project @City funded by the Federal Ministry for In three years’ time, the project PAKoS aims at introducing Economic Affairs and Energy started in September 2017 an automation manager capable of displaying the full use and will run for four years. case of an automated vehicle. &WGVQVJGEQORNGZKV[QHWTDCPVTCHƄECTGCUEKVKGUUGV This process starts with the possibility for the driver to some special challenges for use cases in the automated prepare the automated vehicle remotely via a smartphone driving context. Various roundabouts and crossings app in a way that it already suits the driver’s personal complicate the situation understanding compared with preferences upon arrival. During the drive the aim is to a well-structured environment like motorways. Reliable monitor and identify the user state and then to use this situation understanding of the setting lays the foun- information to adapt the automated driving functions dation for every automated driving function. The goal appropriately. The third big part of PAKoS focuses on a of the project @CITY is to enable automated driving in new way of handling the take-over process during which WTDCPCTGCU#WVQOCVGFXGJKENGUCPFKPVGNNKIGPVVTCHƄE the driver has to regain full control of the vehicle. Unlike CTGVJGMG[GNGOGPVUHQTUCHGGHƄEKGPVCPFUVTGUUHTGG the conventional binary switch from automation to driver, a HWVWTGVTCHƄE6JG[UJQWNFPQVQPN[RTQXKFGVJGJKIJGUV cooperative approach is investigated, in which automation possible assistance, but also enhance the interaction and driver simultaneously control the vehicle during the between vehicle and driver or rather between vehicle take-over process. and vulnerable road users like pedestrians and cyclists. To tackle these interdisciplinary challenges, a consortium 6JGRTQLGEVCKOUCVGHƄEKGPVCPFTQDWUVCNIQTKVJOUHQT of nine German partners was formed: Karlsruher Institute environment detection and the driver’s situation under- of Technology, Technical University of Munich, Fraunhofer standing. Moreover, its goals are the achievement of a Institute of Optronics, System Technologies and Image precise digital map, well-designed automation as well Exploitation, Robert Bosch GmbH, BMW AG, Spiegel as the ideal integration of the human driver. Based on Institute Mannheim GmbH & Co. KG, Videmo Intelligent these goals automated driving functions for urban areas Video Analysis GmbH & Co. KG, mVise AG, b.i.g. security.

+PVGTCEVKQP%QQRGTCVKQP

The research group investigates interaction processes to be developed to allow for the performance-oriented between a human agent and one or multiple cooperative assessment of cooperation across multiple domains. With partners. These partners can represent other humans as regard to robots, effective strategies are required for both well as technological devices such as robots, vehicles locomotive and evasive actions by designing legible and or aircraft. In the context of cooperation, it is important predictable movements. A robot’s motion can implicitly to balance partially competing individual and shared convey intentions to the human agent, who, visually per- goals of the parties involved, which can be achieved ceiving and interpreting the respective information, reacts by diverse mechanisms of communication. Metrics are by performing certain movements themselves within

111 Ergonomics

the shared space. The adequate design of movement +/#)KP' strategies thus fosters the achievement of both individual and shared goals. In general, acceptance and trust of the human operator have to be considered in addition to the interpretation of human movements. Concerning auto- mated vehicles, similar mechanisms apply to the design of driving behavior. To ensure smooth procedures, driving strategies must be unambiguous and easily recogni z- CDNGVQQVJGTVTCHƄERCTVKEKRCPVUUWEJCUJWOCPFTKXGTU cyclists, and pedestrians. Accordingly, methods have to DGFGƄPGFHQTVJGFGUKIPCPFGXCNWCVKQPQHWPGSWKXQECN and safe trajectories. Illustration of head up display GNGOGPVUKPCICOKƄGFFTKXGT assistance system to motivate and facilitate cooperation 6GNGRTGUGPEG5[UVGOHQT9K\CTFQH1\5VWFKGU (Reference: Sandra Zollner, TUM, 2017)

Automated and autonomously moving The collaborative research project IMAGinE (Intelligent robotic systems are increasingly maneuver automation – cooperative hazard avoidance merging in human dominated areas in real time) will develop new and innovative assistance and therefore will have to interact and systems which will support the cooperative driving of the coordinate with pedestrians in public future. and private spaces. The Human-Ro- To realize the potential for cooperation between vehicles bot Interaction group (part of Coop- and between vehicles and the infrastructure major tech- erative Systems and Automation) nological challenges need to be solved. IMAGinE will take at the Chair of Ergonomics applies QPVJGUGEJCNNGPIGUD[sHQTVJGƄTUVVKOGsKORNGOGPVKPI a commercially available robotic communication protocols for automated information telepresence system to investigate exchange in real time as well as the alignment and the social interactions in Wizard-of-Oz decision-making processes between intelligent systems experiments. The robot is controlled and drivers. The human factors aspect in this project via keyboard, mouse or gamepad targets questions regarding the driver’s motivation to and hotkeys are programmed to cooperate with other drivers and the driver’s acceptance enable repeatable robot movement of assistance systems that facilitate cooperative maneu- behavior, initiated by the wizard. vers. Present research activities target the While the research project is organized (vertically) into six KFGPVKƄECVKQPCPFSWCPVKƄECVKQPQH sub-projects its contribution to current and future research implicit (non-verbal) communication GPFGCXQTUKPVJGƄGNFQHEQPPGEVGFCPFCUUKUVGFFTKXKPI via movement cues of mobile robot DGEQOGUXKUKDNG JQTK\QPVCNN[ VJTQWIJƄXGEQTGKPPQXC- systems. Based on the concept tions: of legibility (behavior that leads to ■ Cooperative functions understanding the robot’s intentions) ■ Shared environment perception model and predictability (behavior that ■ Communication mechanism for cooperative behavior meets the human observer’s expec- ■ Simulation environment for cooperative driving tations and lets the user anticipate maneuvers future states), robotic movements ■ Human-machine interaction are investigated and evaluated in The BEAM telepres- quantitative (e.g. motion and eye The project will run for four years – beginning on Sep- ence system tracking, physiological measures) tember 1, 2016. First results are available. The IMAGinE (Reference: Jonas Schmidtler, TUM, 2017) and qualitative (e.g. questionnaires, consortium is formed by twelve renowned companies and interviews, video feed rating) studies research institutions in Germany: Adam Opel AG (project with participants. For more information please do not hesi- coordinator), BMW AG, Continental Teves AG & Co. oHG, tate to contact Jakob Reinhardt ([email protected]) Daimler AG, Hessen Mobil – Straßen- und Verkehrs- or Jonas Schmidtler ([email protected]). management, IPG Automotive GmbH, MAN Truck & Bus

112 Ergonomics

AG, Nordsys GmbH, Robert Bosch GmbH, Technische Identifying the kind and magnitude of potential differences Universität München, Volkswagen AG, Würzburger Institut is essential to allow for the sound and meaningful inter- für Verkehrswissenschaften GmbH. pretation of existing results and to support the design of HWVWTGUVWFKGURTQOQVKPIVTCHƄEUCHGV[CPFGHƄEKGPE[

2GF5K8CNs%TQUU2NCVHQTO8CNKFCVKQPQH2GFGUVTKCP 5KOWNCVQTU KPVGT#%6s&GUKIPKPIEQQRGTCVKXGKPVGTCEVKQPQH CWVQOCVGFXGJKENGUYKVJQVJGTTQCFWUGTUKPOKZGF Stimulated by technological progress and a growing VTCHƄEGPXKTQPOGPVU concern for vulnerable road users, pedestrian simulators JCXGDGEQOGCXCNWCDNGCPFƅGZKDNGVQQNVQCPCN[\G JC\CTFQWUVTCHƄEEQPUVGNNCVKQPUCPFVJGKPVGTCEVKQPYKVJ recent technologies (e.g. vehicle automation). At the same time, the abstraction inherent to any simulation results in differences between virtual and naturalistic environments, potentially altering human behavior and thus compromis- (Reference: Consortium interACT, 2017) ing the generalizability of experimental results. To investigate the level of agreement in perceptual, As automated vehicles (AVs) will be deployed in mixed decisional and motoric processes, PedSiVal employs a VTCHƄEVJG[PGGFVQKPVGTCEVUCHGN[CPFGHƄEKGPVN[YKVJ threefold approach: QVJGTVTCHƄERCTVKEKRCPVU6JGKPVGT#%6RTQLGEVYKNNDG ■ 6QCUUGUUVJGKPƅWGPEGQHVGEJPQNQIKECNEJCTCEVGTKUVKEU working towards the safe integration of AVs into mixed two diverse simulator settings are compared. While VTCHƄEGPXKTQPOGPVU+PQTFGTVQFQUQKPVGT#%6YKNN the French IFSTTAR employs a CAVE consisting of analyze today’s human-human interaction strategies, and ten projection screens, at the Chair of Ergonomics the implement and evaluate solutions for safe, cooperative, environment is displayed via a head-mounted device. and intuitive interactions between AVs and both their Differences include the potential for stereoscopic vision QPDQCTFFTKXGTCPFQVJGTVTCHƄERCTVKEKRCPVU and the visibility of the own body in contrast to an Across three European countries (Germany, Greece, & the avatar. 7- FCVCYKNNDGEQNNGEVGFQPJQYJWOCPVTCHƄERCTVKEK ■ To evaluate more generally the employment of a RCPVUKPVGTCEVKPTGCNVTCHƄEEQPFKVKQPU5RGEKƄEUKVWCVKQPU virtual environment, human behavior on a test track is YKNNDGKFGPVKƄGFVQGPCDNGOGCPKPIHWNEQORCTKUQPU6JKU compared to a matching simulated environment. data will inform the development of interaction models ■ To gain insight into behavior biased neither by differ- that identify the main communication needs of road ences in perceptual cues, nor by observer effects or WUGTUKPHWVWTGVTCHƄEUEGPCTKQUKPEQTRQTCVKPI#8U6JGUG GZRGTKOGPVCNCTVKƄEKCNKV[FCVCHTQOPCVWTCNKUVKEVTCHƄE interaction models will then be used to improve software observations are gathered at various locations in algorithms and sensor capabilities for recognizing the Munich. intentions of surrounding road users, and predicting their behaviours, enabling real cooperation between AVs and other road users. On the vehicle side, the AV itself will be controlled by a newly developed Cooperation and Communication Planning Unit that integrates the planning algorithms, provides synchronized and integrated interac- tion protocols for the AV, and includes a safety layer that is based on an easy-to-verify software with novel methods for fail-safe trajectory planning. In addition, the interACT project team will use a user-centered design process to develop, implement and evaluate novel human-machine interaction elements for communicating with surrounding road users. interACT results will be demonstrated using driving and pedestrian simulators and two vehicle demonstrators.

Pedestrian Simulator (Reference: Tobias Hase, TUM, 2017)

113 Ergonomics

'ZVGTPCN2J&ECPFKFCVGU %QWTUGU Stephanie Cramer, M.Sc. ■ Arbeitswissenschaft/Ergonomics Oliver Jarosch, M.Sc. ■ Produktergonomie Dipl.-Ing. Philipp Kerschbaum ■ Produktionsergonomie Kamil Omozik, M.Sc. ■ Softwareergonomie Lisa Rücker, M.Eng. ■ Menschliche Zuverlässigkeit Dipl.-Ing. Sebastian Smykowski ■ Ergonomisches Praktikum Dipl.-Inf. Nadine Walter ■ RAMSIS Praktikum 2TQH&TRJKN Veronika Weinbeer, M.Sc. ■ Versuchsplanung & Statistik -NCWU$GPINGT Dipl.-Ing. Tom Winkle ■ Human Factors of Automated & Cooperative Driving %QPVCEV 6GEJPKECN5VCHH ■ Interaction Programming & Protoyping www.ergonomie.tum.de Michael Arzberger [email protected] Heribert Hart 5GNGEVGF$WDNKECVKQPU Phone +49.89.289.15388 Robert Papist ■ Bengler, K., Drüke, J., Hoffmann, S., Leonid Shkolnikov Manstetten, D., & Neukum, A. (Eds.). /CPCIGOGPV (2017). UR:BAN Human Factors in Prof. Dr. phil. Klaus Bengler, Director 4GUGCTEJ(QEWU 6TCHƄE#RRTQCEJGUHQT5CHG'HƄEKGPV ■ Digital human modeling for ergonomic CPF5VTGUUHTGG7TDCP6TCHƄE #FOKPKUVTCVKXG5VCHH anthropometric workplace layout, Wiesbaden: Springer Vieweg. Ioana Bolocan products and cars ■ Cramer, S., Miller, B., Siedersberger, Simona Chiritescu-Kretsch, M.A. ■ Biomechanics modeling of forces and K.-H., & Bengler, K. (2017). Perceive Doris Herold motions the Difference: Vehicle Pitch Motions as Julia Fridgen ■ Investigation and design of human- Feedback for the Driver. In Proceedings machine interaction of the 2017 IEEE International 4GUGCTEJ5EKGPVKUVU ■ Investigation of concepts for interaction Conference on Systems, Man, and Dr.-Ing. Herbert Rausch in cooperative systems Cybernetics (SMC) (pp. 1699–1704). Dr.-Ing. Verena Knott ■ Development of measurement metrics Elsevier. Dr. phil. Antonia S. Conti-Kufner ■ Research on motivational aspects of ■ Feldhütter, A., Gold, C., Schneider, S., Adam Caroline, M.Sc. user behavior & Bengler, K. (2017). How the Duration Carmen Aringer-Walch, M.A. QH#WVQOCVGF&TKXKPI+PƅWGPEGU6CMG Dipl.-Ing. Ingrid Bubb %QORGVGPEG Over Performance and Gaze Behavior. Dipl.-Ing. André Dietrich ■ Interdisciplinary research approach In C. Schlick, S. Duckwitz, F. Flemisch, Alexander Eichler ■ Development of evaluation methods, M. Frenz, S. Kuz, A. Mertens, & S. Alexander Feierle, M.Sc. models and implementation of Mütze-Niewöhner (Eds.), Advances Anna Feldhütter, M.Sc. interaction concepts in the areas of in Ergonomic Design of Systems, Tanja Fuest, M.Sc. anthropometry/biomechanics as well Products and Processes. Proceedings Joel Gonçalves, M.Sc. as cognitive ergonomics of the Annual Meeting of GfA 2016 1st Dipl.-Ing. Patrick Gontar ed/The best of (pp. 309–318). Berlin: Dipl.-Ing. Martin Götze +PHTCUVTWEVWTG Springer. https://doi.org/10.1007/978- Jennifer Hebe, M.Sc. ■ Static driving simulator mockup 3-662-53305-5_22 Tobias Hecht, M.Sc. ■ Dynamic driving simulator mockup ■ Schmidtler, J., & Bengler, K. (2017). Benjamin Heckler, M.Sc. ■ Static driving simulator (360° fov) +PƅWGPEGQH5K\G9GKIJV+NNWUKQPQP Luis Kalb, M.Sc. ■ Modular ergonomic mockup (MEPS) Usability in Haptic Human-Robot Ralf Kassirra ■ Remote and head-mounted eye Collaboration. IEEE transactions Dipl.-Psych. Moritz Körber trackers on haptics. Advance online Dipl. Wirtsch.-Ing. Christian Lehsing, M.Sc. ■ Pupil dilation measurement equipment publication. https://doi.org/10.1109/ Sebastian Müller, M.Sc. ■ VICON motion capturing system TOH.2017.2757925 Sebastianus Petermeijer, M.Sc. ■ CAPTIV motion analysis system ■ Yang, Y., Orlinskiy, V., Bubb, I., & Johannes Potzy, M.Sc. ■ Seating lab Bengler, K. (2016). Development and Lorenz Prasch, M.Sc. ■ Seat test dummy Evaluation of a Method for an Intuitive Dipl.-Ing. Jonas Radlmayr ■ Driver distraction usability lab Driver’s Workplace Ad just ment in Jakob Reinhardt, M.Sc. ■ Climate chamber a Motor Vehicle. In D. Waard de, Michael Rettenmaier, M.Sc. ■ Biomechanical laboratory A. Toffetti, R. Wiczorek, A. Sonder- Dipl.-Ing. Jonas Schmidtler ■ Cardiopulmonary exercise testing eg ger, S. Röttger, P. Bouchner, ... Sonja Schneider, M.Sc. ■ Pedestrian simulator -|$TQQMJWKU 'FU 2TQEGGFKPIUQH Michael Stecher, M.Sc. the Human Factors and Ergonomics Dipl.-Ing. Annika Ulherr Society Europe Chapter 2016 Annual Matthias Walter, M.Sc. Con ference (HFES) (pp. 107–122), Oliver Winzer, M.Sc. open access. Retrieved from http:// Yucheng Yang, M.Sc. www.hfes-europe.org/wp-content/ uploads/2016/11/Yang2017.pdf

114 Bioseparation Engineering

2TQEGUUFGXGNQROGPVCPFKPVGPUKƄECVKQPRCTVKENGVGEJPQNQI[CFUQTRVKQPƄNVTCVKQPCPFGZVTCEVKQP

■6JG$KQUGRCTCVKQP'PIKPGGTKPI)TQWRFGCNUYKVJFKHHGTGPVCURGEVUQHVJGKUQNCVKQPCPFRWTKƄECVKQP QHDKQOQNGEWNGUHQTVJGRJCTOCEGWVKECNQTEJGOKECNKPFWUVT[9GCTGHQEWUGFQPCFUQTRVKQPƄNVTC- tion and extraction as separation methods as well as their integration into the production process. In addition to the experimental approaches we use COMSOL and COSMO-RS for modelling and simulation.

2017 was a particularly successful year for the Biosepa- In one project, we focus on a multi-scale approach to ration Engineering Group. The small group can look back better understand a potential-controlled chromatography on three completed Ph.D. theses, seven peer-reviewed HQTRTQEGUUKPVGPUKƄECVKQP+PVJGUGEQPFRTQLGEVYG papers, and one patent application. In addition, we work closely with industry to establish a new sustainable launched two new third-party funded projects with various process for purifying small protective solutes. academic and industrial partners.

0GY5VCVKQPCT[2JCUGU

Preparative chromatography for the separation of biomolecules. Source: Raphael Lichtecker

New stationary phases are essential in bioseparation Projects sciences; classical phases are already well developed and ■ Synthesis, functionalization, and characterization of reach their limits. The Bioseparation Engineering Group is magnetic nanoparticles specialized in synthesis and functionalization of magnetic ■ New conductive materials for potential-controlled particles and conductive materials as well as their process chromatography implementation. Making use of magnetism or conductivity allows for an additional degree of freedom for state-of- the-art process development.

115 Bioseparation Engineering

Functional Interfaces

In separation sciences the interaction of particulate carri- In contrast, uncontrolled aggregation of particles ers among each other and to target molecules is essential decreases process performance with regard to robust- for process development. Selective interactions as ness, reproducibility, and scalability. All these aspects are well as high binding capacities of target molecules to solid main focus topics of our projects. RJCUGUFGVGTOKPGVJGƄPCNRWTKV[CPF[KGNFCPFVJGTGHQTG the quality in the whole of the separation step. Projects ■ BMBF Biotechnology 2020+ initiative – rational design of peptide-surface interactions ■ &GUKIPQHPGYCHƄPKV[VCIUHQTVJGRWTKƄECVKQPQH recombinant proteins ■ Development of new stationary phases for antibody RWTKƄECVKQP

Structure of Paxclitacel (drug to treat cancer) Source: Ljubomir Grozdev, M.Sc.

Process Development

In addition to the optimization of classical downstream processes new innovative separation techniques as well as integrated process concepts are subjects under research. A focus area is the research on high-gradient magnetic separation, potential controlled chromatography, and membrane assisted extraction.

Projects ■ BMBF Project – HOBBIT – Development of a sustain- able separation process for purifying small protective solutes ■ BMBF e:Bio initiative – SysBioTerp – innovative strate- gies for a sustainable production of bioactive molecules ■ BMBF Project – S3kapel – Multiscale simulation for electrochemical separation processes

Hydrodynamics in a packed bed chromatography Source: Lukas Gerstweiler

116 Bioseparation Engineering

4GUGCTEJ(QEWU Peer-reviewed Publications 2017 ■ Downstream processing ■ Blank-Shim SA, Schwaminger SP, ■ Bioprocess integration Borkowska-Panek M, Anand P, ■ High-gradient magnetic separation Yamin P, Fraga-García P, Fink K, ■ New magnetic or conductive particles Wenzel W, Berensmeier S: Binding ■ Optimization of chromatographic patterns of homo-peptides on bare processes magnetic nanoparticles: insights into Prof. Dr. ■ Biomolecule surface interaction GPXKTQPOGPVCNFGRGPFGPEG5EKGPVKƄE Sonja ■ Extraction Reports, 7, 14047, 2017 Berensmeier ■ Schwaminger SP, Surya R, Filser S, Competence Wimmer A, Weigl F, Fraga-García P, ■ Synthesis and characterization of Berensmeier S: Formation of iron oxide Contact nano- and microparticles nanoparticles for the photooxidation www.mw.tum.de/stt ■ Surface functionalization QHYCVGT#NVGTCVKQPQHƄPKVGUK\GGHHGEVU [email protected] ■ Magnetic separation and automation HTQOHGTTKJ[FTKVGVQJGOCVKVG5EKGPVKƄE Phone +49.89.289.15750 ■ Fermentation Reports, 7, 12609, 2017 ■ Molecular biology, microbiology, ■ Schoemig V, Isik E, Martin L, Management biochemistry Berensmeier S: Solid liquid extraction Prof. Dr. Sonja Berensmeier, Director ■ Simulation with COSMO-RS, COMSOL of porcine gastric mucins from ■ Multiphysics, OpenFoam, and homogenized animal material, RSC Administrative Staff SuperPro Designer Adv., 2017, 7, 39708-39717 Mrs. Susanne Kuchenbaur, Team ■ Schwaminger S, Blank-Shim SA, Assistant Infrastructure Borkowska-Panek M, Anand P, ■ S1 – Labs (working with genetically Fraga-García P, Fink K, Wenzel 4GUGCTEJ5EKGPVKUVU OQFKƄGFOKETQQTICPKUOUsUCHGV[ W, Berensmeier S: Experimental Dr. Paula Fraga Garcia NGXGN| characterization and simulation of Dr. Constanze Finger ■ Parallel bioreactor system amino acid and peptide interactions Priyanka Padwal, Ph.D. ■ High-gradient magnetic separator with inorganic materials, Engineering Silvia Blank, M.Sc. *)/5 in Life Sciences, DOI: 10.1002/ Markus Brammen, M.Sc. ■ &KXGTUGEJTQOCVQITCRJ[CPFƄNVTCVKQP elsc.201700019 Ljubomir Grozdev, M.Sc. systems ■ Schwaminger SP, Fraga-García P, Yasmin Kaveh-Baghbaderani, M.Sc. ■ Particle-/surface analytics (DLS, BET, Selbach F, Hein FG, Fuß EC, Surya R, Lars Janoschek, M.Sc. RAMAN, TGA-MS, DSC, contact angle, Roth HC, Blank-Shim SA, Wagner FE, Lea Martin, M.Sc. VGPUKQOGVT[ Heissler S, Berensmeier S: Bio-nano Veronika Schömig, M.Sc. ■ HPLC systems interactions: cellulase on iron oxide Sebastian Schwaminger, M.Sc. nanoparticle surfaces, Adsorption, 23, Tatjana Turrina, M.Sc. Courses 281-292, 2017. ■ Bioseparation Engineering I + II ■ Schwaminger SP, Blank-Shim 6GEJPKECN5VCHH ■ Biotechnology for Engineers SA, Scheifele I, Fraga-García P, Stefan Darchinger, BTA ■ Practical Training on Bioprocess Berensmeier S: Peptide binding to

Engineering metal oxide nanoparticles, Faraday ■ Practical Training on Particular Nano- Discuss., 2017, 204, 233-250. technology ■ Brammen M, Fraga-García P, ■ Practical Training on Preparative Berensmeier S: Carbon nanotubes – a Chromatography resin for electrochemically modulated ■ Simulation Training by ChromX liquid chromatography. J. Sep. Sci. 40, 1176-1183, 2017. ■ Schwaminger SP, Bauer D, Fraga- García P, Wagner FE, Berensmeier S: Oxidation of magnetite nanoparticles: impact on surface and crystal properties, CrystEngComm, 19, 246- 255, 2017.

117 Wind Energy

Wind energy technology

Mission of TUM Wind Energy Institute (WEI): ‘to educate students and to advance wind energy science and technology towards a fully renewable future energy mix’.

Wind energy has become the number one renewable and mitigate its impacts. To contribute to the achievement source of energy in the world, and it is expected to play an of these goals, the Wind Energy Institute at TUM works ever-growing role in the transition away from fossil fuels. QPDCUKEUEKGPVKƄECPFCRRNKECVKQPQTKGPVGFRTQDNGOU The success of wind energy is primarily due to the great QHVGPKPENQUGEQNNCDQTCVKQPYKVJKPFWUVT[#TGCUQHURGEKƄE progress made in the last decades in understanding the expertise of the institute embrace all main wind-energy- complex physical phenomena that underlie the process of TGNGXCPVUEKGPVKƄEFKUEKRNKPGUKPENWFKPICGTQF[PCOKEU energy conversion from wind, and translating this know- structures, dynamics, materials, controls, with a strong ledge into sound technical solutions. Notwithstanding focus on a multidisciplinary and a system-engineering VJGTGEGPVCFXCPEGUVJGTGCTGUVKNNOCP[UEKGPVKƄECPF point of view. Some of the most exciting on-going projects technological challenges that need to be overcome, in CVVJGKPUVKVWVGCTGDTKGƅ[FGUETKDGFKPVJGHQNNQYKPI order to increase the penetration of wind, reduce its cost

Design of Wind Turbines

The design of wind turbines is an extremely complex multi-disciplinary activity. In the design RTQEGUUQPGOWUVDGCDNGVQƄPFVJGDGUVRQUUKDNG compromises from different and often contrasting requirements. In addition, multiple aspects of the problem have profound and complex couplings, including the aerodynamic and structural designs, the control laws used to govern the machine, and the performance and characteristics of all on-board sub-systems. To address these challenges, we develop automated design proce- dures implemented in sophisticated software tools, which are capable of performing the integrated aerostructural Blade of a 3.4MW wind turbine designed by WEI researchers for the design of a complete wind turbine. Using these tools, WEI international collaborative project IEA Wind Task 37 on wind systems engineering. researchers work on answering the following and many other fascinating questions: Projects ■ 9JCVCTGVJGQRVKOCNOCEJKPGUK\GUCPFEQPƄIWTCVKQPU ■ International collaborative project IEA Wind Task 37 for a given application? ‘Systems Engineering’ ■ 9JCVCTGVJGKORCEVUCPFRQUUKDNGDGPGƄVUQHPGY ■ Industrial Ph.D. project ‘Design of Very Large Light- technologies, as for example passive and active load Weight Rotors’ alleviation methods? And what are their costs and ■ +PFWUVTKCNRTQLGEVn7PEGTVCKPV[3WCPVKƄECVKQPHQT.CTIG drawbacks? Offshore Wind Turbines’ ■ #TGPGYYKPFVWTDKPGEQPƄIWTCVKQPUEQORGVKVKXGYKVJ ■ TUM-Nanyang Technological University (Singapore) standard designs, and if so, for which applications? Ph.D. project ‘Bio-Inspired Wind Turbines for Mon- Is there any advantage in downwind, free-yawing soonal Climates’ OCEJKPGURTGCNKIPGFTQVQTUCEVKXGƅCRUQTKPVJGWUG of unconventional techniques such as active coning and morphing rotors? ■ Will future extremely large blades look similar to the current ones, or are there better and possibly radically different ways of designing blades? ■ How can we hedge against the myriad uncertainties that plague the design and operation of wind turbines and farms? How can we achieve more robust designs and reduce safety factors?

118 Wind Energy

Wind Sensing Technology

approach that we have termed ‘wind sensing’. By the use of wind turbine response data, as provided by strain gages or accelerometers installed on the blades or the nacelle, wind sensing technology computes in real-time the wind conditions at each machine. In turn, better knowledge of the wind is used for improved operation of each wind turbine or the whole wind farm by smart control strategies. 6JGUGCTGUQOGQHVJGMG[UEKGPVKƄESWGUVKQPUYGCTG working on: ■ What wind characteristics can we measure and with what precision? ■ What is the minimum set of sensors that are necessary HQTOGCUWTKPIVJGYKPFKPƅQY! Wind sensing technology in action. Wind turbines detect in real-time the ■ What is the use that can be made of detailed wind YKPFKPƅQYEQPFKVKQPUKPENWFKPIVJGRQUUKDNGRTGUGPEGQHCPKORKPIKPI information at the rotor disk? wake. ■ What new control approaches can be developed based At present, wind turbines are largely unaware of the wind on wind sensing technology? How can wind sensing blowing on their rotor: they are equipped with anemom- improve the way a wind turbine is controlled? And how eters and wind vanes installed on the nacelle, which only does wind sensing enable smart wind farm control measure wind speed and direction at that point in space. methods? Therefore, wind turbines are essentially operating in the dark: they have only a very primitive knowledge of the Projects atmospheric conditions, and they ignore whether or not ■ Industrial project ‘Wind Estimation from Rotor Loads’ they are shaded by other machines. This lack of aware- ■ Industrial project ‘Vertical Wind Shear Estimation from ness clearly hinders the way they are operated. Rotor Loads’ We are working on changing this situation, developing ■ H2020 ETN Project AWESOME ‘Wind Energy Operation new technology that can measure the wind conditions and Maintenance’ at the rotor disk. This is achieved in a radically new way: ■ EU H2020 project ‘CL-WINDCON – Closed Loop Wind turning the whole rotor in a large wind sensor, a novel Farm Control’

Experimental Testing

Experimental testing is crucial for verifying and validating the results of all our research efforts, including mathemat- ical models, simulation tools, control strategies or new VGEJPQNQIKGU6GUVKPIKPVJGƄGNFQPRTQFWEVKQPOCEJKPGU is however very challenging, possibly expensive and often altogether impossible. To address some of the limits of full scale testing, WEI has developed new technology for scaled model testing in boundary layer wind tunnels. These are some of the most important research questions that WEI researchers are trying to answer: ■ Can we replicate in the controlled environment of a wind tunnel some of the key physical aspects of the energy conversion process from wind? How should scaled models be designed in order to match as many of the relevant physical parameters as possible? Top: LES simulation of a single G1 wind turbine; bottom: wake interactions ■ Can we faithfully replicate wake behavior, wake interac- for three aligned G1 wind turbines. tions, and complex terrain effects?

119 Wind Energy

(TQOVJGNGHVXKGYQHVJGPCEGNNGTQVQTU[UVGOQHVJG))UKPCZCTTC[)UKPRCTVKCNYCMGQXGTNCRNQQMKPIWRUVTGCOVQYCTFUVJGYKPF tunnel inlet (notice turbulence-shear-generating spires).

■ Can we go beyond the matching of purely aerodynamic WUGFHQTUVWF[KPIYCMGUVWTDWNGPVƅQYUYKVJKPYKPF effects, replicating at scale also the aeroservoelastic farms and wind plant control, as well as for the planning of behavior of wind turbines? future experiments. ■ Can closed-loop control methods for wind turbines and Experimental activities at WEI are not limited to scaled farms be tested at scale? If so, what do we capture testing. In fact, within a joint project with the research with good precision, and what are the limits of these cluster WindForS (Windenergie-Forschungscluster), scaled models with respect to full-scale reality? we are working on the development of an experimental test site in complex terrain. The test facility, funded by Our scaled models are miniaturized wind turbines and, the German Federal Ministry for Economic Affairs and exactly as full-scale machines, they are governed by located in Baden-Württemberg, will include two highly- closed-loop pitch, torque and yaw controllers. Optionally, instrumented 750 kW wind turbines, as well as extensive a super-controller can be used for the collective control instrumen tation for the measurement of wind conditions. of clusters of wind turbine models, enabling the study of Once operational, the test site will enable new, exciting wind farm control techniques. Our family of wind turbines and unique testing capabilities, paving the way for an includes at present three different sizes: the largest improved understanding of wind conditions and the opti- models (termed G2, with a 2 meter rotor diameter) can be mization of wind turbines for complex terrain applications. optionally equipped with aeroelastically scaled blades, while the smaller ones (G1 and G0.6, respectively of 1 Projects and 0.6 meters of diameter) are used for modeling wind ■ BMWi project ‘WINSENT – Wind Science and Engineer- turbines clusters, studying wake interactions and complex ing in Complex Terrains’ VGTTCKPGHHGEVU#JKIJƄFGNKV[FKIKVCNEQR[QHVJGOQFGNU ■ EU H2020 project ‘CL-WINDCON – Closed Loop Wind and the wind tunnel has been developed by WEI research- Farm Control’ ers, using state of the art CFD techniques coupled with ■ Industrial project ‘Wind Farm Control’ aeroelastic wind turbine models. The experimental results ■ Industrial project ‘Development and Testing of Scaled are used to validate the digital models, which in turn are Offshore Wind Turbine Models’

120 Wind Energy

Control of Wind Turbines and Wind Farms

9KPFHCTOEQPVTQND[YCMGUVGGTKPIVGUVGFKPCDQWPFCT[NC[GTYKPFVWPPGN6JGHTQPVVWTDKPGU[CYUNKIJVN[CYC[HTQOVJGYKPFCPFnENGCPo VJGFQYPUVTGCOOCEJKPGUD[NCVGTCNN[FGƅGEVKPIVJGKTYCMGU(QTVJGENWUVGTQHVWTDKPGUKPVJGƄIWTGVJKUUVTCVGI[NGCFUVQCICKPKPRQYGT output of 15%. (Flow visualization by DTU scanning LiDARS)

Control technology holds much promise for improving the ■ Can we operate wind farms in a way more similar to way wind turbines and wind farms are operated, and may what is done for other conventional energy sources, EQPVTKDWVGUKIPKƄECPVN[VQTGFWEKPIVJGEQUVQHGPGTI[HTQO and can this help in the integration of a higher share of wind. In fact, as sensors become cheaper and more capa- wind in the grid? ble, digital controls can make existing and future assets ■ What knowledge on the wind and the system response ‘smarter’, optimizing the way turbines and farms respond is necessary to enable smart control approaches for to complex inputs and behave in challenging operational turbines and farms? And what sensors can provide scenarios. These are some of the most interesting and such information at a low cost, high availability and RTGUUKPIUEKGPVKƄESWGUVKQPUYGCTGYQTMKPIQP moderate complexity? ■ How can we improve the way wind turbines are controlled, to increase power capture and/or decrease Projects loading to extend life? ■ EU H2020 project ‘CL-WINDCON – Closed Loop Wind ■ Can we move away from the greedy control approach Farm Control’ used today on board wind turbines, where each turbine ■ BMWi project CompactWind ‘Erhöhung des Flächen- is operated individually with little or no consideration of energieertrags in Windparks durch avancierte Anlagen- what neighboring machines are doing? und Parkregelung’ ■ What can be gained by using cooperative control ■ Industrial project ‘Wind Farm Control’ strategies of wind turbines within a farm? By the use ■ Industrial project ‘Development and Testing of Scaled of cooperative control, can we mitigate wake losses Offshore Wind Turbine Models’ or reduce loading? Does the use of smart cooperative ■ Industrial Ph.D. ‘LiDAR-Assisted Control of Wind control lead to new ways of designing future wind Turbines’ farms? And, by using cooperative control, can we also ■ One Ph.D. position (Chinese Scholarship Council) improve the way existing wind farms operate today?

121 Wind Energy

Research Foci Selected Publications ■ Modeling and simulation of wind ■ C.L. Bottasso, S. Cacciola, J. energy systems Schreiber, ‘Local Wind Speed ■ Multidisciplinary design Estimation, with Application to Wake ■ Aeroservoelasticity, loads and stability Impingement Detection’, Renewable ■ Control of wind turbines and farms Energy, 116:155-168, doi:10.1016/j. ■ Wind tunnel testing renene.2017.09.044, 2018. Prof. Dr. ■ Operation and maintenance ■ M. Bertelè, C.L. Bottasso, S. Cacciola, Carlo L. F. Daher Adegas, S. Delport, ‘Wind Bottasso Competence +PƅQY1DUGTXCVKQPHTQO.QCF ■ Multibody dynamics, computational Harmonics’, Wind Energy Science, Contact OGEJCPKEUPQPNKPGCTƄPKVGGNGOGPV doi:10.5194/wes-2017-23, 2017. www.wind.mw.tum.de methods ■ 82GVTQXKæ%.$QVVCUUQn9KPF [email protected] ■ Model reduction and system Turbine Envelope Protection Control Phone +49.89.289.16681 KFGPVKƄECVKQP Over the Full Wind Speed Range’, ■ Design and synthesis of model-based Renewable Energy, doi:10.1016/j. Management controllers renene.2017.04.021, 2017. Professor Dr. Carlo L. Bottasso, Director ■ Design and manufacturing of ■ C.L. Bottasso, ‘The Largest Rotating aeroelastically-scaled and actively Machines on Earth: Challenges and Administrative Staff controlled wind turbine models for wind Opportunities from an Aeroelastic Elfriede Sabine Matzner tunnel testing Perspective and Beyond’, Plenary ■ Data analytics Lecture, IFASD2017 International Research Scientists Forum on Aeroelasticity and Structural Marta Bertelè, M.Sc. Infrastructure Dynamics, Como, , June 25–28, Pietro Bortolotti, M.Sc. ■ Scaled wind turbine and farm models 2017. Helena Canet Tarres, M.Sc. ■ Model building lab ■ G.A.M. van Kuik, J. Peinke, R. Nijssen, Filippo Campagnolo, Ph.D. ■ Computational lab D. Lekou, J. Mann, J.N. Sørensen, Alberto Fortes Plaza, M.Sc. C. Ferreira, J.W. van Wingerden, D. Jaikumar Loganathan, M.Sc. Courses Schlipf, P. Gebraad, H. Polinder, A. Stefan Löw, M.Sc. ■ Introduction to Wind Energy Abrahamsen, G.J.W. van Bussel, J.D. Emmanouil Nanos, M.Sc. ■ Modeling, Control and Design of Wind Sørensen, P. Tavner, C.L. Bottasso, M. Johannes Schreiber, M.Sc. Energy Systems Muskulus, D. Matha, H.J. Lindeboom, Carlo Sucameli, M.Sc. ■ Wind Turbine Simulation S. Degraer, O. Kramer, S. Lehnhoff, M. Chengyu Wang, M.Sc. ■ Wind Turbine Design Sonnenschein, P.E. Sørensen, R.W. Jiangang ‘Jesse’ Wang, M.Sc. ■ Wind Tunnel Testing of Wind Turbines Künneke, P.E. Morthorst, K. Skytte, Robin Weber, M.Sc. ■ Aeroservoelasticity ‘Long-Term Research Challenges in Wind Energy — A Research Agenda by the European Academy of Wind Energy’, Wind Energy Science, 1:1-39, doi:10.5194/wes1-1-2016, 2016.

122 Carbon Composites

Fundamental research on material behavior, processing technology and simulation of high performance composite materials

■ We were very proud that SGL Group has renewed its commitment to endowing our Chair of Carbon Composites (LCC) at the Technical University of Munich (TUM), which began eight years ago. The agreement for a six-year extension was signed by TUM president Prof. Wolfgang A. Herrmann and the SGL Group’s CEO, Dr. Jürgen Köhler in February 2017. As another highlight in 2017 more than 20 doctoral candidates completed their doctoral theses at our chair. We are very delighted that most of our graduates are entering the industry and broadening the network to our industrial partners.

Process Technology for Fibers and Textiles

The Process Technology for Fibers and Textiles group CURKPQHHQHVJGEJCKTYJKEJFGXGNQRUCPFRTQFWEGU focuses on improving manufacturing technologies that high performance composites. The partners submitted CTTCPIGVJGƄDGTUKPVJGKTFGUKTGFQTKGPVCVKQPYKVJKPC CPKPPQXCVKXGRTQEGUUVQRTQFWEGECTDQPƄDGTDKE[ENG composite component. TKOU*CPFNC[WRQHRTGRTGIVJGFGHCEVQUVCPFCTFKP 6JGITQWRoUVJTGGTGUGCTEJVGCOUEQXGTVJGƄGNFUQHDTCKF- sporting goods manufacture, is a very labor intensive KPIVGEJPQNQI[CWVQOCVGFƄDGTRNCEGOGPVCPFVCKNQTGF CPFJGPEGGZRGPUKXGRTQEGUU+PUVGCFVJGPGYRTQEGUU textiles. With highly developed processing equipment, WUGUCEQODKPCVKQPQHCWVQOCVGFYKPFKPICPFDTCKFKPI VJGƄDGTUECPDGDTQWIJVKPVQUJCRGKPCPCWVQOCVGFCPF YKVJUWDUGSWGPV46/KPLGEVKQP#URGEKƄECNN[FGXGNQRGF TGRTQFWEKDNGYC[ removable core system enables consistent net shape preforming and a high ƄDGTXQNWOGEQPVGPV 9KVJVJGPGYRTQEGUU it is possible for /WPKEJ%QORQUKVGUVQ competitively produce %(42DKE[ENGTKOU KP)GTOCP[KPCP affordable price range. AVK regarded this innovative process YQTVJ[QHVJGKT RTGUVKIKQWUCYCTF .%%OCPCIGFVQYKP CP#8-#YCTFHQTVJG VJKTFVKOGKPCTQY CHVGTDGKPICYCTFGF YKVJƄTUVRTK\GUKP Innovation Award Ceremony (left to right) Dr. Rudolf Kleinholz (AVK), Olav Rüger (Munich Composites), Kalle Kind (LCC), VJGn4GUGCTEJCPF Prof. Jens Ridzewski (AVK) 5EKGPEGoECVGIQT[KP CPF Team Braiding Technology – Third Prize at the AVK Award Team Automated Fiber Placement The Industrievereinigung Verstärkter Kunststoffe e.V. 6JG%JCKTQH%CTDQP%QORQUKVGU .%% CV6GEJPKECN #8- EGNGDTCVGFVJGKT+PPQXCVKQP#YCTFQPVJ5GR- 7PKXGTUKV[QH/WPKEJ 67/ FGXGNQRGFCPFKORNGOGPVGF VGODGTCVVJGTF%QORQUKVG%QPITGUUFWTKPI COCPWHCEVWTKPIEQPEGRVHQTCECTDQPƄDGTTGKPHQTEGF VJGVJ%QORQUKVG'WTQRGKP5VWVVICTV6JG%JCKTQH OQFWNGQHCUQWPFKPITQEMGVKPEQQRGTCVKQPYKVJVJG %CTDQP%QORQUKVGU 6GEJPKECN7PKXGTUKV[QH/WPKEJ YQP )GTOCP#GTQURCEG%GPVGT &.4 6JG%(42/QFWNGYCU the category ‘Processes & Procedures’ in cooperation SWCNKƄGFHQTƅKIJVCURCTVQHC4':75TQEMGVOKUUKQPCPF YKVJVJGKPFWUVTKCNRCTVPGT/WPKEJ%QORQUKVGU)OD* KUPQYTGCF[HQTVJGNCWPEJKP/CTEJ

123 Carbon Composites

4GFWEKPIVJGUVTWEVWTCNYGKIJVQHCTQEMGVCNNQYUJKIJGT #OQFWNGEQPUKUVUQHCVJKPE[NKPFTKECNUJGNNYKVJDWNM[ payloads, higher apogees or reduced fuel consumption. load input rings on both ends as a bolting interface to the &.4QRGTCVGUUQWPFKPITQEMGVUVQRGTHQTOGZRGTKOGPVU PGKIJDQTKPIOQFWNGU6JGOCPWHCEVWTKPIYCUURNKVKPVQ FWTKPIKVUUWDQTDKVCNƅKIJV6JGOQFWNCTUVTWEVWTGUQH separate steps for the load input rings and the cylindrical these rockets are typically made out of aluminum. To UJGNN6JGTKPIUYGTGOCPWHCEVWTGFD[RTGUUHQTOKPIQH KPETGCUGVJGRGTHQTOCPEGQHVJGTQEMGVU67/JCUFGXGN- NQPIƄDGTTGKPHQTEGFVJGTOQRNCUVKEITCPWNGU .(6 6JGT- oped and implemented a manufacturing concept for a OQRNCUVKECWVQOCVGFƄDGTRNCEGOGPV 62#(2 YCUWUGF VJGTOQRNCUVKE%(42OQFWNGYKVJKPVGITCVGFƄDGTQRVKE for the manufacturing of the shell structure. The closed UGPUQTUCURCTVQHCRTQLGEVHWPFGFD[VJG(GFGTCN/KPKUVT[ NQQREQPVTQNQHVJG62#(2RTQEGUURCTCOGVGTUCNNQYUCP HQT'EQPQOKE#HHCKTUCPF'PGTI[ in situ consolidation of tapes on the substrate and on the RTGXKQWUN[OCPWHCEVWTGFNQCFKPRWVTKPIU6JKUYC[VJGTG is no need for a subsequent consolidation in an autoclave. 2QN[GVJGTGVJGTMGVQPG 2''- YCUWUGFCUCOCVTKZRQN[- mer due to the high mechanical and thermal loads.

Public Funded Projects ■ #+(RTQLGEVn(WNN%[ENGo ■ #+(RTQLGEVn#EEWTCVo ■ $/$(RTQLGEVn/#+UCPFYKEJo ■ $/$(RTQLGEVn+P5GPUQ(NGEJVo ■ $/9KRTQLGEVn#KT%CTDQPo ■ $/9KRTQLGEVn6'.15o ■ $(5RTQLGEVn+52o ■ &()RTQLGEVn&4o ■ '7RTQLGEVn+05%#2'o Test Set-up with integrated CFRP-module representing a major milestone in the REXUS mission XXIII

Process Technology for Matrix Systems

6JG)TQWRn2TQEGUU6GEJPQNQI[HQT/CVTKZ5[UVGOUo CFFTGUUGUVJGTQDWUVCPFGHƄEKGPVRTQEGUUKPIQHOCVTKZ U[UVGOUHQTVJGRTQFWEVKQPQHEQPVKPWQWUƄDGTTGKPHQTEGF composite parts. On the one hand, the basic understanding of matrix U[UVGOUVJGEJCTCEVGTK\CVKQPQHKORTGIPCVKQPRTQRGTVKGU QHVJGƄDGTOCVGTKCNHQTQRVKOK\GFRTQEGUUKPICPFRTQEGUU engineering are central for the group. On the other hand, associated issues such as tool technology, surface seal- ing, and process integration are key activities of the group.

Team Processes and Production Systems 6JG%JCKTQH%CTDQP%QORQUKVGUKUTGRTGUGPVGFKPVJG UVGGTKPIEQOOKVVGGQHVJG%QORGVGPEG%NWUVGTHQT #FFKVKXG/CPWHCEVWTKPIQHVJG&GRCTVOGPVQH/GEJCPKECN Gyroid Structure printed out of PEEK (printed on an Apium Printer) 'PIKPGGTKPIVQCFFTGUUEQORQUKVGOCVGTKCNUHQTJKIJ temperature applications. The investigations are focused %QPUVTWEVKQPUNKMGnI[TQKFUoHQTGZCORNGECPEQODKPG QPVJGRTQEGUUKPIOGVJQFECNNGFHWUGFƄNCOGPVHCDTKEC- HGCVWTGUNKMGJGCVGZEJCPIGYKVJOGEJCPKECNNQCFVQOWNVK tion (FFF). The main target has to be to change the part HWPEVKQPCNK\GVJGUVTWEVWTG UGGƄIWTG 6JGUGEQPUVTWE- FGUKIPCRRTQCEJVQOCZKOK\GVJGDGPGƄVQHVJGKPETGCUGF VKQPUUJQYVJGPGYHTGGFQOQHFGUKIPYKVJQWVNKOKVCVKQPU freedom of design and potential of additive processing. HQTVQQNCEEGUUHQTRTKPVGFRCTVUVQCFFTGUUPGYDWUKPGUU

124 Carbon Composites

opportunities for highly complex and functional parts. 646/TQQHHTCOG6JGEQPUQTVKWOJCUDGGPCYCTFGF #FFKVKQPCNN[VJG.%%KURCTVKEKRCVKPIKP5QNXC[oU#/%WR FWTKPIVJG,'%UJQYKP2CTKUKPVJGECVGIQT[n#WVQOQ- CPFJCUDGGPEJQUGPCUQPGQHGNGXGPƄPCNKUVUHTQOCNN VKXGUVTWEVWTCNo6JGRTQFWEVKQPQHVJGTQQHHTCOGYCU QXGTVJGYQTNF6JG#/%WRKUCEQORGVKVKQPHQTRTQEGUU- FGOQPUVTCVGFHQTVJGƄTUVVKOGFWTKPIVJG-YKVJ KPIPGY2''-OCVGTKCNUEQORCTKPIOCZKOWOCEJKGXCDNG NKXGRTQFWEVKQPKPVYQOKPWVGUE[ENGVKOGCVVJGDQQVJQH mechanical properties, freedom of design, detailing and -TCWUU/CHHGK6JGTGUWNVKUCEQUVGHƄEKGPVTQQHUVTWEVWTG VGUVKPIECRCDKNKVKGU6JTQWIJVJG#/%WR5QNXC[CKOUVQ made of hybrid textiles in multi preform, functional resin ƄPFCPKPUVKVWVGECRCDNGQHCFXCPEKPIVJGKTTGUGCTEJVQ areas and integrated metal inserts out of one tool. The further industrial impact. PGYPGCTPGVUJCRGVGEJPQNQI[HQTUJGNNUJCRGFEQO- RQPGPVUKUCHWTVJGTJKIJNKIJVVQOKPKOK\GOCVGTKCNCPF Team Hybrid Materials and Structures – process cost. LCC Winner of JEC Innovation Award (QTYCTF'PIKPGGTKPI)OD*JCUCRRNKGFQPDGJCNHQHC Public Funded Projects RTQLGEVEQPUQTVKWOEQPUKUVKPIQH-TCWUU/CHHGK6GEJPQNQ- ■ #+(RTQLGEVn&4#*6o IKGU)OD*#NRGZ6GEJPQNQIKGU)OD*&+'(('0$#%*'4 ■ #+(RTQLGEVn8GTVKUo )/$*5#'46':)OD*%Q-)*GPMGN#)%Q ■ #+(RTQLGEVn5NQMCXo -)C##NDGTV*CPFVOCPP/GVCNNIWUUYGTM)OD*%Q ■ #+(RTQLGEVn5EJYKPI+Po -)CPFVJG%JCKTQH%CTDQP%QORQUKVG 67/ HQTVJKU ■ '7RTQLGEVn+O%Q.Q4o [GCToU,'%+PPQXCVKQP#YCTFHQTVJGFGXGNQROGPVQHC

Material Behaviour and Testing

6JGITQWRn/CVGTKCN$GJCXKQTCPF6GUVKPIoHQEWUGUQPVJG of test method development, static and dynamic testing KPXGUVKICVKQPQHVJGOCVGTKCNTGURQPUGQHƄDGTTGKPHQTEGF QHCKTETCHVOCVGTKCNUCPFUVTWEVWTGUCUYGNNCUUKOWNCVKQP polymer matrix composites. CPFFGUKIPQHCGTQPCWVKECNETCUJYQTVJKPGUUUVTWEVWTGU #VVJGVGUVKPINCDQTCVQTKGUQHVJG.%%CDTQCFURGEVTWOQH For each strain rate regime, the optimal test equipment state-of-the-art test methods and equipment is available, YCUKFGPVKƄGFCPFKUCXCKNCDNGYKVJKPVJGEQPUQTVKWO covering thermo-analytical methods, rheology and micros- The equipment ranges from standard universal testing copy, experimental methods to measure permeability and machines (quasi-static loading) to special servo-hydrau- FTCRGCDKNKV[QH7&CPFVGZVKNGRTGHQTOUCUYGNNCUUVCVKE lic high speed testing machines (medium strain rates) and high strain rate mechanical testing. VQURNKV*QRMKPUQPDCTU JKIJUVTCKPTCVGVGUVKPI 6JKU 6JG&G/#P&RTQLGEVCUCJKIJNKIJVYCUUGVWRVQECTT[ ensures the determination of high quality material data QWVCOGEJCPKECNOCVGTKCNEJCTCEVGTK\CVKQPRTQITCOVQ and complete stress-strain curves from static up to high deliver a dynamic material property data base for typical UVTCKPTCVGNQCFKPICNNQYKPIVJGFGTKXCVKQPQHVJGUVTCKP CKTETCHVOCVGTKCNUYKVJCURGEKCNHQEWUQPUGCVCPFETCUJ rate dependent material behavior for all material properties absorbing structures of small aircraft. For a number of PGGFGFHQTRTGFKEVKXGETCUJYQTVJKPGUUUKOWNCVKQPU CNWOKPWOCPFUVGGNCNNQ[UƄDGTTGKPHQTEGFRQN[OGTOCVTKZ EQORQUKVGUCPFHQCOOCVGTKCNUF[PCOKEVGUVUYKNNDG Public Funded Projects ECTTKGFQWVQXGTCYKFGTCPIGQHUVTCKPTCVGUTCPIKPIHTQO ■ %1/'6-X SWCUKUVCVKENQCFKPIWRVQJKIJUVTCKPTCVGUQHU6JG ■ '7RTQLGEVn&G/#P&o RTQLGEVDTKPIUVQIGVJGTTGPQYPGFGZRGTVUKPVJGCTGCU

125 Carbon Composites

5VGRJCP/CKFN/5E Selected Publications 2017 &KRN+PI7NTKEJ/CPFGN ■ 'DGTN.#XKNC)TC[.

126 Materials Handling, Material Flow, Logistics

Basic and applied research in logistics engineering

■ The Chair for Materials Handling, Material Flow and Logistics perceives itself as an QRGPTGUGCTEJKPUVKVWVKQPCKOKPIVQEQPVTKDWVGVQVJGUEKGPVKƄERTQITGUUKPVJGCTGCUQH OCVGTKCNƅQYVGEJPQNQI[CPFNQIKUVKEUGPIKPGGTKPI

+PRNCPVOKNMTWPU[UVGOUYKNNRNC[CPKORQTVCPVTQNGKPVQOQTTQYoUFKIKVCNK\GFRTQFWEVKQPCPFUWRRN[

Digitalization and automation are two mega trends in shows that static control approaches are predominant in logistics. Rapid progress in digitalization enables a deep present systems and, moreover, that automated in-plant link of information between production and supply. There- milk-runs are exceptional cases, though discussed a fore, optimized systems which dynamically consider more lot. The chair fml therefore develops dynamic algorithms accurate location, state and demand data in real time implemented in a control system and sets up a modular and without failure can be achieved even under volatile prototype showing different automated handling units circumstances. A broad study conducted by the chair fml which merge to form an autonomous in-plant milk-run.

127 Materials Handling, Material Flow, Logistics

Innovative Conveyor Technology

the free openings of a standard pallet. To avoid such damage, a novel advanced driver assistance system (ADAS) is developed to assist the driver while picking up a pallet. The new ADAS detects the target pallet with a 3D camera. Based on the determined relative position between the pallet and forklift an optimal trajectory for a collision-free pick-up is calculated. The ADAS takes over the entire steering function to ensure that the forklift follows the trajectory correctly. Driving and brake pedal are still operated by the driver. The steering function is returned to the driver after the pallet has been picked up. The aim of the research project is the construction of a prototype to show the technical feasibility.

Projects #RCNNGVRKEMWRCUUKUVCPEGU[UVGOWUGU&ECOGTCKPRWVVQCUUKUVHQTMNKHV ■ FlexiFuel (EU) FTKXGTU ■ PräVISION – Methodenentwicklung zur präventiven Steigerung der Arbeitssicherheit an Flurförderzeugen Pallet pick-up is a standard task in intralogistics scenarios mit Umsetzung eines Assistenzsystems durch Fusion mainly performed by forklifts. Inexperienced drivers and und Analyse von 2D- und 3D-Bilddaten (DGUV) drivers with time pressure in business operations can ■ Teilautomatische Palettenaufnahme als Fahrer assis- damage the pallet or goods with the forks when entering tenz system für Flurförderzeuge (Jungheinrich)

Sustainable Logistics Systems

As one of last year’s mega trends a huge focus in industry lies on sustainability which is also affecting logistics operations. That is why the chair fml likewise works on related projects; for example, the project FFZ70 described below. Following on from the pilot project H2Intradrive VJGPGYRTQLGEVKUOCKPN[CDQWVGEQPQOKECNN[GHƄEKGPV ƅGGVQRGTCVKQPQHJ[FTQIGPRQYGTGFKPFWUVTKCNVTWEMU Using battery-operated trucks in intralogistics presents various disadvantages, such as long loading times, that ECPDGGNKOKPCVGFD[TGVTQƄVVKPIVQGPGTI[GHƄEKGPVHWGNEGNN systems. Combined with installing the related hydrogen infrastructure they form a sustainable and highly available VGEJPQNQI[2TGXKQWURTQLGEVUQHVGPNCEMGFRTQƄVCDKNKV[CPF YGTGCEEQORCPKGFD[EQORNGZOQFKƄECVKQPUUVCPFCTF- K\GFCPFGHƄEKGPVUQNWVKQPUTGCF[HQTVJGOCTMGVFQPQV[GV 6JGJ[FTQIGPTGHWGNKPIRTQEGUUHQTKPFWUVTKCNVTWEMUKUFQPGKPHGYOKPWVGU exist. The project partners thus aim to elaborate ample EQPEGRVUHQTGEQPQOKECNGHƄEKGPE[UGTXKEGKPVGTHCEGU Projects lifetime validation, a plug-and-play solution and a general ■ 'PVYKEMNWPIXQP'PGTIKGGHƄ\KGP\MNCUUGPHØT4GICNDGFK- standardization of processes. engeräte (IGF) ■ FFZ70 – Einsatz von 70 wasserstoffbetriebenen Flurförderzeugen im BMW-Werk Leipzig (BMVI) ■ Lebenszykluskosten intralogistischer Systeme (Jungheinrich)

128 Materials Handling, Material Flow, Logistics

Planning and Control of Material Flow Systems

#UVCTVWRURGEKƄEFGXGNQROGPVOQFGNJGNRUVQKFGPVKH[YJKEJNQIKUVKEUEJCNNGPIGUCTGVQDGEQPUKFGTGFYJGP

Especially in the beginning, technology-oriented startups Projects often focus on key issues like technical development, ■ Dynamische Routenzugsteuerung für kurzfristig ƄPCPEKPICPFOCTMGVKPI6JG[QHVGPEQPUKFGTNQIKUVKEU schwankende Transportbedarfe (DFG) aspects only in a late development phase, when a lot of ■ '6-QQRs'HƄ\KGP\UVGKIGTWPIFWTEJMQQRGTCVKXGU money, capacity and manpower have already been spent Bestandspooling von Ersatzteilen (IGF) on special processes, unfavorable supplier contracts or ■ (NGZK$GCOs'PVYKEMNWPIGKPGUƅGZKDNGP$GCOGTYCIGP- KPGHƄEKGPVUVQTCIGQHOCVGTKCN6QIKXGCFXKEGQPJQYVQ systems für manuell kommissionierbare Stückgüter (IuK ETGCVGGHƄEKGPVNQIKUVKEUVJGEJCKTHONFGXGNQRUCƅGZKDNG Bayern) logistics concept for technology-oriented startups called ■ Flexibilitätssteuerung der Inbound-Logistik im volatilen ‘StartupLog’. This concept grows with the startup and Umfeld der Nutzfahrzeugindustrie (MAN.TUM) is especially tailored to its requirements. The basis is ■ Routenzugsystem 4.0 (MAN.TUM) CFGXGNQROGPVOQFGNYJKEJFGƄPGUVJGFGXGNQROGPV ■ StartUpLog – Entwicklung eines adaptiven Logistik- stages of technology-oriented startups. Using different konzepts für technologieorientierte Startup-Unterneh- characteristics and indicators a startup can easily classify men (IGF) itself into one of the phases and can derive the logistics challenges that currently have to be considered. For GCEJNQIKUVKEUEJCNNGPIGUVCTVWRURGEKƄEOGVJQFUCTG developed in the project, which will be summarized in a guideline.

Crane Engineering and Design of Load-supporting Structures

4GUGCTEJKPVJGƄGNFUQHETCPGGPIKPGGTKPICPFFGUKIPQH load-supporting structures has a long tradition at the chair fml. +ORQTVCPVVQRKEUYKVJKPVJKUƄGNFCTGDQVJVJGFGXGNQROGPV of new calculation methods for mobile cranes in order VQUKIPKƄECPVN[KPETGCUGECNEWNCVKQPCEEWTCE[CPFVJG realization of user-oriented control systems to simplify crane operation. Many crane types are operated with radio controls that allow free operator movement while moving the load in the desired way and thus assure maximum ƅGZKDKNKV[CPFUCHGV[*QYGXGTVJGQRGTCVQTUVKNNPGGFUVQ calculate the individual movement for each drive in a way that the hook movement matches the operator’s wish. Depending on the number and type of drives (e.g. slewing, trolley movement, hydraulic cylinders) this calculation requires a substantial amount of experience and con- Operating a crane with an intuitive control

129 Materials Handling, Material Flow, Logistics

centration effort and hence causes fatigue problems that Projects result in safety issues and high manipulation times. The ■ Intuitives Laststeuerungskonzept – Entwicklung eines research project ‘Intuitive Crane Control’ aims to develop intuitiven Steuerungskonzept für Lasthebemaschinen a human machine interface that automatically takes both (IGF) crane design (number of drives, crane kinematics) and ■ Systematischer Vergleich der dynamischen operator orientation into account and thus allows the Beanspruchungen von Gittermast-Fahrzeugkranen mit operator to directly control the hook movement from his den Ergebnissen der quasistatischen Auslegung nach point of view. As a result, the operator no longer needs to DIN EN 13001 calculate the individual movement of each drive. Instead, ■ Abbildung der dynamischen Beanspruchungen von he uses the remote control levers to move the hook in an Fahrzeugkranen und Lkw-Ladekranen in quasista- intuitive way with a single lever movement in the desired tischen Berechnungen (DFG) moving direction. Consequently, crane operation becomes UKIPKƄECPVN[HCUVGTUCHGTCPFGCUKGTVQNGCTP

Industry 4.0

6JG/KVVGNUVCPFEGPVGTQHHGTUCXCTKGV[QHSWCNKƄECVKQPOGCUWTGUGURGEKCNN[HQTUOCNNCPF OGFKWOUK\GFGPVGTRTKUGU

The growing number of global competitors requires Projects companies to be highly innovative and willing to invest. ■ aComA – Automatische Codegenerierung für modular While large companies can absorb R&D investment aufgebaute Anlagen der Intralogistik (BFS) through their sales volume, this investment is often not ■ IntelliREAD – Mehrdimensionale Lokalisierung von feasible for small and medium-sized enterprises (SME). Gütern mittels eines INTELLIgenten READers (DFG) In order to enable SME to exploit the potential offered by ■ iSiKon – Gesteigerte Flexibilität in heterogen aufge- digitalization, the project Mittelstand 4.0 raises awareness DCWVGP/CVGTKCNƅWUUU[UVGOGP &() QHVJGDGPGƄVUCPFQRRQTVWPKVKGUQH+PFWUVT[CPFJGNRU ■ iSLT.net – Netzwerk für intelligente modulare Sonder- companies to develop the skills required for a successful ladungsträger (BMWi) implementation. ■ Mittelstand 4.0 (BMWI) For this purpose, the chair fml as part of the Mittel- ■ ValidKomm – Kommissionierarmband zur Validierung UVCPF|EGPVGTRCTVKEKRCVGUKPVJGTGCNK\CVKQPQHC von Picking-Prozessen (AIF) /KVVGNUVCPF|OQDKNGYJKEJKUCVTWEMGSWKRRGFYKVJ ■ Work-by-Inclusion – Entwicklung von visuellen Arbe- various Industry4.0 demonstrators for live experiences itsmitteln für in Lagerprozessen tätige Gehörlose at local companies and events. Furthermore, the Mittel- (BMAS) UVCPF|#MCFGOKGQHHGTUXGTUCVKNGSWCNKƄECVKQPOGCU- ures. To set examples for a successful implementation, small projects are carried out in different SME. The focus of the chair fml in these projects is to show how the SWCNKV[CPFGHƄEKGPE[QHNQIKUVKEUCNQPIUKFGVJGRTQFWEVKQP chain can be improved by using digital technologies.

130 Materials Handling, Material Flow, Logistics

Dipl.-Ing. Johannes Lechner Courses Christian Lieb, M.Sc. ■ CAD and Machine Drawing I+II Thomas Lienert, M.Sc. ■ Materials Handling and Material Flow Dipl.-Ing. Christopher Ludwig Technology Dipl.-Kffr. Corinna Maas, M.Sc. ■ Planning of Technical Logistics Benjamin Molter, M.Sc. Systems Sandra Müller, M.Eng. ■ Machine System Technology Prof. Dr.-Ing. Michael Rackl, M.Sc. ■ Material Flow and Logistics Johannes Friederike Rechl, M.Sc. ■ Logistics in the Automotive Industry Fottner Andreas Rücker, M.Sc. ■ Ropeway Technology Dipl.-Ing. Markus Spindler ■ Development Process for Mobile Manuel Stölzner, M.Sc. Machine Tools Dipl.-Ing. Matthias vom Stein ■ Conveying of Bulk Goods Yuan Tan, M.Sc. ■ Planning of Intralogistics Systems in an Felix Top, M.Sc. International Context Miriam Wagner, M.Sc. Dr.-Ing. Rui Wang Publications 2017 Prof. Dr.-Ing. Dipl.-Ing. Florian Wenzler ■ Lieb, C.; Klenk, E.; Galka, S.; Keuntje, Dipl.-Wi.-Ing. Johannes Zeiler, M.Sc. C.: Einsatz von Routenzugsystemen Willibald A. zur Produktionsversorgung – Studie Günthner Technical Staff zu Planung, Steuerung und Betrieb. Alfred Sachs Lehrstuhl fml, Garching, 2017. Management Werner Ottl ■ Lienert, T.; Fottner, J.: Entwicklung Prof. Dr.-Ing. Johannes Fottner Johannes Bauer einer generischen Simulationsmethode Prof. Dr.-Ing. Dipl.-Wi.-Ing. Andreas Busch für das zeitfensterbasierte Routing Willibald A. Günthner Niklas Leitermann fahrerloser Transportfahrzeuge. In: Dipl.-Ing. Stephan Kessler Mario Nodes Wissenschaftliche Gesellschaft für Dr.-Ing. Michael Kleeberger Nico Philipp Technische Logistik e.V. (Hrsg.): Christian Lieberoth-Leden, M.Sc. Volker Riedel Tagungsband zum 13. Fachkolloquium Dipl.-Ing. Marcus Röschinger Julian Schoch der WGTL. Institut für Technische Dipl.-Ing. Tobias Staab Logistik der Technischen Universität Research Focus Graz, Graz, 2017. Adjunct Professors ■ Innovative conveyor technology ■ Mass, C.; Intra, C.; Fottner, J.: Prof. Nikolaus Bauer ■ Sustainable logistics systems Decision-making for assessing Prof. Dr. rer. nat. Erich Kirschneck ■ 2NCPPKPICPFEQPVTQNQHOCVGTKCNƅQY ƅGZKDNGUYKVEJGUQHKPDQWPFUWRRN[ systems concepts in the automotive industry. Administrative Staff ■ Industry 4.0 In: European Operations Management Claudia Common ■ Humans in logistics Association (Hrsg.): Proceedings of Brigitte Stephani ■ Construction logistics the 24th International Annual EurOMA Tobias Hemmauer ■ Crane engineering and design of load- Conference, 2017. Susanne Höcht, B.Eng. supporting structures ■ Rackl, M.; Grötsch, F. E.; Rusch, M.; Fottner, J.: Qualitative and quantitative Research Scientists Competence assessment of 3D-scanned bulk solid Dipl.-Ing. Matthias Amberger ■ Logistics planning heap data. In: Powder Technology, 321 Sonja Bigontina, M.Sc. ■ RFID systems (2017), pp. 105-118, ISSN 0032-5910. Dipl.-Ing. Rainer Ertl ■ Virtual and augmented reality ■ Rechl, F.; Fottner, J.: Life-cycle cost Dipl.-Ing. Susann Ertl ■ Real-time location systems model for intralogistics systems. In: Dipl.-Wi.-Ing. Julia Freis ■ FEM and MKS European Operations Management Dipl.-Wirtsch.-Ing. Stefan Galka ■ Simulation of logistics systems Association (Hrsg.): Proceedings of Lingchong Gao, M.Sc. the 24th International Annual EurOMA Dipl.-Ing. Sebastian Habenicht Infrastructure Conference, 2017. Andreas Habl, M.Sc. ■ Augmented reality picking zone Yannic Hafner, M.Sc. ■ Automatic small parts storage system Nicole Hietschold, M.Sc. ■ Electric monorail Fabian Hormes, M.Sc. ■ Industrial robot Dipl.-Ing. Amadeusz Kargul ■ Kardex shuttle XP 700 Dirk Kauke, M.Sc. ■ Mechanic workshop Christopher Keuntje, M.Sc. ■ RFID testing equipment Dipl.-Ing. Orthodoxos Kipouridis ■ Testing facility for high-performance Dipl.-Wi.-Ing. Eva Klenk screw conveyors Armin Lang, M.Sc. ■ Virtual reality laboratory

131 Mechanics and High Performance Computing

Parallel algorithms and high performance computing in computational continuum mechanics

■ Research activities of the Mechanics & High Performance Computing Group in 2017 covered a TCPIGQHVQRKEUKPEQORWVCVKQPCNOQFGNKPICPFCNIQTKVJOFGXGNQROGPVKPVJGCTGCQHOWNVKƄGNFRJG- PQOGPCJKIJN[GHƄEKGPVRCTCNNGNUQNWVKQPOGVJQFUOQFGNTGFWEVKQPKPXGTUGCPCN[UKUCPFWPEGTVCKPV[ SWCPVKƄECVKQP#RRNKECVKQPUHQEWUGFQPOGEJCPKECNOQFGNUQHVJGJGCTVCPFVJGEKTEWNCVQT[U[UVGO the mechanobiology of atherosclerosis and abdominal aortic aneursyms and lately on the integration CPFQRVKOK\CVKQPQHEQPVTQNCNIQTKVJOUYKVJNCTIGUECNGPQPNKPGCTEQORWVCVKQPCNOQFGNU

Hybrid Preconditioning for Surface-Coupled Problems

When solving coupled problems in a monolithic fashion, powerful preconditioning techniques are crucial to obtain CPGHƄEKGPVUQNWVKQPUEJGOG+PQWTITQWRYGCTGKPVGT- GUVGFKPOQPQNKVJKEUQNXGTUHQTƅWKFUVTWEVWTGKPVGTCEVKQP RTQDNGOUYJGTGCƅWKFCPFCUQNKFFQOCKPGZEJCPIG EQWRNKPIKPHQTOCVKQPCVVJGKTEQOOQPEQWRNKPIUWTHCEG Starting from well-established physics-based block preconditioners, that are known to accumulate the error at the coupling surface, we developed a novel hybrid RTGEQPFKVKQPGT+VKUDCUGFQPCPQXGTNCRRKPIFQOCKP FGEQORQUKVKQPVJCVRWTRQUGN[GZJKDKVUUWDFQOCKPUVJCV URCPCETQUUVJGƅWKFUVTWEVWTGKPVGTHCEG$[RGTHQTOKPI cheap but accurate subdomain solves in an additive 5EJYCT\OCPPGTKPEQODKPCVKQPYKVJVJGGZKUVKPIRJ[U- ics-based block preconditioners, the number of iterations Overlapping domain decomposition for hybrid FSI preconditioner of the linear solver as well as the total solution time could DGTGFWEGFTGOCTMCDN[(WTVJGTOQTGUECNCDKNKV[QHVJG RTQRQUGFOGVJQFUJCUDGGPFGOQPUVTCVGF

7PEGTVCKPV[3WCPVKƄECVKQPKP%CTFKQXCUEWNCT/GEJCPKEU

Personalized computational models in cardiovascular mechanics as a predictive simulation tool represent a promising approach for diagnosis and decision making in ENKPKECNRTCEVKEG5WEJOQFGNUJQYGXGTTGSWKTGRTGEKUG knowledge about the individual geometry, boundary EQPFKVKQPUCPFOCVGTKCNRCTCOGVGTU5KPEGKVKUKORQUUKDNG VQGZCEVN[URGEKH[CUKOWNCVKQPOQFGNQPCRCVKGPVURGEKƄE basis, the best one can do is to incorporate all available KPHQTOCVKQPKPVQVJGOQFGNKPCRTQDCDKNKUVKEOCPPGT6JKU knowledge often stems from noisy input parameters or KUDCUGFQPRQUVGTKQTUVCVKUVKEHTQO$C[GUKCPKPHGTGPEG 9GCTGYQTMKPIQPGHƄEKGPV73UVTCVGIKGUVJCVCTGCDNGVQ represent uncertainties in personalized simulations and SWCPVKH[VJGKTGHHGEVUQPVJGSWCPVKVKGUQHKPVGTGUV

2TGFKEVGFOGCPEQPƄFGPEGKPVGTXCNCPFTGHGTGPEGUQNWVKQPHQTVJGRGCM YCNNUVTGUU 295 QHCRGTUQPCNK\GFCDFQOKPCNCQTVKECPGWT[UOOQFGN6JG surrogate model was built from reference data points for an uncertain wall VJKEMPGUUCPFECPDGWUGFHQTTWRVWTGTKUMGUVKOCVKQP

132 Mechanics and High Performance Computing

(WPEVKQPCN/QFGNKPIQHVJG*GCTVCPFCP'ZVTCXCUEWNCT#UUKUV&GXKEG 8#&

3D-0D coupled model of the heart, systemic circulation system and vascular assist device

Due to the decreasing number of transplantable hearts and a novel epicardial augmentation device are developed CPFFGƄEKGPEKGUKPEWTTGPVJGCTVCUUKUVFGXKEGVGEJPQNQ- CPFVJGKTKPVGTRNC[EQORWVGFQPRCVKGPVURGEKƄEECTFKQ IKGUPQXGNEQPEGRVUHQTGZVTCXCUEWNCTJGCTVCUUKUVCPEG vascular conditions in order to predict the increase in are developed in close collaboration between AdjuCor JGCTVYQTMTGSWKTGFVQOCKPVCKPXCUEWNCTRGTHWUKQP )OD*CPF/*2% (WTVJGTOQTGOQFGNUQHQZ[IGPVTCPURQTVCPFXGPVTKEWNCT 6JGEQNNCDQTCVKQPCKOUCVOKPKOK\KPIXWNPGTCDNGKORCEV disease progression after myocardial infarction should to the heart and optimizing design and functionality of a JGNRVQICKPHWTVJGTKPUKIJVUKPVQVJGURGEKƄEFGXKEGQRGT- PQXGNFGXKEGD[WUGQHEQORWVCVKQPCNOQFGNU6JGTGHQTG CVKPIRCTCOGVGTUTGSWKTGFVQUWUVCKPECTFKCETGIGPGTCVKQP computational models of the heart, the vascular system

/WNVK1DLGEVKXG(KGNF1RVKOK\CVKQPQHCP'ZVTCXCUEWNCT#UUKUV&GXKEG 8#&

Coupling of 0D technical model to a 3D implant model

(CUVGTTGUEWGEJCKPUCPFGURGEKCNN[KORTQXGFENKPKECN However, the wide range of patient individual requirements diagnostics and therapies have reduced the number OCMGUKVEJCNNGPIKPIVQFGUKIPCPCRRTQRTKCVGFGXKEG QHNGVJCNJGCTVKPHCTEVU/QTGRCVKGPVUUWTXKXGDWVUWHHGT 6QIGVJGTYKVJ#FLW%QT)OD*YGFGXGNQRCP&OQFGNQH HTQOCTGUWNVKPIJGCTVKPUWHƄEKGPE[#VVJGUCOGVKOG the driving unit of a novel VAD and couple it heart transplantations are limited to the amount of donor VQC&RCVKGPVURGEKƄEJGCTVOQFGN6JKUCNNQYUWUVQ QTICPUYJKEJJCUDGGPFGENKPKPIFWTKPIVJGRCUVFGECFG iteratively optimize device and implant in order to meet the #RTQOKUKPIVGEJPQNQI[KUGHƄEKGPVECTFKCECUUKUVFGXKEGU KPFKXKFWCNRCVKGPVPGGFU

133 Mechanics and High Performance Computing

#/WNVKUECNG/QFGNQH#VJGTQUENGTQUKU

Grown artery wall, spatial distribution of relative volume increase (growth factor) and comparison of cross sections with stained aortic cross sections HTQO.&.TGEGRVQTFGƄEKGPVOKEGYKVJGCTN[ NGHVVQR CPFCFXCPEGF TKIJV CVJGTQUENGTQVKERNCSWGU

A multidisciplinary approach to the mechanobiology of an understanding of the local mechanical conditions atherosclerosis is taken that is based on computational YJKEJECPVJGPDGEQTTGNCVGFVQVJGDKQNQIKECNƄPFKPIU VGEJPKSWGUCPFGZRGTKOGPVCNECNKDTCVKQPCPFXGTKƄECVKQP A computational mesoscopic biological model will be CUYGNNCUKPCPFGZXKXQOQNGEWNCTKOCIKPI6JGDKQ- implemented which will be coupled to the macroscopic logical processes involved take place at the (sub)cellular continuum representation of the region of interest in NGPIVJUECNGCPFYKNNDGCUUGUUGFGZRGTKOGPVCNN[D[ COWNVKUECNGKPVKOGCPFURCEGHTCOGYQTM+OCIKPIQH histology by our project partners from Klinikum rechts der several stenoses in mice as well as carefully designed in +UCT$CUGFQPVJGKOCIGF&IGQOGVTKGUOCETQUEQRKE XKVTQGZRGTKOGPVUCTGCRRNKGFVQVGUVVJGJ[RQVJGUGUQHVJG EQORWVCVKQPCNƅWKFUQNKFKPVGTCEVKQPOQFGNUYKVJVTCPU- model, calibrate its behavior and evaluate its predictive port, diffusion and interaction of species and cells supply ECRCDKNKVKGU

Parametric Model Order Reduction for Large Scale Problems

Model order reduction (MOR) is a technique under current 9GCKOCVFGXGNQRKPIC/14HTCOGYQTMHQTƄPKVGGNGOGPV research, which aims at a decrease of computational effort OGEJCPKECNCPCN[UKUQHCDFQOKPCNCQTVKECPGWT[UOU KPNCTIGUECNGRTQDNGOU6JGDCUKEKFGCKUVQƄPFCNQY 6JGTGFWEVKQPUJCNNDGRGTHQTOGFHQTOCVGTKCNCUYGNN dimensional subspace for the problem’s solution, while at as geometric parameters determining the mechanical the same time the quality of the solution shall be retained RTQRGTVKGUCUYGNNCUVJGIGQOGVT[QHVJGCPGWT[UOU6JG in comparison to a direct solution of the large-scale KPVGPFGFHTCOGYQTMHCEGUUGXGTCNEQORNGZKVKGUUWEJCU RTQDNGO OQFGNPQPNKPGCTKVKGURCVKGPVURGEKƄEIGQOGVTKGUCPFVJG IWCTCPVGGQHUOCNNGTTQTDQWPFU

134 Mechanics and High Performance Computing

+P5KNKEQ'PFQXCUEWNCT4GRCKTQH#DFQOKPCN#QTVKE#PGWT[UOU

Endovascular aneurysm repair (EVAR) is of the predictive tool is a better risk a well-established technique to prevent assessment of the intervention indicat- rupture of abdominal aortic aneurysms ing potential SG-related complications ### +PVJKUVGEJPQNQI[CUVGPVITCHV already in the preoperative planning (SG) is deployed inside the AAA to RJCUG6JGRTGFKEVKXGPWOGTKECNVQQN GZENWFGVJGCPGWT[UOUCEHTQOVJGOCKP DCUGFQPƄPKVGGNGOGPVCPCN[UKUTGSWKTGU DNQQFƅQY*QYGXGT'8#4KPXQNXGU VJGEQODKPCVKQPQHXCTKQWUEQORNGZ some unfavorable complications such simulation components, such as contact CUGPFQNGCMUQT5)OKITCVKQP5WEJ mechanics between AAA and SG, complications, resulting from wrong mechanobiology of AAA, morphing placement of the SG or incompatibility strategies for the positioning of the SG of SG design and AAA geometry, are and material modeling of the superelas- FKHƄEWNVVQRTGFKEV VKEDGJCXKQTQHPKVKPQN We aim at developing a predictive tool for the selection and sizing process of 5)UFGRGPFKPIQPVJGRCVKGPVURGEKƄE ###IGQOGVT[#HWTVJGTQDLGEVKXG In silico stent-graft placement and deployment

#PCN[UKUQH5JCRG8CTKCDKNKV[QH#DFQOKPCN#QTVKE#PGWT[UOU

An abdominal aortic aneurysm (AAA) is a local dilation of the abdominal aorta, leading to shapes often threatened D[TWRVWTG+PENKPKECNRTCEVKEGVJGENCUUKƄECVKQPDGVYGGP stable and rupture-prone AAAs is done according to one IGQOGVTKECNHGCVWTGKGVJGOCZKOWOFKCOGVGTCETKVGTKQP VJCVKUYGNNGUVCDNKUJGFDWVRTQXGPVQDGPQVUWHƄEKGPVN[ CEEWTCVGHQTTWRVWTGTKUMRTGFKEVKQP6JKURTQLGEVCKOU therefore at evaluating the rupture risk based on the whole RCVKGPVURGEKƄE###CDNWOKPCNUWTHCEG6JGITQWRYKUG UVCVKUVKEUHQTVJGENCUUKƄECVKQPTGSWKTGVJGGUVKOCVKQPQHCP averaged geometry, a template, of both the symptomatic/ known ruptured (rupture-prone) and asymptomatic AAA EQJQTVHQWPFKPVJGGZGORNCT[FCVCDCUG6JGPGCEJ VGORNCVGKUOCRRGFVQGXGT[###UWTHCEGQHDQVJEQJQTVU 8CTKCDKNKV[CPCN[UKUQHVJGU[ORVQOCVKEMPQYPTWRVWTGF TWRVWTGRTQPG  6JGOCRRKPIRTQRGTVKGUCTGWUGFHQTVJGENCUUKƄECVKQPCPF ###EQJQTV VQWPFGTUVCPFVJGUJCRGXCTKCDKNKV[QHGCEJEQJQTV

135 Mechanics and High Performance Computing

Research Focus 2GGT4GXKGYGF2WDNKECVKQPU ■ High performance parallel computing ■ ,CIUEJKGU.*KTUEJXQIGN//CVCNNQ CPFGHƄEKGPVCNIQTKVJOU ,/CKGT//KNF-$TWPPGT* ■ Parallel algorithms and scalable *KPMGN4)GG/94CFGTOCEJGT software 29KNFJKTV59*CHPGT5   ■ +PXGTUGRTQDNGOU +PFKXKFWCNK\GF$KXGPVTKEWNCT'RKECTFKCN ■ 0WOGTKECNOQFGNUKPXCUEWNCTDKQ #WIOGPVCVKQP6GEJPQNQI[KPC&TWI 2TQH&T+PI mechanics and mechanobiology +PFWEGF2QTEKPG(CKNKPI*GCTV/QFGN Michael W. ,QH#OGTKECP5QEKGV[HQT#TVKƄEKCN Gee Competence +PVGTPCN1TICPU #5#+1 QPNKPGCJGCF ■ Computational continuum mechanics QHRTKPVJVVRFZFQKQTI Contact ■ Design and realization of parallel /#6 YYYOJREOYVWOFG software ■ 6JQP/2*GOONGT#)NKP\GT# UGMTGVCTKCV"OJREOYVWOFG ■ %QWRNGFOWNVKƄGNFRTQDNGOU /C[T/9KNFITWDGT/

136 Non-destructive Testing

Quality control, non-destructive testing and structural health monitoring

■6JGHQEWUQHVJG%JCKTQH0QPFGUVTWEVKXG6GUVKPIKPVJGƄGNFQHOGEJCPKECNGPIKPGGTKPIKP YCUVQGUVCDNKUJ0&6OGVJQFUHQTVJGKPURGEVKQPQHƄDGTTGKPHQTEGFOCVGTKCNU %(42CPF)(42  VQIGVJGTYKVJRCTVPGTUKPVJGCWVQOQVKXGCPFCGTQPCWVKEKPFWUVTKGU

(WTVJGTTGUGCTEJKUEQPFWEVGFKPVJGƄGNFQHYKPFGPGTI[ VGEJPKSWGUHQTEQPETGVGCPFHQTVJGFGVGEVKQPQHXGTVKECN UVTWEVWTCNJGCNVJOQPKVQTKPIQHVQYGTCPFDCUGOGPVCPF ETCEMUKPEQPETGVGRCXGOGPVUQHJKIJYC[U UQNXKPIVJG PQPFGUVTWEVKXGVGUVKPIQHTQVQTDNCFGU+PEKXKNGPIKPGGT DNQYWRRTQDNGO +PCFFKVKQPUGXGTCNRTQLGEVUKPVJGƄGNF KPIVJGHQEWUYCUQPKPURGEVKQPVGEJPKSWGUHQTEQPUVTWE QHEWNVWTCNJGTKVCIGJCXGDGGPEQPFWEVGFKPENQUGEQQRGT VKQPUQHVJGKPHTCUVTWEVWTGVJGFGXGNQROGPVQHUGNHJGCNKPI CVKQPYKVJVJG&GWVUEJGU/WUGWO

Computed Tomography of Otto Lilienthal’s Gliding Apparatus

1VVQ.KNKGPVJCNoUINKFKPICRRCTCVWU &GWVUEJGU/WUGWO

/QTGVJCP[GCTUCIQ1VVQ.KNKGPVJCNNCKFVJGHQWP %JCKTQH0QPFGUVTWEVKXG6GUVKPIKPEQNNCDQTCVKQPYKVJ FCVKQPHQTOQFGTPCXKCVKQPYKVJJKUKPPQXCVKXGINKFKPI #KTDWUJCXGHQTVJGƄTUVVKOGRTQXKFGFCINKORUGKPVQVJG CRRCTCVWUVJGn0QTOCN5GIGNCRRCTCVo1PN[HQWTURGEK KPPGTYQTMKPIUQHVJGEQPUVTWEVKQPFGUKIP6JGKOCIGU OGPUQHVJGINKFKPICRRCTCVWUJCXGUWTXKXGFVQVJKUFC[ YKNNJGNRTGUGCTEJGTUCPFEQPUGTXCVQTUHTQOVJG%JCKTQH QPGQHVJGOCVJQOGKPVJG&GWVUEJGU/WUGWOKP/WPKEJ 4GUVQTCVKQP#TV6GEJPQNQI[CPF%QPUGTXCVKQP5EKGPEGCU %QORWVGFVQOQITCRJ[KPXGUVKICVKQPUECTTKGFQWVD[VJG YGNNCUVJG&GWVUEJGU/WUGWOFWTKPITGUVQTCVKQP

Self-healing Materials

6JGCKOQHVJKURTQLGEVKUVJGFGXGNQROGPVQHUVTWEVWTGU OCFGQHUGNHJGCNKPIEQPETGVGJCXKPICPKPJGTGPVJGCNKPI OGEJCPKUOVJCVDGEQOGUCEVKXGYJGPCETCEMCRRGCTU VJWUTGPFGTKPIOCPWCNETCEMTGRCKTEQORNGVGN[QDUQNGVG +PQTFGTVQQDVCKPUWEJCWVQOCVKEETCEMENQUWTG'WTQRGCP RTQLGEVRCTVPGTUCTGKPXGUVKICVKPIVJGWUGQH27DCUGF RQN[OGTRTGEWTUQTUUWRGTCDUQTDGPVRQN[OGTUCPFDCE VGTKC6JGTQNGQHVJG+PUVKVWVGQH0QPFGUVTWEVKXG6GUVKPI KUVQUWRRQTVVJGFGUKIPQHUWEJJGCNKPICIGPVUCUYGNN CUVJGFGXGNQROGPVQHVGUVKPIOGVJQFUCUVQQNUHQTVJG UVCMGJQNFGTUVQRTQXGUGNHJGCNKPIGHƄEKGPE['ZRGTKOGPVCN TGUWNVUQHUOCNNUECNGVGUVUEQPƄTOVJGECRCDKNKV[QH UGNGEVGF0&6OGVJQFUVQEJCTCEVGTK\GOCVGTKCNRTQRGTVKGU /KETQUEQRKEKOCIGQHDCEVGTKCDCUGFUGNHJGCNKPICIGPVUVQTGFKP.9# RNWUVJGJGCNKPIRTQEGUUCPFKVUGHƄEKGPE[ NKIJVYGKIJVCIITGICVG 

137 Non-destructive Testing

Concrete Pavement Scanner

#IKPIKPHTCUVTWEVWTGKUCOCLQTVQRKEQHKPVGTGUVVJCVCNUQ CRRNKGUVQTQCFPGVYQTMU(QTVCTIGVGFOCKPVGPCPEGCPF TGRCKTOGCUWTGU0&6VQQNUVQEJCTCEVGTK\GVJGEWTTGPV UVCVGQHUVTWEVWTCNGNGOGPVUCTGJKIJN[FGUKTCDNG%QPETGVG RCXGOGPVUCRRTQCEJKPIVJGGPFQHVJGKTUGTXKEGNKHGECP UWHHGTHTQOFCOCIGPQVXKUKDNGQPVJGUWTHCEGDWVRQVGP VKCNN[CHHGEVKPIUCHGV[CPFUGTXKEGCDKNKV[5WEJFCOCIG KPENWFGUHQTGZCORNGJQTK\QPVCNETCEMUQTFGNCOKPCVKQPU YKVJKPVJGRCXGOGPVUVTWEVWTGFWGVQJGCVKPFWEGFUVTGUU QTFGVTKOGPVCNEJGOKECNKPƅWGPEGU#NVJQWIJUGXGTCN PQPFGUVTWEVKXGVGUVKPIOGVJQFUECPDGCRRNKGFVQEQP ETGVGRCXGOGPVUOQUVQHVJGEQPXGPVKQPCNVGEJPKSWGUNKMG WNVTCUQPKEUQTITQWPFRGPGVTCVKPITCFCTJCXGFTCYDCEMU KPKOCIKPIVJGCDQXGOGPVKQPGFFGHGEVU1PVJGQVJGT JCPFVGUVKPIOGVJQFUDCUGFQPVJGRTQRCICVKQPQHGNCUVKE YCXGUJCXGJKIJUGPUKVKXKV[VQƅCYUNKMGFGNCOKPCVKQPUCPF JCXGRQVGPVKCNVQDGCRRNKGFVQEQPETGVGRCXGOGPVUKPCP CWVQOCVGFOCPPGT6JKURTQLGEVHQEWUGUQPFGXGNQRKPI 5ECPPGTKPQRGTCVKQPQPCJKIJYC[

CPCEQWUVKEUECPPKPIOGVJQFVQKOCIGTGNGXCPVFCOCIG KPUKFGEQPETGVGRCXGOGPVU6JGCRRTQCEJCKOUVQFGXGNQR CPGYCESWKUKVKQPUVTCVGI[HQTVJGUQECNNGFKORCEVGEJQ OGVJQF2TKOCT[IQCNUCTGVJGFGXGNQROGPVQHUGPUKPI U[UVGOUDCUGFQPOKETQRJQPGCTTC[UURGEKƄECNN[VCKNQTGF VQVJGFGOCPFUQHEQPETGVGRCXGOGPVVGUVKPI(WTVJGT CESWKUKVKQPUVTCVGIKGUCPFJCTFYCTGCURGEVUHQTVGUVKPI GPVKTGTQCFUGEVKQPUYKNNDGGZCOKPGF6JGRTQLGEVKU ƄPCPEGFD[VJG)GTOCP(GFGTCN*KIJYC[4GUGCTEJ +PUVKVWVG $#5V WPFGTVJGCWVJQTKV[QHVJG(GFGTCN/KPKUVT[ 5KOWNCVKQPQHYCXGƄGNFKPEQPETGVGRNCVGCPFTCFKCVGFUQWPFYCXGU QH6TCPURQTVCPF&KIKVCN+PHTCUVTWEVWTG $/8+ 

Multiscale Modeling of the Degradation Progress in the Localised Fracture Zone of Carbon Fiber Reinforced High-performance Concrete Subjected to High-cycle Tension and Flexural Tension Fatigue Loading

#UCRCTVQHVJG&()RTKQTKV[RTQITCOn%[ENKEFGVGTKQTCVKQP QH*KIJ2GTHQTOCPEG%QPETGVGKPCP'ZRGTKOGPVCNXKTVWCN .CDoVJGUVWF[YKNNCFFTGUUVJGFGITCFCVKQPRTQEGUU KPECTDQPƄDGTTGKPHQTEGFEQPETGVG2CTVQHVJKUYQTMKU PQPFGUVTWEVKXGFCOCIGFGVGEVKQPCPFFGVGTKQTCVKQP OQPKVQTKPIFWTKPINCDQTCVQT[GZRGTKOGPVU6JKUVCUMYKNNDG CEJKGXGFPQVQPN[YKVJUVCPFCTFPQPFGUVTWEVKXGOGVJQFU NKMGCEQWUVKEGOKUUKQPCPCN[UKUCPFWNVTCUQWPFVTCPUOKU UKQPOGVJQFUDWVCNUQYKVJEQFCYCXGKPVGTHGTQOGVT[

%QPETGVGE[NKPFGTFWTKPIEQORTGUUKQPVGUV

138 Non-destructive Testing

MISTRALWind

9KVJKPVJGPGZVHGY[GCTUOCP[ OQPKVQTKPIU[UVGOCPFUJQTVVGTO GUVCDNKUJGFYKPFVWTDKPGUCTGIQKPIVQ PQPFGUVTWEVKXGVGUVKPIVGEJPKSWGU TGCEJVJGGPFQHVJGKTPQOKPCNUGTXKEG HQTVQYGTCPFHQWPFCVKQPQHQPUJQTG NKHGYJKEJKU[GCTU/CKPVCKPKPI YKPFVWTDKPGU$QVJVGEJPKSWGU CPFQRGTCVKPIUVTWEVWTCNRCTVUQH JCXGUWEEGUUHWNN[DGGPCRRNKGFVQ YKPFVWTDKPGUDG[QPFVJGKTPQOKPCN CHWNNUK\G/99KPF6WTDKPG6JG UGTXKEGNKHGOCMGUUGPUGHTQOCP TGUWNVUCTGEQODKPGFCPFUGTXGVQ GEQPQOKECNCPFVGEJPKECNRQKPVQH GXCNWCVGNQCFUCPFVJGCEVWCNUVCVG XKGY6QTGCEJVJKUCKOCEQPEGRV QHVJGUVTWEVWTG9KVJVJGCKFQHVJG HQTKPURGEVKQPCPFOQPKVQTKPIQH CESWKTGFFCVCOCKPVGPCPEGCPF UVTWEVWTCNRCTVUQHYKPFVWTDKPGU UGTXKEKPIEQUVUUJCNNDGQRVKOK\GF KUFGXGNQRGFKPEQQRGTCVKQPYKVJ $G[QPFVJCVGXCNWCVGFFCVCYKNNDG +#$)5KGOGPU/CZ$ÒIN9KPF#) GORNQ[GFCUCDCUKUHQTCPGZVGPUKQP CUYGNNCUVJG%JCKTQH5VTWEVWTCN QHVJGUGTXKEGNKHGQHYKPFVWTDKPGU #PCN[UKUCPFVJG%JCKTQH/CVGTKCNU CPFHQTVJGFGXGNQROGPVQHCEQPVTQN 5EKGPEGCPF6GUVKPIQHVJG6GEJPKECN UVTCVGI[VJCVEQPUKFGTUVJGTGOCKPKPI 7PKXGTUKV[QH/WPKEJ6JGYQTMQHVJG UGTXKEGNKHG6JGRTQLGEVKUHWPFGF +PUVKVWVGQH0QPFGUVTWEVKXG6GUVKPIKU D[VJG)GTOCP(GFGTCN/KPKUVT[HQT HQEWUGFQPFGXGNQRKPICNQPIVGTO /QPKVQTGFYKPFVWTDKPGKPVJG1DGTRHCN\TGIKQP 'EQPQOKE#HHCKTUCPF'PGTI[ $/9K 

Non-destructive Testing of Fiber Reinforced Composites

(KDGTTGKPHQTEGFRQN[OGTKEOCVGTKCNUCTGWUGFHQTNKIJV YGKIJVEQPUVTWEVKQPUCPFCTGCPKPVGITCNRCTVQHECTU 5KOWNCVGF CKTRNCPGUQTTQVQTDNCFGUQHYKPFVWTDKPGU0QPFGUVTWEVKXG .CODYCXGU RTQRCICVKPIKP VGUVKPI 0&6 OGVJQFURNC[CPKPETGCUKPITQNGKPVJG C%(42RNCVG OCPWHCEVWTKPIRTQEGUUCPFVJGKPURGEVKQPFWTKPINKHGVKOG TGXGCNKPIC FGNCOKPCVKQPKP 6JGUGNGEVKQPQHVJGDGUV0&6VGEJPKSWGHQTCEGTVCKP VJGDQVVQONGHV CRRNKECVKQPFGRGPFUsQHEQWTUGsQPOCP[HCEVQTUKPENWF EQTPGT /CUVGT VJGUKU#0CTT KPIVJGV[RGRQUKVKQPCPFUK\GQHVJGFGHGEVVQDGFGVGEVGF DWVCNUQQPUGEQPFCT[KUUWGUNKMGCEEGUUKDKNKV[CWVQOC VKQPVGUVKPIEQUVUTGNKCDKNKV[CPFTGUQNWVKQPVQOGPVKQP CEQWUVKETGUQPCPEGURGEVTQUEQR[+PEQQRGTCVKQPYKVJ QPN[UQOG(QTVJKUTGCUQPVJG%JCKTQH0QPFGUVTWEVKXG KPFWUVTKCNRCTVPGTUPGYCRRTQCEJGUVQEQORWVGFVQOQI 6GUVKPIKUYQTMKPIQPVJGFGXGNQROGPVQHPWOGTQWU0&6 TCRJ[CTGFGXGNQRGFCUYGNN+PQTFGTVQEQORNGVGVJG VGEJPKSWGUKPENWFKPIHWNNOCVTKZECRVWTGQHWNVTCUQWPFKP RKEVWTGQHVJGRTQEGUUGUFWTKPIVGUVKPIPWOGTKECNUKOW TGƅGEVKQP RJCUGFCTTC[ QRVKECNNQEMKPVJGTOQITCRJ[ NCVKQPUWUKPIVJG(KPKVG'NGOGPV/GVJQFCTGEQPFWEVGF CKTEQWRNGFWNVTCUQWPFNCODYCXGRTQRCICVKQPCPFNQECN CNQPIUKFGVJGGZRGTKOGPVCNYQTM

Hydro Acoustic Tracking Concept

+PQTFGTVQOQPKVQTVJGOKITCVKQPQHƄUJGURGEKCNN[ FQYPUVTGCOQHJ[FTQRQYGTRNCPVUVJGFGXGNQROGPVQH CJ[FTQCEQWUVKEOGCUWTGOGPVEQPEGRVKUVJGIQCNQHVJG RTQLGEV#VQOQITCRJKECRRTQCEJKUVJGTGHQTGPGEGUUCT[ VQEQXGTCƄPKVGXQNWOGQHYCVGT6JGDWKNVWRRTQVQV[RG UJQYGFRTQOKUKPITGUWNVUFWTKPIVGUVOGCUWTGOGPVUCVC OQFGNRNCPVQHVJG1DGTPCEJ4GUGCTEJ+PUVKVWVG %JCKTQH *[FTCWNKECPF9CVGT4GUQWTEGU'PIKPGGTKPI  6TQWVVTCXGNWRUVTGCOVQURCYPYJGTGJ[FTQRQYGTHCEKNKVKGUEQPUVKVWVGC OCLQTQDUVCENG /CUVGTVJGUKU45EJCTN

139 Non-destructive Testing

Research Focus Selected Publications 2017 ■ /CVGTKCNVGUVKPIWUKPIPQPFGUVTWEVKXG ■ /QUEJ/)TQUUG%7  

Technical Staff (TCP\KUMC)GOCPFGT 4WFQNRJ-TCWU 5GDCUVKCP/ØPEJOG[GT /CTKPC0CJO

140 Turbomachinery and Flight Propulsion

Aerodynamic and structural development, simulation and experimental investigation of innovative and novel turbomachinery systems and components

■ Research activities at the Institute of Turbomachinery and Flight Propulsion (Lehrstuhl für 6WTDQOCUEJKPGPWPF(NWICPVTKGDG.6( EQXGTVQRKEUKPVJGƄGNFUQHƅKIJVRTQRWNUKQPICUVWTDKPGU and thermal turbomachinery. The institute focuses on advanced enhancements of turbomachinery EQORQPGPVUCRRNKGFKPVJGƄGNFQHƅKIJVRTQRWNUKQPCPFGPGTI[U[UVGOU#UCEGPVTGQHGZEGNNGPEG for compression system aerodynamic and structual innovation the institute owns world-class EQORTGUUQTVGUVHCEKNKVKGUWUGFCNQPIYKVJGZVGPUKXGPWOGTKECNOQFGNNKPIVQVCMGVGEJPQNQI[VQ VJGPGZVNGXGN

Since its re-structuring and re-establishment in June 2016 sor laboratories focused on developing tomorrow’s aircraft the institute has been built up strongly, with respect to engines and gas turbines. As a centre of excellence, both human resource and research activities in national/ the institute collaborates with a number of global-player European funding programmes and in industry partner- industry partners, such as GE, MTU Aero Engines, Rolls ships. The former Institute of Flight Propulsion (LFA) was Royce and Siemens. In accordance with the research established back in 1964, when Prof. Münzberg was strategy of the institute four main areas of research are appointed head of the chair in downtown Munich. Since pursued: Turbomachinery Aerodynamics, Propulsor Tech- its foundation the institute has been dedicated to research nologies, Advanced Engine Component Design and Make CPFVGCEJKPIKPVJGƄGNFQHLGVRTQRWNUKQPCPFICUVWTDKPGU Concepts, and Gas Turbine Systems and Cycles. Each of The institute is an active member of national research these is addressed from both the experimental as well as CUUQEKCVKQPURCTVKEKRCPVKP'WTQRGCPTGUGCTEJRTQLGEVU the numerical perspective, directed towards the analysis and long-term partner of leading aero-engine and compo- of the time-resolved aerodynamic and structural behavior nent manufacturers. A cooperation with General Electric QHVWTDQOCEJKPGT[EQORQPGPVUKPƅ[KPICPFUVCVKQPCT[ (GE) initiated the development of one of the world’s most gas turbine environments. advanced high-speed research radial and axial compres-

Turbomachinery Aerodynamics

4GUGCTEJKUECTTKGFQWVKPVJGƄGNFQHCZKCNCUYGNNCU centrifugal turbomachinery in order to explore new areas of the design space, targeted at improvements in compressor stability, the reduction of secondary losses in turbomachinery and the optimisation of loading parameters with respect to a further rise in component GHƄEKGPEKGU$QVJHWPFCOGPVCNCUYGNNCUCRRNKGF research is pursued in order to derive novel aerofoil EQPƄIWTCVKQPUYJKEJYQWNFCNNQYCUKIPKƄECPVTGFWEVKQP

Radial compressor test facility at the LTF

in stage count, weight and cost of turbomachinery. An KORQTVCPVTQNGKPVJKUTGURGEVKUVCMGPD[KPPPQXCVKXGƅQY control concepts, which in the mid-term may eventu- ally be of active type. For the purpose of fundamental GZRGTKOGPVCNƅQYKPXGUVKICVKQPKVKURNCPPGFVQFGXGNQR and build a new large-scale low-speed compressor rig, YJKEJCNNQYUFGVCKNGFƅQYOGCUWTGOGPVUKPCYKFGTCPIG $NCFGVKRXQTVGZƅQYƄGNFKPƅWGPEGFD[CUVCDKNKV[GPJCPEKPIECUKPI of Reynolds numbers, in particular on high-lift aerofoil treatment

141 Turbomachinery and Flight Propulsion

EQPƄIWTCVKQPUCPFPGYUVCIGEQPEGRVU6JGGPXKUCIGF ■ Experimental Investigation of Stage Matching and date for commissioning of this facility FRANCC (Fun- Tip Clearance Effects in an Axial Compressor damental Research and New Concepts Compressor) is (2015-2019, IA) 2020. Stability enhancement on compressors is an area ■ Erhöhung der Leistungsdichte zur Reduzierung der of research, which the institute has been pursuing since Stufenzahl durch Impulsausblasung und Einsaugen year 2000 with great success and recognition. More than #)6WTDQ%QQTGƅGZ8QTJCDGP one concept has been developed and matured to be ■ Integrale Auslegung einer Hochdruckverdichterstufe mit ready for application in tomorrow’s turbomachinery. Gehäusestrukturierung (2016-2019, Lufo V2, AeroEtaT) ■ %QPEGRVWCN&GUKIPCPF$WKNFQHC.CTIG5ECNG.QY Projects Speed Research Compressor Rig (2017-2020, LTF PV) ■ Experimental Investigation of Variable Geometry on a ■ Compressor Off-Design Operability (2017-2020, EU, Axi-Centrif Compressor (2015-2018, IA) 6WTDQ4GƅGZ92

Propulsor Technologies

ƅQYKPCFXCPEGFDNCFGTQYEQPƄIWTCVKQPUCKOGFCVHWVWTG propulsor applications. In the future, research will also DGECTTKGFQWVKPVJGCUUQEKCVGFƄGNFUQHGPIKPGCKTHTCOG integration, and novel distributed propulsion concepts. +PCPQPIQKPIRTQLGEVVJGPCVWTGCPFKORCEVQHRTGUUWTG and temperature inlet distortion on the performance of a helicopter propulsion system is experimentally investi- gated. Measurements are taken on a scaled wind tunnel model of the real intake geometry for a matrix of pressure and temperature distorsion patterns in order to determine distorsion transmission and performance characteristics QHVJGKPVCMG1PEGVJGUGCTGEQORNGVGFVJGRTQLGEVECP proceed carrying out full engine system distorsion tests on one of the LTF helicopter engine test beds. *[DTKFJKIJƄFGNKV[CEQWUVKEUKOWNCVKQPUQPCEQWPVGTTQVCVKPIRTQRWNUQT

Driven by the multi-disciplinary nature of designs for future gas turbine-driven as well as electrically-driven propulsors (fans or front rotors of stationary systems), research in this ƄGNFKUHQEWUGFQPPQXGNDNCFGFGUKIPYJKEJKUPGGFGFVQ HWTVJGTKORTQXGRTQRWNUKXGGHƄEKGPE[CPFTGFWEGPQKUGKP FWEVGFCPFQRGPTQVQTEQPƄIWTCVKQPU#NUQVJGCGTQ- dynamic integration with an intake, which in the case of integrated engines also requires consideration of bound- +PVCMGOQFGNCPFOGCUWTGOGPVUGVWR NGHV CPFUGEVQTRTGUUWTG ary layer ingestion, is a key research topic. In particular in measurement (right) ƅ[KPIVWTDQOCEJKPGT[CRRNKECVKQPUVJGTGKUUKIPKƄECPVCPF KPETGCUKPIN[UVTQPIKPNGVƅQYFKUVQTUKQPRTGUGPVYJGPKV Projects comes to novel highly integrated aircraft-engine designs. ■ %QPVQWTGF'PFYCNN&GUKIPKP*KIJ.KHV2TQRWNUQT$NCFG Therefore, the response of compression components and 4QY%QPƄIWTCVKQPU .6(28 YJQNGICUVWTDKPGU[UVGOUVQUGXGTGƅQYƄGNFFKUVQTUKQP ■ 0WOGTKECN+PXGUVKICVKQPQHVJG7PUVGCF[(NQY$GJCXKQT and boundary layer ingestion is a key topic in current in Tandem Compressor Vanes (2017-2020, LTF PV) and future research, carried out on a whole helicopter ■ Rotorabwindinteraktionen am Triebwerkseinbau (2016- engine, individual compressor components, or most 2019, Lufo V2, CHARME, AP 2.3) simply in a wind-tunnel arrangement. On the numerical side, capability is strongly built up to carry out large-size JKIJƄFGNKV[UKOWNCVKQPQHVJGVKOGFGRGPFGPVWPUVGCF[

142 Turbomachinery and Flight Propulsion

Design and Make Concepts

In this main research area of the institute emphasis is put on the use of new enabling technologies in the materials and manufacturing sector, as a measure to enlarge the design space for turbomachinery and to come up with novel solutions in terms of turbomachinery parts or turbomachinery components integration, targeted at savings in weight, cost and build complexity. The availa- bility and further maturing of additive layer manufacturing &KUMVGORGTCVWTGFKUVTKDWVKQPYKVJYKVJQWVJGCVRKRGUFGTKXGFWUKPI methods brings along a variety of options for basically numerical modelling unlimited shaping of geometries, which can be exploited when optimising turbomachinery parts with respect to and the desired reductions in weight and size. In this their structural stiffness, vibrational behavior and weight. context, additive manufacturing methods are expected to Associated with these structural conceptual changes provide the ability to geometrically optimise the aero-ther- an improvement of the aerodynamic behavior may be mal design features of heat exchangers. Also, integration KFGPVKƄGFsCICKPTGUGCTEJKUTGSWKTGFVQFGXGNQROWNVK QHJGCVGZEJCPIGTUYKVJCFLCEGPVEQORQPGPVUUWEJCU disciplinary approaches and simulations, which allow the compressor stages is being adressed within the scope QRRQTVWPKVKGUIKXGPKPVJKUƄGNFVQDGVCMGP#PGPCDNGTHQT of the advanced design and make concepts research. CUVGREJCPIGKPCGTQGPIKPGGHƄEKGPE[KUVJGWUGQHJGCV $G[QPFVJKUGPJCPEGFOGVJQFUHQTJGCVGZEJCPIG exchangers for the purpose of inter-cooling and recuper- transfer were investigated. Numerical modeling of the ative processes. Research at the institute in this area is thermo-structural behavior of turbine disks with integrated HQEWUGFQPVJGSWCPVKƄECVKQPQHVJGDGPGƄVUCPFVJGEQP- heat pipes has been carried out, which demonstrated the ceptual design of novel heat exchanger geometries, which large potential of this heat management approach. allow better matching of the required engine architecture Projects ■ Strukturmechanische Untersuchung der Potenziale von Turbinenscheiben mit integrierten Hitzeröhren (2014- 2017, LTF PV) ■ Advanced Seal Design (2016-2018, EU, FlexTurbine, 92 ■ Conceptual Design and Investigation of Novel Heat Exchangers for Small Helicopter Gas Turbines (2016- 2019, PV) ■ Conceptual Design and Numerical Investigation of Novel Inter-Cooling Heat Exchangers (2017-2020, LTF PV) ■ Options of Rotor Drum Life Monitoring in Large Steam Turbines (2017, IA)

6JGTOQUVTWEVWTCNOQFGNQHCVWTDKPGFKUMYKVJJGCVRKRGUCPFVJGKTYQTMKPI principle

143 Turbomachinery and Flight Propulsion

Systems and Cycles

essential to allow the high degree of control, which is PGEGUUCT[VQQRGTCVGHWVWTGGPIKPGKPCUVCDNGCPFGHƄEKGPV YC[CETQUUVJGGPVKTGƅKIJVGPXGNQRG2CTVQHVJGEWTTGPV research is concerned with improving the starting time of JGNKEQRVGTGPIKPGUKPQTFGTVQCNNQYCUKIPKƄECPVKPETGCUG in single-engine operation. The quick start system is DCUGFQPVJGEQPEGRVQHKPLGEVKPIJKIJOQOGPVWOCKTCV supersonic conditions into the outer portion of the radial compressor of the engine. It is tested on the institute’s Allison 250 testbed. The novel system allowed a reduction in the starting time of the engine from approximately |UGEQPFUFQYPVQUGEQPFU9KVJVJKUCOWEJOQTG advantageous management of the two engines in a helicopter has become available. Currently functionality is improved and the quick start system modules are being further developed with respect to their reliability and future #NNKUQPJGNKEQRVGTGPIKPGVGUVDGFKPENWFKPICSWKEMUVCTVU[UVGO use in a real helicopter environment.

This main area of research at the institute is dedicated Projects to future advanced performance cycles as well as novel ■ Konzeption und Erprobung eines Schnellstartsystems overall architectures of gas turbines and aero engines. HØT*WDUEJTCWDGTICUVWTDKPGPCO$GKURKGNFGT#NNKUQP +PVJKUƄGNFKPXGUVKICVKQPUCTGECTTKGFQWVYKVJTGURGEVVQ 250 (2013-2017, LTF PV) potential improvements of overall engine characteristic ■ Numerical Investigation of Compressor Stator Shroud parameters, such as fuel burn, weight-to-power ratio, Leakage Effects (2017-2018, IA) RTQRWNUKXGGHƄEKGPE[CPFVJGTOCNGHƄEKGPE[#UGPIKPG ■ Flame Stabilisation in Supersonic Combustion (2013- architecture and performance are increasingly complex, 2017, LTF PV) ‘smart systems’ as well as variable geometries will be

144 Turbomachinery and Flight Propulsion

Research Focus Selected Publications 2017 ■ Turbomachinery aerodynamics ■ Inzenhofer, André; Haikonen, Joona; ■ Propulsor technologies *WRHGT#PFTGCU  /WNVKQDLGEVKXG ■ Advanced engine component design topology optimization with the sko- and make concepts method 6 (14), p. 387. DOI: 10.1007/ ■ Gas turbine systems and cycles s00158-017-1757-6 ■ Tobias Schmidt, Sina Eisenmann, Prof. Dr.-Ing. Competence Velislav Velikov, Andreas Hupfer, Volker ■ Fluiddynamic simulation of Volker Gümmer: Analysis of an Auxetic Gümmer turbomachinery Casing Structure for Tip Clearance ■ Structural simulation of gas turbine Control under Various Temperature Contact components CPF2TGUUWTG%QPFKVKQPU+5#$' www.ltf.mw.tum.de ■ Thermo-structural simulation of gas Conference 2017 [email protected] turbine components ■ Zimmermann, A.-L., Giepman, R. H. Phone +49.89.289.16164 ■ Axial and centrifugal compressor M., Nguyen Tran, Q. T., Aalburg, C., aerodynamic design Gümmer, V.: Design of a static test rig Management ■ Unsteady multidisciplinary simulations for advanced seals and air bearing Prof. Dr.-Ing. Volker Gümmer, Ordinarius ■ Performance cycle modelling testing. ISROMAC Conference 2017 &T+PI9QNHICPI'TJCTF%QPUWNVCPV ■ Axial and radial compressors testing ■ D. Paukner, J. Nowak, V. Gümmer, ■ Helicopter engine testing 1*CKFP+ORTQXGFƅCOOCDKNKV[ Retired Professors HQTJ[FTQIGPHWGNNGFUETCOLGVUYKVJ Prof. Dr.-Ing. Dr. h.c. mult. Günter Kappler Infrastructure RTGKPLGEVKQPECVCN[VKETCFKECNHCTOKPI Prof. Dr.-Ing. Hans Rick ■ Multi-stage axial high-speed research +5#$'%QPHGTGPEG Prof. Dr. Ing. Dieter Rist compressor test facility ■ André Inzenhofer, Thomas Lahni, ■ Centrifugal high-speed compressor 8QNMGT)ØOOGT$GTPF$GEMGT2CVTKEM Adjunct Professors/Lecturers test facility Grothe, Frank Heinichen: Using Prof. Dr.-Ing. Hanns-Jürgen Lichtfuß ■ Axial blower test facility Annulus Contouring to Compensate Dr.-Ing. Jörg Henne, MTU Aero Engines ■ #NNKUQPCPF29JGNKEQRVGT Compressor Mis-Matching Effects in engine test facilities the Presence of Casing Treatments. Administrative Staff ■ Multi-stage axial low-speed research +5#$'%QPHGTGPEG Karin Engels (Accounting) compressor rig (under development) #PFTGC$CWGT 5GETGVCT[ ■ 2-stage medium-speed research turbine rig (to be re-built) Research Scientists ■ Internal compute cluster Dipl.-Ing. Daniel Paukner ■ 5JQRƅQQT OCEJKPKPICUUGODN[ Dipl.-Ing. Martin Kerler purpose-built items) Dipl.-Ing. Marcel Schmieder Dipl.-Ing. Andreas Feierabend Courses André Inzenhofer, M.Sc. ■ $CUKEUQH6WTDQOCEJKPGT[ Christofer Kendall-Torry, M.Sc. ■ Flight Propulsion 1 Fabian Fuchs, M.Sc. ■ Flight Propulsion 2 Chengyu Zhang, M.Sc. ■ Aerodynamic Design of Anna Zimmermann, M.Sc. Turbomachinery Korbinian Schachtner, M.Sc. ■ Fluid Machinery /KEJCGN*QRƄPIGT/5E ■ Turbomachinery Tobias Schmidt, M.Sc. ■ Design Aspects on Aero Engines Mattia Straccia, M.Sc. ■ Numerical Methods in Turbomachinery Jannik Eckel, M.Sc. ■ Measurement and Experimental Ilaria de Dominicis, M.Sc. Techniques ■ %(&*CPFUQP$NQEM%QWTUG External Ph.D. Candidates ■ ('/*CPFUQP$NQEM%QWTUG Rodrigo Rodriguez Erdmenger (GEA) ■ Fluid Machinery and Flight Propulsion Dominik Schlüter (Siemens PG) Laboratory

Technical Staff 4CNH2TKNNGT 9GTMUVCVVOGKUVGT Christian Mörlein

145 Space Propulsion

Liquid propellant rocket engine technologies

■+PQWTHQEWUKPVJGƄGNFQHURCEGRTQRWNUKQPJCUDGGPGSWCNN[FKUVTKDWVGFDGVYGGPGZRGTKOGP- VCNCPFPWOGTKECNTGUGCTEJKPVQXCTKQWUCURGEVUQHKPLGEVKQPKIPKVKQPEQODWUVKQPCPFJGCVVTCPUHGT KPOGVJCPGQZ[IGPEQODWUVKQPCRRNKECVKQPUHQTTQEMGVGPIKPGU2CTVKEWNCTKVKGUQHET[QIGPKEKPLGEVKQP CPFCVQOK\CVKQPWPFGTNQYRTGUUWTGEQPFKVKQPUCPFCPKIPKVKQPU[UVGODCUGFQPTGUQPCPEGRJGPQO- GPCJCXGDGGPKPXGUVKICVGFYKVJKPCRTQLGEVLQKPVN[HWPFGFD[VJG$TC\KNKCP%U(VJG%JKPGUG%5% /WPKEJ#GTQURCEGCPF67/5VWFKGUQHVJGDGJCXKQTQHOGVJCPGQZ[IGPKPLGEVQTUVQYCTFUVJGKT KORCEVQPƅCOGF[PCOKEUEQODWUVKQPRGTHQTOCPEGCPFJGCVVTCPUHGTYGTGVJGMG[VQRKEUYKVJKP RTQLGEVUHWPFGFD[&()$(5CPF#TKCPG)TQWR+PCFFKVKQPVJGITQWREQPVKPWGFKVUGHHQTVKPFGUKIP CPFQRGTCVKQPQHVWTDQRWOREQORQPGPVUHQTNKSWKFRTQRGNNCPVTQEMGVGPIKPGU

Prof. Dr. Haidn was invited as a keynote lecturer to four prestigious. In addition, the Harbin Institute of Technol- international propulsion conferences among which the ogy, a member of the Chinese C9 League Universities 38th APTIS Conference in Dalian, China was the most appointed Prof. Dr. Haidn as Guest Professor.

Rocket Propulsion Technologies

(KIWTG'ZRGTKOGPVCNUGVWRHQTUKPINGKPLGEVQTGNGOGPVƅCOGXKUWCNK\CVKQP KPXGUVKICVKQPU

+PVJGƄGNFQHTQEMGVRTQRWNUKQPVGEJPQNQIKGUVJGITQWR is focusing within 3 different projects funded by DFG and (KIWTG+PLGEVQTEQODWUVQT BFS on numerical as well as experimental aspects of CPFKPLGEVKQPJGCF methane/oxygen combustion, a propellant combination which has recently seen increasing interest worldwide. CTGMG[HQTƅCOGF[PCOKEUCPFEQODWUVKQPUVCDKNKV[CPF An aspect all three projects have in common is the desire heat loads to the combustion chamber walls. Studies on to further the understanding of dominating phenomena ƅCOGCPEJQTKPIRTQEGUUCPFƅCOGF[PCOKEUHQTXCTKQWU behind injector/injector and injector wall interaction which injection conditions and start sequences have clearly revealed the importance of an appropriate timing of the KPLGEVKQPEQPFKVKQPUFWTKPIGPIKPGUVCTVWRHQTƅCOG anchoring and combustion stability, see Figs. 1-3 which show a sketch of the experimental set-up, an image of VJGCPEJQTGFƅCOGCPFVJGKORCEVQHVJGRTQRGNNCPV (KIWTG*KIJURGGFKOCIGQHVJGPGCTKPLGEVQTTGIKQPQHCOGVJCPG OKZVWTGTCVKQQPVJGCZKCNFKUVTKDWVKQPQHVJGƅCOGGOKUUKQP QZ[IGPUKPINGGNGOGPVOQFGNEQODWUVQT intensity. 5RGEKƄECNN[FGUKIPGFGZRGTKOGPVCNUKPING (KI CPF OWNVKKPLGEVQTUGVWRU (KI CNNQYGFWUVQKFGPVKH[CPF quantify phenomena unique for this propellant combina-

(KIWTG6GORGTCVWTGUVTCVKƄECVKQP KPCKPLGEVQTOQFGNEQODWUVKQP (KIWTG+UQNKPGUQHKFGPVKECN1*KPVGPUKVKGUHQTFKHHGTGPVRTQRGNNCPVOKZVWTG EJCODGT TCVKQUQHC D E F 

146 Space Propulsion

tion such as the necessity to not only resolve the velocity numerical models and tools. Fig. 5 demonstrates the tem- and temperature boundary layer to values smaller than y+ RGTCVWTGUVTCVKƄECVKQPKPVJGEQODWUVQTDWVUJQYUCUYGNN DWVVCMGKPVQCEEQWPVVJGƄPKVGTCVGEJGOKUVT[KPUWHƄ- the majority of the heat release has already taken place cient detail which have been missing in almost all numer- YKVJKPVJGƄTUVOOQHVJGEQODWUVKQPEJCODGTCHCEV KECNVQQNUCRRNKGFUQHCTHQTUWEJCRRNKECVKQPU6JKUƄPFKPI YJKEJKUXCNKFCVGFD[VJGYCNNRTGUUWTGRTQƄNGUUGG(KI is an outcome of a modeling workshop with international YJGTGCHVGTVJGUVGGRFGETGCUGYKVJKPVJGƄTUVRCTVQHVJG participation of renown experts such as the Japanese chamber, the rate of decrease becomes nearly constant 5RCEG#IGPE[ ,#:# CPFVJG#TKCPG)TQWRRCTVKEWNCTN[ CHVGTOO dedicated to identify strengths and weaknesses in

(KIWTG0QTOCNK\GFCZKCNRTGUUWTGFKUVTKDWVKQPUKPCKPLGEVQTOQFGNEQODWUVKQPEJCODGTHQTC CPFOKZVWTGTCVKQUQHCPF CPFD DCTDCTCPFDCTHQTCOKZVWTGTCVKQQH

Technologies for Green In-Space Propulsion

A key problem of in-space propulsion systems is the \CVKQPQHVJGƅWKFUUKPEGCNVJQWIJCVET[QIGPKEVGORGTCVWTGU transient start-up period of such thrusters since during the the propellants are in a state superheat, see Fig. 7 which ƄTUVRJCUGVJGRTQRGNNCPVUCTGKPLGEVGFKPVQVJGEQODWUVKQP shows the nucleation barrier as a function of the bubble EJCODGTCVXGT[NQYRTGUUWTGUYJKEJGPHQTEGUƅCUJXCRQTK- diameter and the rainbow signal of a single droplet.

(KIWTG0WENGCVKQPDCTTKGTŞ) NGHV CPFTCKPDQYUECVVGTKPIUKIPCNQHCUKPINGFTQRNGV TKIJV

147 Space Propulsion

(KIWTG5ECVVGTKPIHTKPIGRCVVGTPQHNKSWKFOGVJCPG NGHV CPFNKSWKFQZ[IGP TKIJV 

6JGITQWRCRRNKGFCOQFKƄGFINQDCNTCKPDQYTGHTCEVQOG- try to investigate the cryogenic propellants spray droplets KGNKSWKFQZ[IGPNKSWKFOGVJCPGCPFHQTEQORCTKUQP TGCUQPUNKSWKFPKVTQIGP 6JGTGHTCEVKXGKPFGZCPFVJG probability distribution of the droplet sizes are retrieved from the global rainbow pattern with the inversion meth- ods using the complex angular momentum scattering the- ory, see Fig. 8 which shows the measured rainbow signal of a liquid methane and liquid oxygen spray, respectively. A detailed evaluation of the results shows that the deduced temperatures from the rainbow signal agree well with the temperatures measured by thermocouples, with discrepancies less than 7.5% for the tested sprays at VGORGTCVWTGUTCPIKPIHTQO-VQ-6JGVGORGTCVWTG measurement uncertainties are analyzed to be within -#RRN[KPI5CGPIMCGYoUOGVJQFUVJGKPXGTUGF (KIWTG%QORCTKUQPQHOGCUWTGFVJGTOQEQWRNGCPFTCKPDQY droplets size distribution shows bimodal or even multi- VGORGTCVWTGU modal characteristics in the measurement probe volume, see Fig. 9. +PVGTGUVKPIN[VJGƅCUJKPIGZRGTKOGPVUTGXGCNGFVJGHQTOC- tion of solid nitrogen and methane but not of solid oxygen, a behavior which can be easily attributed to the differ- ences in thermos-physical properties of these molecules.

148 Space Propulsion

Turbo-Pump Technologies

(KIWTG'ZRGTKOGPVCNUGVWRHQTVWTDQRWORKPXGUVKICVKQPU

The research activities of the group are part of the project The experiments are performed under subscale condi- -QP4#6CVVJG.WFYKI$ÒNMQY%CORWUn-QORQPGPVGP tions with reduced rotational speeds and with water as a XQP4CMGVGPVTKGDYGTMGPHØT#PYGPFWPIGPKP6TCPURQTV- surrogate for the cryogenic fuels and oxidizers commonly U[UVGOGPFGT.WHVWPF4CWOHCJTVo6JGRCTVPGTUKPVJKU used in liquid rocket engines. Based on a scaling logic, project strive to create a professional network including that has been developed as well, this approach allows universities, research institutions and industry in order to integration of experimental data as early as possible in the GPJCPEGVJGEQORGVGPEGUKPVJGƄGNFUQHVWTDQRWORUHQT design process of newly developed pump components. liquid rocket engines and powder-based additive layer The research work perfomed at this test bench focuses manufacturing for space applications. on the operational stability of pumps over a wide range of A design methodology for each component of the operating conditions and operation in off-design condi- turbopump, i.e. inducer, impeller, volute and turbine, has tions. been developed. With the help of numerical simulations the design of the turbopump components is optimized YKVJKPCPKVGTCVKXGNQQR6JGTGD[FGVCKNGFƅQYCPCN[UGU RNC[CETWEKCNTQNGHQTVCTIGVGFIGQOGVT[OQFKƄECVKQPU CPFPGYFGUKIPEQPEGRVU(KIRTQXKFGUCPQXGTXKGY QHQWTCRRTQCEJVQUVCTVYKVJƅQYCPCN[UGUHQTCNNVJG different components and once a promising performance is found for these, in a second attempt analyses are performed for a setup where all components are linked together. The experimental investigation of tubopump components is an essential step in order to evaluate the capability of new turbopumps designs. Therefore, a new test bench has been developed and installed at the facilities of the Division Space Propulsion where it is possible to investigate pump components with respect to their hydrodynamic properties (KIWTG0WOGTKECNTGUWNVUHQTVJGƅQYVJTQWIJFKHHGTGPVEQORQPGPVUQH CUYGNNCUVJGKTECXKVCVKQPDGJCXKQTUGG|(KI| CVWTDQOCEJKPG

149 Space Propulsion

Research Focus Publications 2TQH*CKFPoUTGUGCTEJHQEWUGUQPTQEMGV Journals propulsion with the main emphasis ■ %JGOPKV\#5CVVGNOC[GT64QVJ|% on technologies for liquid propellant *CKFP1,&CKOQP;-GNNGT4 TQEMGVGPIKPGURTQRGNNCPVKPLGEVKQP )GTNKPIGT2

150 Helicopter Technology

2GTHQTOCPEGGHƄEKGPE[CPFUCHGV[HQTTQVQTETCHV

■*GNKEQRVGTTQVQTDNCFGUQRGTCVGKPCYKFGTCPIGQHƅQYEQPFKVKQPUDWVYKVJCƄZGFIGQOGVT[ YJKEJKUQRVKOK\GFQPN[HQTCUOCNNUWDUGVQHVJGEQORNGVGƅKIJVTGIKOG#PQDXKQWUYC[VQ KPETGCUGVJGGHƄEKGPE[QHEQPXGPVKQPCNTQVQTUYQWNFDGCPCFCRVKXGDNCFGIGQOGVT[YJKEJCNNQYU UGNGEVKQPQHVJGQRVKOCNUJCRGKPVGTOUQHRQYGTQTVJTWUV6JG'WTQRGCP%QOOKUUKQPJCUCYCTFGF CTGUGCTEJEQPVTCEVVQCVGCOQHWPKXGTUKVKGUCPFTGUGCTEJKPUVKVWVKQPUKPENWFKPIVJG+PUVKVWVGHQT *GNKEQRVGT6GEJPQNQI[VQKPXGUVKICVGUQNWVKQPUHQTOQTRJKPITQVQTDNCFGUFWTKPIVJGEQOKPI |OQPVJU#ITQWRQHHQWTTGUGCTEJGTUYKNNFGXGNQROQFGNUHQTUWEJOQTRJKPIUVTWEVWTGUCPF XCNKFCVGVJGKTUKOWNCVKQPUYKVJGZRGTKOGPVCNTGUWNVU

4QVQTETCHV&QYPYCUJCPF&[PCOKE+PVGTHCEG/QFGNKPI HQT4GCN6KOG5KOWNCVKQPU

4QVQTETCHVFQYPYCUJsCUVJGƅQYƄGNFDGNQYVJGTQVQT CPQXGN.CVVKEG$QNV\OCPPDCUGFƅWKFUKOWNCVKQPOQFGN FKUEKUWUWCNN[ECNNGFsCPFOQTGURGEKƄECNN[KVUGHHGEVQP YKVJGZVGTPCNCKTYCMGsHTQOUJKRFGEMURNCVHQTOUGVE VJGCKTETCHVKURGTEGKXGFD[RKNQVUCUUQECNNGFnITQWPF sCPFTQVQTCGTQF[PCOKEU KPƅQY OQFGNKPIKPENWFKPIVJG GHHGEVo+PUKOWNCVKQPOQFGNUVJKUGHHGEVKUOQUVN[TGR HGGFDCEMQPVJGƅKIJVF[PCOKEUCPFJCPFNKPISWCNKVKGU TGUGPVGFD[CFGRGPFGPE[QHVJGNKHVQPVJGFKUVCPEG HQTRKNQVGFUKOWNCVKQPQHTQVQTETCHV#TGUGCTEJITCPVHTQO DGVYGGPTQVQTCPFITQWPF2KNQVUQRGTCVKPIQPUJKRFGEMU VJG751HƄEGQH0CXCN4GUGCTEJGPCDNGUCEQQRGTCVKQP QKNTKIRNCVHQTOUQTYKPFGPGTI[RNCVHQTOUGZRGTKGPEG YKVJVJG750CXCN#ECFGO[CPFVJG)GQTIG9CUJKPIVQP JQYGXGTCVKOGXCT[KPIXGTUKQPQHVJKUITQWPFGHHGEV 7PKXGTUKV[YJQEQPVTKDWVGXCNWCDNGGZRGTKOGPVCNFCVCVQ YJKEJTGSWKTGUJKIJGTRKNQVKPIUMKNNUCPFOQTGVTCKPKPI UWRRQTVCPFXCNKFCVGQWTUKOWNCVKQPTGUWNVU(WPFGFD[ %QOOGTEKCNRKNQVVTCKPKPIUKOWNCVQTUFQPQVTGRTGUGPV VJG)GTOCP/KPKUVT[QH'EQPQOKE#HHCKTUCPF'PGTI[VJKU VJKUF[PCOKEDGJCXKQTCVCUCVKUHCEVQT[NGXGNUKPEGVJG[ OQFGNNKPICRRTQCEJKUCFFKVKQPCNN[RWTUWGFYKVJCVCTIGV NCEMRJ[UKEUDCUGFFQYPYCUJOQFGNU6JG+PUVKVWVG CRRNKECVKQPQPRNCVHQTOUKPQHHUJQTGYKPFHCTOU2CTVPGTU HQT*GNKEQRVGT6GEJPQNQI[JCUTGCNK\GFVJGEQWRNKPIQH CTG&.4CPFVJG7PKXGTUKVKGUQH5VWVVICTVCPF6ØDKPIGP

/QFGNNKPICPF6GUVKPIQH%QWPVGT4QVCVKPI4QVQTU

%QCZKCN CNUQMPQYPCUEQWPVGTTQVCVKPITQVQTU  CTGUVKNNCTCTGURGEKGUQHTQVQTETCHV$WVVJGTGCTG UQOGWPFKURWVCDNGCFXCPVCIGUNKMGU[OOGVT[ CPFKVUCUUQEKCVGFGCUGQHƅ[KPIQTJKIJURGGF RQVGPVKCNYJKEJOCMGVJGOKPETGCUKPIN[CVVTCEVKXG /QFGNNKPIUWEJTQVQTUKURCTVKEWNCTN[EJCNNGPIKPI FWGVQVJGQDXKQWUKPVGTCEVKQPDGVYGGPVJG CFLCEGPVTQVQTFKUMU6JGTGHQTGOQFGNXCNKFCVKQP DCUGFQPGZRGTKOGPVCNFCVCKUCRTGTGSWKUKVG (QTVJG+PUVKVWVGQH*GNKEQRVGT6GEJPQNQI[VYQ FKHHGTGPVFCVCUQWTEGUCTGCXCKNCDNG #PWNVTCNKIJV OCZMI UGCVGTTQVQTETCHV KUOQFGNNGFƅKIJVVGUVGFCPFGXCNWCVGFWPFGT CITCPVHTQOVJG)GTOCP(GFGTCN/KPKUVT[HQT 'EQPQOKE#HHCKTUCPF'PGTI[YKVJVJGCKOVQ DGVVGTWPFGTUVCPFVJGNKOKVUQHVJGƅKIJVGPXGNQRG QHVJKUV[RGQHTQVQTETCHV $WVEQCZKCNTQVQTEQPƄIWTCVKQPUCTGCNUQXKCDNG $NCFGENGCTCPEGXUƅKIJVURGGF ECPFKFCVGUYJGPCKOKPICVVJGJKIJURGGFƅKIJV TGIKOG6JGTGHQTGVJGGZKUVKPIEQQRGTCVKQPYKVJ VJG7PKXGTUKV[QH6GZCUJCUDGGPEQPVKPWGFWPFGT VJGWODTGNNCQH8.4%1'

151 Helicopter Technology

/CVGTKCNHTQO4GPGYCDNG4GUQWTEGUKP#GTQURCEG#RRNKECVKQPU

*[DTKFUVTWEVWTGUEQODKPKPIECTDQPCPFƅCZƄDGTUUJQWNF DGCRRNKGFKPTGRNCEKPICEQPXGPVKQPCNECTDQPEQORQUKVG UVTWEVWTGHQTCJGNKEQRVGTEQEMRKVFQQT$GUKFGUCFXCP VCIGUKPUVTWEVWTCNFCORKPIDGPGƄVUKPETCUJDGJCXKQT ECPDGGZRGEVGF(KTUVURGEKOGPVGUVUUJQYGFRTQOKUKPI TGUWNVU 6JGRTQLGEVKUHWPFGFD[.7(18VJGCUUQEKCVGF RCTVPGTUCTGVJG&GRCTVOGPVQH.KIJVYGKIJV5VTWEVWTGUCPF 2QN[OGT6GEJPQNQI[CVVJG6GEJPKECN7PKXGTUKV[%JGOPKV\ CPFVJG+PUVKVWVGHQT$KQRNCUVKEUCPF$KQEQORQUKVGUCVVJG 7PKXGTUKV[QH#RRNKGF5EKGPEGUCPF#TVUKP*CPPQXGT %CTDQPƅCZURGEKOGPCHVGTETWUJKPI

#4'#s#WVQPQOQWU4QVQTETCHVHQT'ZVTGOG#NVKVWFGU

1WTRCTVPGTUJKRYKVJ&.4JCUVJGCKOVQDTKPICPCWVQPQ OQWUTQVQTETCHVWRVQCNVKVWFGUQHO0QYVJGRTQLGEV JCUTGCEJGFCPKORQTVCPVOKNGUVQPGYKVJUWEEGUUHWNVGUV ƅKIJVUKP5YKV\GTNCPF6JGCNNGNGEVTKEFTQPGYKVJCVCMGQHH YGKIJVQHMICPFKVUWPKSWGƅ[KPISWCNKVKGUJCUUJQYP VJGFGUKTGFTGURQPUGVQCPGYN[FGXGNQRGFEQPVTQNNGT 5KPEGVJGUWEEGUUHWNƄTUVƅKIJVVQQMRNCEGKP#WIWUV OQTGVJCPUVCTVUJCXGDGGPRGTHQTOGFCEEWOWNCVKPI CVQVCNQHƅKIJVJQWTU6JGƅKIJVF[PCOKEUOQFGNTGRTG UGPVUVJGCKTETCHVoUDGJCXKQTYKVJCJKIJƄFGNKV[CPFEQWNF VJWUDGWUGFHQTVJGEQPVTQNNGTFGXGNQROGPV#NNU[UVGOU CTGYQTMKPICUGZRGEVGFCPFVJGRGTHQTOCPEGRCTCOGVGTU EQTTGURQPFYKVJRTGFKEVKQPUsPGEGUUCT[RTGEQPFKVKQPUHQT VJGJKIJCVVKVWFGƅKIJVVTKCNUKP #UCNCUVHQTOCNUVGRVJGƅKIJVENGCTCPEGHQTVGUVƅKIJVUKP #TIGPVKPCYCUTGEGKXGFKPGCTN[&GEGODGT #TGCTQVQTJGCFUYKVJƅKIJVVGUVKPUVTWOGPVCVKQP

152 Helicopter Technology

4GUGCTEJ(QEWU 5GNGEVGF2WDNKECVKQPU ■ +PVGTCEVKQPCNCGTQF[PCOKEU ■ 5VTQJTOCPP-$NCWV,2CPGUEW% ■ #GTQOGEJCPKETQVQTOQFGNKPI 'PFTGU*,5XKFNGT4*CLGM/ ■ 0QPNKPGCTEQPVTQNU +ORCEV&COCIG$GJCXKQTCPF0QP ■ 2KNQVCUUKUVCPEGUKVWCVKQPCN &GUVTWEVKXG+PURGEVKQP/GVJQFUQH6JKP awareness *[DTKF%CTDQP(NCZ.COKPCVGU&.4- ■ 4QVQTETCHVFGUKIPCPFUK\KPI /WPKEJ)GTOCP[ ■ 5WGUUG5*CLGM/&[PCOKE4QVQT 2TQH&T+PI %QORGVGPEG $NCFG&KURNCEGOGPV6TCEMKPIYKVJ /CPHTGF*CLGM ■ %(&CPFHTGGYCMGUKOWNCVKQPUQHTQVQT (KDGT1RVKECN5GPUQTUHQTC*GCNVJCPF YCMGCPFXQTVGZƅQYU 7UCIG/QPKVQTKPI5[UVGOVJ#+## %QPVCEV ■ &[PCOKEUVCNNOQFGNKPI +55/1/WNVKFKUEKRNKPCT[#PCN[UKUCPF YYYJVOYVWOFG ■ %QWRNGFTQVQTHWUGNCIGUKOWNCVKQP 1RVKOK\CVKQP%QPHGTGPEG&GPXGT QHƄEG"JVOYVWOFG ■ 4GCNVKOGƅKIJVUKOWNCVKQP %QNQTCFQ75#,WPG 2JQPG  ■ *CTFYCTGKPVJGNQQRUKOWNCVKQP ■ 9KTVJ&*CLGM/2TQDCDKNKUVKE ■ &GUKIPCPFOCPWHCEVWTKPIQH /GVJQFQNQI[HQT/WNVK(KFGNKV[/QFGN /CPCIGOGPV EQORQUKVGTQVQTDNCFGU $CUGF4QDWUV2TGNKOKPCT[&GUKIP 2TQH&T+PI/CPHTGF*CLGM&KTGEVQT ■ 5GPUQTKPVGITCVKQPKPNKIJVYGKIJV QH4QVQTETCHV#OGTKECP*GNKEQRVGT structures 5QEKGV[TF#PPWCN(QTWO(QTV9QTVJ #FLWPEV2TQHGUUQTU 6: *QP2TQH&T+PI7NTKEJ$WVVGT +PHTCUVTWEVWTG ■ (GKN44KPMGT/*CLGM/(NKIJV ■ 4GUGCTEJJGNKEQRVGTUKOWNCVQTYKVJ 6GUVKPIQHC%QCZKCN7NVTCNKIJV4QVQT #FOKPKUVTCVKXG5VCHH EJCPPGNUKOCIGVGTTCKPCPFKOCIG ETCHV#OGTKECP*GNKEQRVGT5QEKGV[TF /CTVKPC6JKGOG FCVCDCUGUCPFJGCFVTCEMKPIU[UVGO #PPWCN(QTWO(QTV9QTVJ6: ■ 6GUVTKIHQTDNCFGTQQVUVTWEVWTGU NGCF ■ 8KGTVNGT(*CLGM/'XCNWCVKQPQH 4GUGCTEJ5EKGPVKUVU NCICPFƅCR 8KUWCN#WIOGPVCVKQP/GVJQFUHQT &T+PI,ØTIGP4CWNGFGT ■ 1RVKECNUVTCKPOGCUWTGOGPVU[UVGO 4QVQTETCHV2KNQVUKP&GITCFGF8KUWCN #OKPG#DFGNOQWNC/5E (KDGT$TCIIITCVKPIU 'PXKTQPOGPVU,QWTPCNQHVJG#OGTKECP &KRN+PI#CTQP$CTVJ ■ %NWUVGTYKVJEQTGU *GNKEQRVGT5QEKGV[ ,CMQD$NWFCW/5E ■ $NWFCW,4CWNGFGT,(TKGFOCPP &KRN+PI4QNCPF(GKN .GEVWTGU .*CLGM/4GCN6KOG5KOWNCVKQPQH 9KNNGO)CTTG/5E ■ +PVTQFWEVKQPVQ#GTQPCWVKECN &[PCOKE+PƅQY7UKPI4QVQTETCHV(NKIJV 1OMCT*CNDG/'PI 'PIKPGGTKPI 4QVQTETCHV &[PCOKEU%QWRNGF9KVJC.CVVKEG 8GTGPC*GWUEJPGKFGT/5E ■ *GNKEQRVGT(NKIJV2J[UKEU $QNV\OCPP$CUGF(NWKF5KOWNCVKQP $CUVKCP*QTXCV/5E ■ *GNKEQRVGT&GUKIPCPF#TEJKVGEVWTG+++ VJ#+###GTQURCEG5EKGPEGU &QOKPKM-QOR/5E ■ *GNKEQRVGT5[UVGOU /GGVKPI)TCRGXKPG6GZCU 5WOGGV-WOCT/6GEJ ■ *GNKEQRVGT5CHGV[CPF%GTVKƄECVKQP 6KO/GJNKPI/5E ■ *GNKEQRVGT(NKIJV&[PCOKEUCPF%QPVTQN 6QDKCU2ƅWOO/5E ■ (WPFCOGPVCNUQH*GNKEQRVGT 5VGHCP2NCV\GT/5E #GTQF[PCOKEU /CTMWU4KPMGT/5E ■ *GNKEQRVGT#GTQF[PCOKEUs#FXCPEGF ;KP4WCP/5E 6QRKEU &KRN+PI&QOKPKM5EJKEMGT ■ .KIJVYGKIJV5VTWEVWTGU &KRN+PI%JTKUVKCP5RKG» ■ 5OCTV5VTWEVWTGU -CVJCTKPC5VTQJTOCPP/5E ■ 2TCEVKECN%QWTUG+(4*GNKEQRVGT(NKIJV &KRN+PI5ÒTGP5Ø»G ■ 2TCEVKECN%QWTUG.KIJVYGKIJV5VTWEVWTGU &QOKPKM9KTVJ/5E ■ 5QHV5MKNN5GOKPCT*GNKEQRVGT 'PIKPGGTKPI.GCFGTUJKR

153 Flight System Dynamics

/CMKPIKPPQXCVKQPUƅ[KPEGTVKƄGFRTQFWEVUQHUOCNNCPFOGFKWOUK\GFCGTQURCEGEQORCPKGU

■ As part of the Technical University of Munich Department of Mechanical Engineering, we are devoted to analyzing and modifying the dynamic characteristics of aerial platforms. Our passionate team is committed to mature cutting-edge technologies that are required VQKPEGRVVJGƅKIJVU[UVGODGJCXKQTQHVQOQTTQY

During the last years we have acquired all the experience We have established important partnerships and syner- which is needed along the whole process of making gies with top research institutions and leading industrial EQPVTQNKFGCUƅ[6JKUKPENWFGUOQFGNKPICPFU[UVGO RNC[GTUKPVJGƄGNFQHCGTQURCEG1WTWNVKOCVGIQCNKUVJG KFGPVKƄECVKQPEQPVTQNNGTFGUKIPCPFKORNGOGPVCVKQPKPTGCN development and the application of innovative approaches CKTETCHV1WTTGUGCTEJCTGCUCTGRTGUGPVGFKPVJGHQNNQYKPI VCKNQTGFVQTGCNYQTNFCRRNKECVKQPUCPFRTQFWEVUCUYGNNCU UGEVKQPU6JGTGUGCTEJKPHTCUVTWEVWTGKPENWFGUUGXGTCNƅKIJV VQVJGFGOCPFKPIEJCNNGPIGUQHVQOQTTQY UKOWNCVQTUVGUVTKIUCPFOCPPGFCPFWPOCPPGFCKTETCHV

Research aircraft OE-FSD on approach to automatic landing

(NKIJV)WKFCPEGCPF(NKIJV%QPVTQN

In 2017 the Institute of Flight System Dynamics was able $GUKFGUVJG&KCOQPF&#VJG+PUVKVWVGQH(NKIJV5[UVGO to draw upon and continuously expand its successes &[PCOKEUKUCNUQKPXQNXGFKPVJGFGXGNQROGPVQHƅKIJV HTQORTGXKQWU[GCTUKPVJGFQOCKPQHƅKIJVIWKFCPEG EQPVTQNU[UVGOUHQTCFFKVKQPCNFKHHGTGPVV[RGUQHCKTETCHV CPFEQPVTQN(QTUGXGTCN[GCTUVJGKPUVKVWVGPQYQRGTCVGU 1PGGZCORNGYJGTGVJGGHHQTVUTGCNN[RCKFQHHYCUVJG a Diamond DA42M-NG general aviation aircraft for OCKFGPƅKIJVQHVJGWPOCPPGF5#)+66#&GOQPUVTCVQT TGUGCTEJRWTRQUGU9KVJVJGRGTUQPCNEQOOKVOGPVQH CVVJG1XGTDGTIVGUVTCPIGKP5QWVJ#HTKECKP,WN[ several research assistants of the institute the aircraft was 9KVJKPVJGn1RGP+PPQXCVKQPoKPKVKCVKXGNGFD[CKTETCHV OQFKƄGFCEEQTFKPIVQVJGURGEKCNFGOCPFUHQTƅ[KPICPF OCPWHCEVWTGT#KTDWUVJGWPOCPPGFCGTKCNXGJKENG VGUVKPIOQFGTPƅKIJVEQPVTQNCNIQTKVJOU+PRCTVKEWNCTCHWNN (UAV) has been newly developed in a collaboration of ƅ[D[YKTGU[UVGOYCUFGUKIPCPFKPUVCNNGF RCTVPGTUHTQOCECFGOKCCPFTGUGCTEJ&GUKIPGFCUCP +P0QXGODGTHWNNCWVQOCVKEƅKIJVJCFCNTGCF[ KPPQXCVKQPCPFVGEJPQNQI[FGOQPUVTCVKQPRNCVHQTOVJG DGGPFGOQPUVTCVGFTCPIKPIHTQOCWVQOCVKEVCMGQHHXKC FKCOQPFUJCRGFƅ[KPIYKPIJCUCYKPIURCPQHOCPFC YC[RQKPVGPTQWVGƅKIJVVQCWVQOCVKENCPFKPI$CUGFQP VCMGQHHYGKIJVQHCDQWVMI VJKUUWEEGUUCFFKVKQPCNƅKIJVJQWTUYGTGICVJGTGFCPF 6JGKPUVKVWVGCPFVJGHQEWUITQWRn#KTETCHV5VCDKNKV[CPF GZRGTKGPEGYCUICKPGFKP+PRCTVKEWNCTRGTHQTOCPEG %QPVTQNoCVVJG+PUVKVWVGHQT#FXCPEGF5VWF[ +#5 JCXG QHVJGƅKIJVEQPVTQNU[UVGOYCUKORTQXGFCPFVJGTQDWUV- FGXGNQRGFCPKPPQXCVKXGƅKIJVEQPVTQNU[UVGOHQTVJG5#)- PGUUVQGZVGTPCNFKUVWTDCPEGUYCUGXCNWCVGF(WTVJGTOQTG +66#&GOQPUVTCVQTVJCVGPCDNGUHWNN[CWVQOCVKEQRGTCVKQP an active stick was installed into the DA42 for manned QHVJGCKTETCHV6JGOCLQTEJCNNGPIGQHVJGFGXGNQROGPV ƅKIJVGZRGTKOGPVUKPENWFKPICPINGQHCVVCEMNKOKVCVKQPCPF YCUVQGPUWTGCUCHGƅKIJVQHVJG7#8CUVJGTGKUPQRKNQV UVCNNRTQVGEVKQP QPDQCTFYJQEQWNFTGCEVVQWPGZRGEVGFDGJCXKQT

154 Flight System Dynamics

U[UVGORGTHQTOGFUQYGNNFWTKPIVJGYJQNGƄTUVƅKIJV OKUUKQPCUGEQPFƅKIJVKPKFGPVKECNEQPƄIWTCVKQPYCU conducted successfully with additional mission segments LWUVCHVGTVJGOCKFGPƅKIJV

2TQLGEVU ■ 6QVCNECRCDKNKV[CRRTQCEJVQJKIJN[CEEWTCVGCPFUCHG guidance applied to an automatic landing system 2JCUG$$/9K ■ &GXGNQROGPVQHCPCWVQRKNQVHQT42#5YKVJƄZGFYKPI TQVCT[YKPIQTJ[DTKFEQPƄIWTCVKQP $/9K 7POCPPGF5#)+66#&GOQPUVTCVQTQPKVUHWNN[CWVQOCVKEOCKFGPƅKIJV ■ &GXGNQROGPVQHVJGƅKIJVEQPVTQNU[UVGOHQTCPWPUVC- +OCIG#KTDWU&GHGPEGCPF5RCEG

5GPUQTU0CXKICVKQPCPF&CVC(WUKQP

Navigation sensors and systems provide crucial informa- 6JGPCXKICVKQPTGUGCTEJITQWRCVVJG(5&HQEWUGFKP VKQPQPCKTETCHVƅKIJVUVCVGUUWEJCURQUKVKQPXGNQEKV[CPF on the following key enabling technologies: QTKGPVCVKQPTGSWKTGFHQTƅKIJVUVCVGEQPVTQNCPFƅKIJVRCVJ ■ Inertial sensor and navigation system test facility for IWKFCPEG%QPUGSWGPVN[VJGRGTHQTOCPEGQHƅKIJVUVCVG sensor calibration and integrated navigation system control and hence safety greatly depends on navigation testing CEEWTCE[CPFKPVGITKV[(WTVJGTOQTGƅKIJVUCHGV[CPFOKU- ■ Multi global navigation satellite systems (GNSS) signal UKQPUWEEGUUFGRGPFUVTQPIN[WRQPCXCKNCDKNKV[EQPVKPWKV[ from space and augmentation signal exploitation under CPFTQDWUVPGUUQHPCXKICVKQP nominal conditions ■ 2NCVHQTOCWVQPQOQWUHCWNVVQNGTCPV#&#*45CGTQF[- namic model aided navigation or surface range-imaging in GNSS-degraded and denied environments ■ Navigation system integration architectures with graceful degradation capability and professional data fusion algorithms

2TQLGEVU ■ Multi-GNSS navigation ■ Inertial laboratory ■ 5WTHCEGKOCIGCPFOQFGNCKFGFPCXKICVKQP ■ Fault-tolerant ADAHRS Three-axis motion simulator for inertial sensor testing ■ 5GPUQTFTKXGPVTCLGEVQTKGU

155 Flight System Dynamics

6TCPUKVKQP#KTETCHV

Illustration of a transition aircraft

With the fast-growing market of unmanned aircraft HQTVJGFKXGTUKV[QHGZKUVKPICPFHWVWTGCKTETCHVEQPƄIWTC- U[UVGOU 7#5 PGYPGGFUQPCKTETCHVCTKUG'URGEKCNN[HQT tions and maximizing their robustness against unforeseen UOCNNWPOCPPGFCKTETCHV CMCFTQPGUVJGVGTOWUGFD[ disturbances and uncertainties – even the loss of one or VJGOGFKC WUGTUFGUKTGVQJCXGRNWICPFRNC[U[UVGOU# OQTGEQPVTQNGHHGEVQTU PGYTGSWKTGOGPVICKPUKORQTVCPEGƅ[KPIYKVJQWVIKXGP (QTVJGFGXGNQROGPVQHVJG861.7#5KPRCTVKEWNCTC KPHTCUVTWEVWTG+OCIKPG[QWTWPOCPPGFCKTETCHVUVQTGF OQFGNDCUGFCRRTQCEJKUEJQUGPYJKEJUKOWNCVGUCXGJK- KPCDQZKPVJGVTWPMQH[QWTECT;QWUKORN[FTKXGVQVJG ENGOQFGNQPNKPGQPVJGƅKIJVEQPVTQNEQORWVGTKPQTFGT QRGTCVKPIUKVGWPDQZCPFUGVWRVJGU[UVGOCPFUVCTVKV VQEQORWVGVJGTGCNVKOGHQTEGUCPFOQOGPVUCUYGNNCU TKIJVQHHVJGOGCFQYKPHTQPVQH[QW6QFQUQ[QWTCKTETCHV VJGKTGHƄEKGPEKGUQPVJGEQOOCPFU6JKUGPCDNGUCPQRVK- needs to be capable of vertically take-off and landing mal distribution of control effector effort and additionally 861.  CNNQYUVJGEQPUKFGTCVKQPQHUGEQPFCT[QDLGEVKXGUUWEJCU 6JGTGSWKTGOGPVQH861.KUCEEQORNKUJGFSWKVGGCU[D[ OKPKOK\KPIGPGTI[CPFOCZKOK\KPIUCHGV[ OWNVKEQRVGTU*QYGXGTVJQUGU[UVGOUQPN[JCXGCUJQTV +VKUCNQPIYC[HTQOVJGKFGCQHCPCKTETCHVWPVKNVJGƄTUV TCPIGCPFGPFWTCPEG5QYJ[PQVEQODKPGVJGCFXCPVCIG RTQVQV[RGKUTGCF[HQTƅKIJVVGUVKPI6JKUJQNFUVTWGHQT QHCOWNVKEQRVGT 861.ECRCDKNKV[ YKVJVJQUGQHCYKPI manned aircraft as well as for unmanned aircraft if the born plane (range and endurance)? A transition aircraft software and hardware is intended to be designed accord- GOGTIGU KPIVQRTQEGUUGUCPFUVCPFCTFUHTQOOCPPGFCXKCVKQP 6TCPUKVKQPCKTETCHVCTGECRCDNGQH861.CPFƅ[YKPIDQTP 6JGTGCTGOCP[UVGRUYKVJKPVJGFGXGNQROGPVRTQEGUU YKVJJKIJGHƄEKGPE[6JKUQHHGTUVJGOCDTQCFTCPIGQH which are necessary to ensure that the implementation of CRRNKECVKQPUCPFOCTMGV(QT7#5861.U[UVGOUVJG algorithms and the design of the avionic system is done design can differ a lot from classic manned aircraft YKVJVJGTGSWKTGFNGXGNQHTKIQTYJKNGMGGRKPIVJGQDLGEVKXGU 861.U'NGEVTKERTQRWNUKQPCPFFKHHGTGPVTGSWKTGOGPVUQP KPOKPFYJKEJGUVCDNKUJVJGEQPƄFGPEGVJCVVJGCKTETCHVECP TGFWPFCPE[DTKPIQWVFKHHGTGPVEQPEGRVU5Q861.7#5KU DGQRGTCVGFUCHGN[6JKUOGCPUVJCVDGUKFGVJGKORNGOGP- DGEQOKPICNCTIGUWDLGEVQHTGUGCTEJ VCVKQPCPFFGUKIPVCUMUFKHHGTGPVXGTKƄECVKQPOGVJQFU #OCLQTRCTVQHVJKUTGUGCTEJKUQEEWRKGFD[VJGFGXGN- adapted from manned aviation development processes are opment and implementation of control algorithms on the CNUQWUGFHQTWPOCPPGFCKTETCHV$GIKPPKPIHTQOVJGNQYGUV SWKVGPGYXGJKENGEQPƄIWTCVKQPU$GUKFGUENCUUKECNEQPVTQN NGXGNQHXGTKƄECVKQPOQFGNKPVJGNQQRUKOWNCVKQPIKXGU QDLGEVKXGUUWEJCURGTHQTOCPEGCPFTQDWUVPGUUVJG TGUWNVUQPUQHVYCTGHWPEVKQPUCPFOQFWNGUWRVQJCTF- main focus in modern control techniques includes several ware-in-the-loop simulations which incorporate all software HWTVJGTCURGEVU#OCKPCURGEVKUTGƅGEVGFD[FGXGNQRKPI modules running on the target system in a closed loop with OQFWNCTGPECRUWNCVGFCPFGCU[VQCFCRVEQPVTQNU[UVGOU CJKIJƄFGNKV[UKOWNCVKQPOQFGNQHVJGTGCNCKTETCHV

156 Flight System Dynamics

(NKIJV5CHGV[

5QWTEG(KIWTG5CHG%NQWFUGW&GNKXGTCDNG&

1XGTVJGNCUV[GCTUVJGYQTMQHVJG(NKIJV5CHGV[6GCOCV KPIITQWRUCPFCNUQICXGRTGUGPVCVKQPUCVVJG'1(&/ the institute has raised attention at several international %QPHGTGPEGKP%QNQIPG CKTNKPGUCPFCIGPEKGU$GUKFGUVJGQPIQKPIRTQLGEVU 6QCNNQYVJGHWPEVKQPCNKVKGUFGXGNQRGFCVVJGKPUVKVWVGVQ DKNCVGTCNEQQRGTCVKQPUJCXGDGGPUVTGPIVJGPGFKP DGWUGFKPVJGƅKIJVUCHGV[EQOOWPKV[KPVJGHWVWTGVJG (WTVJGTOQTGƅKIJVUCHGV[VGCOOGODGTUJCXGRTGUGPVGF EQQRGTCVKQPYKVJQPGQHVJGHGYƅKIJVFCVCOQPKVQTKPI their work at several conferences well renowned in the UQHVYCTGRTQXKFGTUJCUDGGPKPVGPUKƄGFKP9JKNGVJG ƅKIJVUCHGV[EQOOWPKV[ ƄTUVUVGRUQHCEQQRGTCVKQPJCFDGGPVCMGPKPVJGRTGXKQWU 6JG(WVWTG5M[5CHGV[RTQLGEVKUQPKVUYC[VQFGXGNQR [GCTUƄTUVFKUEWUUKQPUCVOCPCIGOGPVNGXGNYGTGECTTKGF a prototype for a risk observatory of the total aviation out in 2017 and cooperative plans for the future were U[UVGO6JGOCKPEQPVTKDWVKQPQH67/KUVQETGCVGOQFGNU FGXGNQRGF FGUETKDKPIVJGƅKIJVQRGTCVKQPUQHCKTNKPGUKPENWFKPIVJG 6JGGZRGTKGPEGKPƅKIJVFCVCCPCN[UGUICKPGFCVVJG JC\CTFUCPFVJGKTEQPVTKDWVKPIHCEVQTU6JGRTQLGEVKU KPUVKVWVGTCKUGFCVVGPVKQPCVUGXGTCN'WTQRGCPCKTNKPGUCPF EWTTGPVN[GPVGTKPIKVUƄPCN[GCTYKVJOCP[GZEKVKPITGUWNVU CIGPEKGU#UCTGUWNVVJGTGUGCTEJITQWRKURCTVQHVJG VQEQOG EQPUQTVKCQHVYQ'WTQRGCP*QTK\QPRTQLGEVUFKTGEVN[ #PQVJGTQPIQKPIRTQLGEVKUVJG'WTQRGCP*QTK\QP TGNCVGFVQƅKIJVFCVCCPCN[UGUYKVJTGURGEVVQƅKIJVUCHGV[ RTQLGEV5CHG%NQWFUGW YYYUCHGENQWFUGW 6JGRTQLGEV (WTVJGTOQTGCEQQRGTCVKQPYKVJVJG67/5VCVKUVKEU EQPUQTVKWOKPXQNXGUƄXGCKTNKPGUCPFVJTGGCKTPCXKICVKQP department exists to incorporate advanced statistical UGTXKEGRTQXKFGTUYKVJVJGIQCNQHKORTQXKPIƅKIJVUCHGV[ EQPEGRVUKPVQƅKIJVFCVCCPCN[UKU VJTQWIJCXKCVKQPFCVCOKPKPI6JGKPUVKVWVGNGCFUCYQTM RCEMCIGVJCVYCUOCKPN[ECTTKGFQWVKP+P#RTKN 2TQLGEVU CEQPUQTVKWOOGGVKPIYCUQTICPK\GFCV67/RTGOKUGUKP ■ Future Sky Safety: development of a risk observatory )CTEJKPI HQTVJGVQVCNCXKCVKQPU[UVGO '7* 6JG'WTQRGCP1RGTCVQTU(NKIJV&CVC/QPKVQTKPI '1(&/  ■ 5CHG%NQWFUGWUJCTKPIFCVCVQOCMGCXKCVKQPUCHGT (QTWOKUCXQNWPVCT[HTCOGYQTMKPKVKCVGFD[VJG'WTQRGCP '7* #XKCVKQP5CHGV[#IGPE[ '#5# CPFCNNQYUƅKIJVFCVC ■ Copula based dependence analysis of functional data GZRGTVUVQOGGVCPFGZEJCPIGKFGCU(5&(NKIJV5CHGV[ for validation and calibration of dynamic aircraft models 6GCOOGODGTUCTGCEVKXGOGODGTUQHVJG'1(&/YQTM- (DFG)

157 Flight System Dynamics

6TCLGEVQT[1RVKOK\CVKQP

6JGVTCLGEVQT[QRVKOK\CVKQPTGUGCTEJITQWRINCFN[YGN- #6/TGUGCTEJYCUEQPVKPWGFD[FGXGNQRKPIGZVGPFGF EQOGFTGURGEVGFTGUGCTEJGTUCOQPIVJGO#UUQEKCVG bilevel algorithms to determine the optimal arrival times Professor Sébastien Gros of Chalmers University of CPFVTCLGEVQTKGU6JGUGTGUWNVUYKNNDWKNFVJGHQWPFCVKQPQH 6GEJPQNQI[YJQJGNFCYGNNXKUKVGFUGTKGUQHNGEVWTGUQP CPGYTGUGCTEJRTQLGEVUVCTVKPIKP n#FXCPEGF6QRKEUKP1RVKOCN%QPVTQNo 9KVJKPVJG8C/'Z%Q5/K%RTQLGEVVJGIQCNQHVJGVTCLGE- (WTVJGTOQTG2TQHGUUQT,QUGRJ<$GP#UJGTHTQO tory optimization research group was to develop an online 6GEJPKQP7PKXGTUKV[TGVWTPGFHQTCXKUKVWPFGTVJG67/ VTCLGEVQT[IGPGTCVKQPOQFWNGHQTRCVJHQNNQYKPIKPENWFKPI #WIWUV9KNJGNO5EJGGT8KUKVKPI2TQHGUUQTUJKR2TQITCO QDUVCENGCXQKFCPEG6JGTGHQTGCEWUVQOQPNKPGQRVKOCN $GUKFGUJKUKPURKTKPINGEVWTGQPVJGCRRNKECVKQPQHICOG EQPVTQNVQQNJCUDGGPFGXGNQRGF6JGCNIQTKVJOJCUDGGP VJGQT[KPCGTQURCEGYGOCFGDKIUVGRUHQTYCTFKPQWT KORNGOGPVGFCPFVGUVGFQPDQCTFCJGZCEQRVGT LQKPVTGUGCTEJVQRKEQPQRVKOK\CVKQPCPFQRVKOCNEQPVTQN 6JGUM126KPIRTQLGEVHQEWUGFQPFGVGTOKPKPIQRVKOCN DCUGFƅKIJVEQPVTQNNCYVGUVKPI6JKUOGVJQFGORNQ[U VTCLGEVQTKGUHQTUMKLWORGTUKUQPIQKPI6JGEWTTGPVFGXGN- PQPNKPGCTQRVKOK\CVKQPCNIQTKVJOUVQƄPFnYQTUVECUGo QROGPVUVCIGKUVJGU[UVGOKFGPVKƄECVKQPWUKPIQRVKOCN U[UVGOKPRWVU RKNQVEQOOCPFUFKUVWTDCPEGU CPF EQPVTQNOGVJQFU&CVCYKNNDGQDVCKPGFFWTKPIOGCUWTG- parameters that may drive the system to or beyond the OGPVECORCKIPUUEJGFWNGFHQTVJKUYKPVGT UCHGV[DQWPFCTKGUCFFKVKQPCNN[RTQXKFKPIKPHQTOCVKQPQP #PGYTGUGCTEJRTQLGEVYKVJKPVJGUEQRGQHVJG/WPKEJ VJGUGPUKVKXKV[QHFKUVKPEVRCTCOGVGTU Aerospace Scholarship Program aims at optimizing the CVOQURJGTKETGGPVT[VTCLGEVQT[QHCECRUWNGVQOKPKOK\G JGCVKPIQPQTKPVJGXGJKENG#NNRTQLGEVUGORNQ[VJG KPJQWUGFGXGNQRGFQRVKOCNEQPVTQNVQQN(CNEQPO YYY HCNEQPOEQO 

2TQLGEVU ■ Robust dynamic programming approach to aircraft control problems with disturbances (DFG) ■ 1RVKOCNEQPVTQNOGVJQFUKPUMKLWORKPI +)55'  ■ 8CNNGU/CTKPGTKU'ZRNQTGT 8C/'Z s%QQRGTCVKXGUYCTO PCXKICVKQPOKUUKQPCPFEQPVTQN %Q5/K%  &.4 ■ 1RVKOKGTWPIFGU9KGFGTGKPVTKVVU\WT/KPKOKGTWPIFGT Aufheizung oder der Infrarotsignatur (Munich Aero- space)

1RVKOCNVTCLGEVQT[VQCXQKFCPQDUVCENG

158 Flight System Dynamics

/KEJCGN-TGPOC[T/5E %QWTUGU /CTVKP-ØINGT/5E ■ Introduction to Flight System Dynamics &KRN+PI2CVTKEM.CWHHU and Flight Control /KSWGN.GKVCQ/5E 5EJQNCT ■ (NKIJV5[UVGO&[PCOKEU+++ &KRN+PI&CXKF.ÒDN ■ (NKIJV%QPVTQN+++ 8CNGPVKP#/CTXCMQX/5E ■ (NKIJV)WKFCPEG+++ &KRN+PI%JTKUVKCP/GTMN ■ 5CHGV[CPF%GTVKƄECVKQPQH#XKQPKEUCPF 2TQH&T+PI &KRN+PI0KNU/WOO Flight Control Systems (NQTKCP &KRN+PI-CLGVCP0ØTPDGTIGT ■ Nonlinear Flight Control *QN\CRHGN &KRN+PI.CTU2GVGT ■ Model Reference Adaptive Control 2CVTKEM2KRTGM/5E ■ Flight Dynamics Challenges of Highly %QPVCEV +FTKU2WVTQ/5E 5EJQNCT #WIOGPVGF%QPƄIWTCVKQPU+++ YYYHUFOYVWOFG 5VGHCP4CCD/5E ■ #KTETCHV6TCLGEVQT[1RVKOK\CVKQP QHƄEG"HUFOYVWOFG 2JKNKRR4GK»/5E ■ 1RGTCVKQPCN(NKIJV5CHGV[ 2JQPG  ,WNKCP4JGKP/5E ■ Navigation and Data Fusion 5CWTCDJ5CDQQ/5E ■ /#6.#$5KOWNKPMHQT%QORWVGT#KFGF Management 5KOQP5EJCV\/5E 'PIKPGGTKPI 2TQH&T+PI(NQTKCP*QN\CRHGN&KTGEVQT &KRN+PI5VGHCP5EJKGNG ■ (NKIJV5[UVGO+FGPVKƄECVKQPCPF 2TQH&T+PI&TJE)QVVHTKGF5CEJU TGV -GXKP5EJOKGEJGP/5E 2CTCOGVGT'UVKOCVKQP &T+PI/CVVJKCU*GNNGT &KRN+PI%JTKUVQRJGT5EJTQRR ■ (WPFCOGPVCNUQH2TCEVKECN(NKIJV.CD &CXKF5GKHGTVJ/5E ■ (NKIJV)WKFCPEG.CD #FLWPEV2TQHGUUQTU.GEVWTGTU ,CXGPUKWU5GODKTKPI/6 5EJQNCT ■ (NKIJV6GUVKPI.CD &T+PI&KRN/CVJVGEJP &CNQPI5JK/'PI ■ 1RVKOCN%QPVTQN.CD ,QJCPP&CODGEM ,WP5JK/'PI ■ (NKIJV%QPVTQN5[UVGOU.CD &T+PI/CVVJKCU*GNNGT .WMCU5VGKPGTV/5E 5EJQNCT ■ Navigation and Data Fusion 4C\K[G6GMKP/5E #FOKPKUVTCVKXG5VCHH (NQTKCP9CEJVGT$5E$5E 5GNGEVGF2WDNKECVKQPU Monica Kleinoth-Gross %JQPI9CPI/5E ■ &TGGU.WFYKI/ØNNGT/CPHTGF :KCQNQPI9CPI/'PI 5EJOKFV/QNN%CTUVGP)QPVCT2CVTKEM 4GUGCTEJ5EKGPVKUVU ,KC\JGPI9W$'PI

159 Aircraft Design

Applied aircraft design for civil aviation and unmanned aerial systems

■(KTUVƅKIJVs6JGUGCTGOCIKECNYQTFUHQTCP[CKTETCHVFGUKIPGT6JGJKIJNKIJVQHNQPICPFKPVGPUG CEVKXKVKGUKPFGUKIPKPIOCPWHCEVWTKPIKPVGITCVKPICPFVGUVKPIKUVJGƄTUVVKOGCPGYCKTETCHVIGVU CKTDQTPG+PVJGƄTUVƅKIJVQHVJG5#)+66#7#8FGOQPUVTCVQTVQQMRNCEGUWEEGUUHWNN[KP5QWVJ #HTKEC+PCFFKVKQPKPKVKCNƅKIJVUUVCTVGFYKVJCPCFXCPEGFXGTVKECNVCMGQHHCPFNCPFKPI7#8RTQXKFKPI PGYECRCDKNKVKGUHQTWPOCPPGFU[UVGOU6JGUGRTCEVKECNFGOQPUVTCVKQPUENGCTN[UJQYGFVJGECRC DKNKVKGUQHVJG+PUVKVWVGHQT#KTETCHV&GUKIPVQEQXGTVJGYJQNGTCPIGHTQOKPKVKCNFGUKIPWRVQKPƅKIJV VGEJPQNQI[FGOQPUVTCVKQPU

In the realization of effective demonstrator vehicles new 6JGUGPGYCRRTQCEJGUCNUQGPCDNGFPGYFGUKIPHGCVWTGU manufacturing techniques like additive layer manufactur- CPFGXGPKPPQXCVKXGHWPEVKQPCNKVKGUYJKEJQRGPWRPGY KPIJCXGDGGPKPENWFGFVQGPCDNGGXGPOQTGGHƄEKGPVTCRKF FGUKIPURCEGU(WTVJGTRTQITGUUYKNNCNNQYHQTGXGPNKIJVGT RTQVQV[RKPI CPFUOCNNGTFGOQPUVTCVQTCKTETCHVEQPEGRVU

6GCOUWEEGUU5#)+66#ƄTUVƅKIJVQP,WN[KP5QWVJ#HTKEC #KTDWU&GHGPEG5RCEG

SAGITTA First Flight

6JGFGXGNQROGPVQHPGYVGEJPQNQIKGUCPFVJGKTFGOQP- EQPVTKDWVGFYKVJKVUQXGTCNNFGUKIPECRCDKNKV[CPFJCUDGGP UVTCVKQPQPCƅ[KPIFGOQPUVTCVQTCKTXGJKENGJCXGDGGP TGURQPUKDNGHQTVJGRTQRWNUKQPU[UVGOCUYGNNCUHQTPQXGN VJGEQTGEJCNNGPIGUQHVJG#KTDWU&GHGPEG5RCEGNGF ƅKIJVEQPVTQNFGXKEGUQHVJGFKCOQPFUJCRGFCKTXGJKENG TGUGCTEJEQQRGTCVKQP5#)+66#+PCPQRGPKPPQXCVKQP 9KVJVYQƅCYNGUUƅKIJVUVJGVGCOUJQYGFKVUECRCDKNKV[ CRRTQCEJUEKGPVKUVUQHOWNVKRNGWPKXGTUKVKGU&.4CPF VQJCPFNGGXGPJKIJN[EQORNGZU[UVGOUNKMGVJGOURCP KPFWUVT[JCXGVGCOGFWRVQRTQITGUUVGEJPQNQIKGUHQT FGOQPUVTCVQTKPCEQNNCDQTCVKXGGPXKTQPOGPV9GCTG WPOCPPGFCKTXGJKENGU#HVGTUGXGP[GCTUVJGVGCO NQQMKPIHQTYCTFVQHWTVJGTGZRNQKVVJGECRCDKNKVKGUVJCVVJG GPCDNGFVJGƄTUVƅKIJVQH5#)+66#CVVJG1XGTDGTIVGUV FGOQPUVTCVQTKUCDNGVQRTQXKFGCUCVGUVRNCVHQTO+VJCU TCPIGKP5QWVJ#HTKEC6JG+PUVKVWVGHQT#KTETCHV&GUKIP DGGPCDKIUWEEGUU

160 Aircraft Design

Fixed Wing VTOL UAS

VJTGGOQTGRTQVQV[RGUYKVJOQFKƄECVKQPUNKMGHWNNEQORQU- KVGUVTWEVWTGKORTQXGFYKPIVKRVKNVOGEJCPKUOCPFPGY KPVGTPCNHWUGNCIGNC[QWVYGTGOCPWHCEVWTGFCPFVGUVƅQYP #NQPIYKVJVJGRTQVQV[RKPICPFVGUVƅKIJVRTQITCOƄZGF YKPI861.TGUGCTEJYCUEQPVKPWGFQPVQRKEUNKMG ■ VJGKPƅWGPEGQPRTQRGNNGTRGTHQTOCPEGD[DNQEMKPIVJG KPQTQWVƅQY ■ GNGEVTQOCIPGVKEEQORCVKDKNKV[QPGNGEVTKE861.7#8 ■ TCPIGCPFGPFWTCPEGGZVGPUKQPYKVJJ[DTKFEQODWU- VKQPGNGEVTKERQYGTVTCKPUQTJKIJGPGTI[DCVVGTKGU 4GPFGTKPIQH#WVGN&4#)10(+5*ƄZGFYKPI861.7#8 ■ CRRTQCEJGUVQTGFWEGVJGCGTQF[PCOKEFTCIQHKPCEVKXG rotors %QODKPKPIVJGUWRGTKQTETWKUGRGTHQTOCPEGQHCƄZGF ■ VJGTOCNOCPCIGOGPVQHGNGEVTKERQYGTVTCKPU YKPICKTETCHVYKVJVJGXGTVKECNVCMGQHHECRCDKNKVKGUQHC ■ redundant electric motor design OWNVKEQRVGTNGCFUVQUQECNNGFVTCPUKVKQP7#8U%QODKPKPI ■ ƄZGFYKPI861.7#8EQPƄIWTCVKQPUVWFKGU DQVJƅKIJVRJCUGUKPQPGEQPƄIWTCVKQPKUEJCNNGPIKPI#U ■ EQPEGRVWCNFGUKIPVQQNKORTQXGOGPVU RCTVQHCLQKPVTGUGCTEJRTQLGEVYKVJ#76'.4QDQVKEUVJG KPVGITCVKQPQHCMIGNGEVTKEƄZGFYKPI861.7#8FGOQP- 6JGTGCNK\CVKQPQHU[UVGOUCPFEQORQPGPVUHQTVJG UVTCVQTVQQMRNCEGYJKEJYCURTGUGPVGFCVVJG%QPUWOGT FGOQPUVTCVQTUOCFGOCUUKXGWUGQHTCRKFRTQVQV[RKPI 'NGEVTQPKEU5JQYKP.CU8GICU6JGUWEEGUUHWN RTQEGUUGUNKMG&RTKPVKPICPFJ[DTKFUVTWEVWTCNEQPEGRVU OCKFGPJQXGTƅKIJVHQNNQYGFCVVJGGPFQH,CPWCT[VJG This allowed a radical reduction of the time from design to ƄTUVVTCPUKVKQPVQHQTYCTFƅKIJVKP/CTEJ5WDUGSWGPVN[ VGUVCPFVJWUHCUVGTEQPEGRVOCVWTCVKQP

Noise and Fleet Assessment

'PXKTQPOGPVCNGHHGEVUQHCKTVTCPURQTVCVKQPCTGCETWEKCN EJCNNGPIGHQTVJGCXKCVKQPKPFWUVT[9JGTGCUQPVJGINQDCN

NGXGNICUGQWUGOKUUKQPUUWEJCU%1TGRTGUGPVVJG OCLQTHQEWUQHGPXKTQPOGPVCNCUUGUUOGPVUQPCNQECN NGXGNPQKUGGOKUUKQPUKPVJGXKEKPKV[QHCKTRQTVUCTGVJG OCKPEQPEGTP6JG+PUVKVWVGHQT#KTETCHV&GUKIPVJWUWPFGT- takes research in the area of aircraft noise emission and PQKUGGZRQUWTGCVVJGCKTRQTVNGXGN(QNNQYKPIVJGGZRGEVGF KPETGCUGKPCKTVTCHƄECPFCEQPVKPWKPIWTDCPK\CVKQPPQKUG GOKUUKQPUCVEKV[CKTRQTVUDGEQOGCPKPETGCUKPIN[TGNGXCPV TGUGCTEJVQRKE6JG+PUVKVWVGHQT#KTETCHV&GUKIPUWRRQTVGF CPKPVGTFKUEKRNKPCT[ITQWRFGUKIPRTQLGEVCV$CWJCWU .WHVHCJTVVJCVFGXGNQRGFCUQRJKUVKECVGFEQPEGRVHQTKPPGT EKV[CKTRQTVUECNNGFn%GPV#KT5VCVKQPo#PCKTETCHVFGUKIPGF VQOGGVVJGURGEKCNPGGFUQHKPPGTEKV[QRGTCVKQPUYCU evaluated by the institute in terms of noise reduction by %CNEWNCVGFPQKUGEQPVQWTUQHFKHHGTGPVCRRTQCEJRTQEGFWTGU EQORCTKPICFXCPEGFPQKUGOKVKICVKPICKTETCHVQRGTCVKQPU 6JGTGKPUKIPKƄECPVRQVGPVKCNHQTPQKUGUCXKPIUEQWNFDG CTGFGXGNQRGFVQOQFGNVJGKORCEVQHPQKUGTGFWEGF UJQYPHQTKPUVCPEGQHEQPVKPWQWUFGUEGPVQRGTCVKQPU CKTETCHVV[RGUQHURGEKƄECKTETCHVTGVKTGOGPVDGJCXKQTQT %&1U KPRCTVKEWNCTKPEQODKPCVKQPYKVJKPETGCUGFINKFG QHCKTETCHVKPVTQFWEVKQPUVTCVGIKGUQPHWVWTGCKTRQTVPQKUG UNQRGCPINGU GZRQUWTG6JGTGUWNVKPIOGVJQFUOC[DGWUGFHQTVGEJ- (WTVJGTTGUGCTEJCVVJGKPUVKVWVGHQEWUUGUQPVJGCUUGUU- PQNQI[CUUGUUOGPVQHPGYCKTETCHVEQPEGRVUCVCKTRQTV OGPVQHHWVWTGCKTRQTVPQKUGGZRQUWTGCPFVJGGXCNWCVKQP NGXGNQTHQTVJGRTKQTKVK\CVKQPQHRQUUKDNGPQKUGTGFWEVKQP QHEQTTGURQPFKPIKORCEVU6JGTGKPOGVJQFUCPFVQQNU UVTCVGIKGU

161 Aircraft Design

Multifunctional System Design for Aircraft Control Devices

Reference System Architecture Distributed System Architecture 1 EHA/EMA

E1 Control and E2 Control and Monitoring Monitoring

Electrical KGB DGB RGB Motor E1 E1 E1 E1 RA E2 E2 E2 E2 Electrical Power Circuits Inboard RGB STL Inboard E1 E2 Flap PCU Power Circuits H1 H2 H1 H2 Hydraulic E1 E2 Electrical EHA Electro-Hydrostatic Actuator PPU Position Pickup Unit RGB Right-angle Gearbox PPU Position Pickup Unit EMA Electro-Mechanical Actuator DGB Drive Gearbox RA Rotary Actuator KGB Kink Gearbox STL System Torque Limiter PCU Power Control Unit WTB Wing Tip Brake

Distributed System Architecture 3 EHA/EMA

E1 E2 Control and Monitoring

Electrical PPU Motor E1 E1 E1 E2 E2 Electrical Power Circuits Inboard E1 E2

EHA Electro-Hydrostatic Actuator PPU Position Pickup Unit EMA Electro-Mechanical Actuator GRA Geared Rotary Actuator

5EJGOCVKEFKCITCOUQHVJGTGHGTGPEGU[UVGOCTEJKVGEVWTG 45# YKVJEQPXGPVKQPCNVTCPUOKUUKQPUJCHVU[UVGOCPFVJGFKUVTKDWVGFU[UVGOCTEJKVGEVWTGU &5# YKVJFKUVTKDWVGFGNGEVTKEFTKXGCTEJKVGEVWTGU

7VKNK\KPIƅKIJVEQPVTQNFGXKEGUPQVQPN[HQTUKPINGHWPEVKQPU 1PGRTQOKUKPICRRTQCEJHQTCOWNVKHWPEVKQPCNCTEJKVGEVWTG DWVCRRN[KPICOWNVKHWPEVKQPCNCRRTQCEJCUCNTGCF[WUGF KUCFKUVTKDWVGFGNGEVTKEFTKXGCTEJKVGEVWTG6JKURTQXKFGU KPOKNKVCT[CKTETCHVFGUKIPOC[NGCFVQTGFWEGFU[UVGO VJGQRRQTVWPKV[VQGPCDNGCFXCPEGFJKIJNKHVEQPVTQN EQORNGZKV[CPFVJWUTGFWEGFYGKIJVCPFGPJCPEGF systems with multifunctional control surfaces driven by RGTHQTOCPEGQPCKTETCHVNGXGN+PVJGCKTETCHVFGUKIP GNGEVTKECNCEVWCVQTU6JGCKTETCHVFGUKIPITQWRJCUFGXGN- ITQWRHQEWUGFKVUTGNCVGFTGUGCTEJQPVJGHQNNQYKPIVQRKEU QRGFVJTGGFKUVTKDWVGFU[UVGOCTEJKVGEVWTGEQPEGRVUWUKPI ■ &GXGNQROGPVQHCPKPVGITCVGFFGUKIPCRRTQCEJHQT GNGEVTKECNCEVWCVQTU6JGU[UVGOCTEJKVGEVWTGUYGTGFGXGN- CFXCPEGFƅKIJVEQPVTQNU[UVGOUYKVJOWNVKHWPEVKQPCN QRGFKPCPKVGTCVKXGFGUKIPRTQEGUUVQHWNƄNNVJGJKIJNKHV ƅKIJVEQPVTQNFGXKEGU U[UVGOTGSWKTGOGPVUCPFEQORN[YKVJUCHGV[TGIWNCVKQPU ■ 2CTCOGVGTK\GFOCUUGUVKOCVKQPVQQNHQTƅKIJVEQPVTQN (KPCNN[KVECPDGUVCVGFVJCVFKUVTKDWVGFU[UVGOCTEJKVGE- systems tures show advantages regarding overall system mass ■ 2TGNKOKPCT[FGUKIPVQQNHQTCFXCPEGFƅKIJVEQPVTQN CPFFKTGEVQRGTCVKPIEQUVUEQORCTGFVQCEQPXGPVKQPCN system architectures U[UVGOCTEJKVGEVWTG ■ Advanced high-lift control systems with distributed electric drive architectures

162 Aircraft Design

Flexible Wing Demonstrator

#URCTVQHVJG'WTQRGCP%QOOKUUKQPHWPFGF(.':12 RTQLGEVVJG+PUVKVWVGHQT#KTETCHV&GUKIPKUTGURQPUKDNGHQT VJGFGUKIPOCPWHCEVWTKPIKPVGITCVKQPCPFVGUVKPIQHVJG WPOCPPGFFGOQPUVTCVQTCKTETCHVGPCDNKPIKPƅKIJVKPXGUVK- ICVKQPUQPJKIJN[ƅGZKDNGYKPIU9KVJƅKIJVVGUVURNCPPGF HQTOKFVJGVCUMUFWTKPIYGTGHQEWUGFQPFGVCKN FGUKIPCUYGNNCUOCPWHCEVWTKPIKPVGITCVKQPCPFƄTUV #GTQGNCUVKEUVWF[YKVJGZVGTPCNCEVWCVQTKPVGITCVKQP ITQWPFVGUVQHVJG(.':12FGOQPUVTCVQT7#8 (WTVJGTUWDU[UVGOVGUVUYKVJCOQEMWRQHVJGCKTDTCMG ƅKIJVVGUVUVQRTGFKEVCKTETCHVNQCFUCPFRGTHQTOCPEGKU CUYGNNCUVGUVUYKVJVJGKPVGITCVGFOQFWNCTRTQRWNUKQP RCTVQHVJGPCVKQPCN.W(QHWPFGFTGUGCTEJRTQLGEV8KV#/ WPKV GPIKPGGPIKPGOQWPV'%7 YGTGEQPFWEVGF5KPEG The combination of structural and aerodynamic models PQEQPUWOCDNGQHHVJGUJGNHCEVWCVQTUHWNƄNNVJGFTKXKPI YKVJCPCRRNKECVKQPCKOKPIHQTJKIJN[ƅGZKDNGYKPIUVTWE- TGSWKTGOGPVUQHCEVKXGƅWVVGTEQPVTQNVJGFGUKIPCPF VWTGUKPVQCWPKƄGFEQWRNGFCGTQGNCUVKECKTETCHVOQFGNCTG integration of a high frequency/high torque actuator for KPVJGTGUGCTEJHQEWUQHVJGRTQLGEV ƅWVVGTFCORGPKPIKPVQVJGOQUVƅGZKDNGYKPIUGVYCUC *KIJƄFGNKV[EQWRNGF%5/%(&OGVJQFUCTGWUGFHQT OCLQTCEJKGXGOGPV6JGGNGEVTKECPFEQPVTQNGPIKPGGTKPI JKIJN[CEEWTCVGNQCFCPFCGTQF[PCOKEFTCIRTGFKEVKQP YCUEQPFWEVGFD[QWT*WPICTKCPRCTVPGTUQH/6#5<6#-+ 6JGTGHQTGUVCIIGTGFƅWKFUVTWEVWTGKPVGTCEVKQPOGVJQFUKP whereas the hardware and integrational design was con- EQODKPCVKQPYKVJCVTKOCNIQTKVJOCTGFGXGNQRGF(WT- ducted by the Institute for Aircraft Design and the Institute VJGTOQTGF[PCOKEƅKIJVOCPGWXGTUQPCTGFWEGFQTFGT HQT.KIJYGKIJV5VTWEVWTGU6JGCUUGUUOGPVQHOKPKOWO OQFGNCTGRGTHQTOGFVQKPXGUVKICVGVJGF[PCOKEDGJCXKQT KORNKECVKQPUQPVJGCGTQGNCUVKEEJCTCEVGTKUVKEQHVJGCKTETCHV 9KVJKPVJGKPXGUVKICVGFOGVJQFUVJGPWODGTQHFGITGGU YCUGPUWTGFD[HWNNƄPKVGGNGOGPVOQFGNUEQWRNGFYKVJ QHHTGGFQOCTGV[RKECNN[TGFWEGFHTQOOKNNKQPUVQUQOG CGTQF[PCOKEUKOWNCVKQPU6JGTGUWNVKPIFGUKIPKUEWTTGPVN[ JWPFTGFUYKVJQWVNQUUQHVJGOQUVKORQTVCPVF[PCOKE DGKPIOCPWHCEVWTGFCPFYKNNDGVGUVGFKPCOQEMWR CKTETCHVRTQRGTVKGU6JGOGVJQFUGPCDNGKPXGUVKICVKQPQH EQPƄIWTCVKQPVQXGTKH[VJGFGUKIPUVTCVGI[ YKPIKPUVCDKNKVKGUFWGVQIWUVUQTƅWVVGTYKVJJKIJCEEWTCE[ 6JGKFGCQHCXKTVWCNCKTETCHVOQFGNYJKEJCNNQYUXKTVWCN CVCPGCTN[CKTETCHVFGUKIPUVCIG

'ZVGTPCNƅWVVGTEQPVTQNCEVWCVQTKPVGITCVKQPYKVJCFFKVKQPCNVTKOOCUU

163 Aircraft Design

Student Activities: NASA/DLR Challenge & Aircraft Design Course

(KTUV2NCEG&.40#5#EJCNNGPIG VJG74$#0.+0'4EQPEGRVQHVJG 67/UVWFGPVVGCO

+P&.40#5#KPKVKCVGFVJGƄTUVUVWFGPVCKTETCHV CRTQRQUCNHQTCPGZVIGPGTCVKQPUWRGTUQPKECKTNKPGT+P FGUKIPEJCNNGPIGCUMKPIHQTKPPQXCVKXGEQPEGRVUCFFTGUU- )GTOCP[UGXGPWPKXGTUKVKGURCTVKEKRCVGFCNUQEQORGVKPI KPIVYQFKUVKPEVCTGCUQHCXKCVKQP  NQYPQKUGUWDUQPKE YKVJVJG#OGTKECPEQWPVGTRCTVUUWRRQTVGFD[0#5#6JG CKTNKPGTU  PGYIGPGTCVKQPUWRGTUQPKEVTCPURQTVCKTETCHV YKPPGTQHVJGƄTUV&.40#5#EJCNNGPIGKUC67/VGCO #V67/VJTGGVGCOUYGTGHQTOGFVYQCFFTGUUKPIVJG YKVJVJTGGCGTQPCWVKECNUVWFGPVU6JGKTEQPEGRVQHCPQXGN NQYPQKUGUWDUQPKECKTETCHVCPFQPGVGCOEQOKPIWRYKVJ 74$#0.+0'4EQPEGRVWVKNK\KPIGPJCPEGFRTQRWNUKQP technologies in very close interaction with enhanced aerodynamics of the wing convinced the evaluators of &.40#5#6JGVGCOYQTMGFXGT[GPVJWUKCUVKECNN[QP VJGKTEQPEGRVCPFECOGWRYKVJXGT[KPPQXCVKXGUQNWVKQPU #KTETCHV&GUKIP%QWTUG&GUKIPCPF(N[CPCKTETCHVYKVJKP QPGUGOGUVGTs6JGWUGQHCFFKVKXGOCPWHCEVWTKPICMKV NKMGUGVQHEQOOQPEQORQPGPVUCUYGNNCUVJGCRRNKEC- VKQPQHYGNNRTQXGPQHHVJGUJGNHTCFKQEQPVTQNGSWKROGPV ƄPCNN[OCMGUKVRQUUKDNG5KOWNCVKPICTGCNEWUVQOGTVJG UVWFGPVUQHVJG9KPVGT5GOGUVGTYGTGEJCNNGPIGF D[CTGSWGUVHQTRTQRQUCNYJKEJCUMGFHQTCOYKPIURCP WPOCPPGFCKTETCHVVCUMGFVQRGTHQTOVJGDGUVGPFWTCPEG CUYGNNCUVJGDGUVTCPIGYKVJCIKXGPNKVJKWORQN[OGT DCVVGT[6JGUVWFGPVUHQTOGFVYQEQORGVKPIVGCOUYJKEJ #KTETCHV&GUKIP%QWTUG6JG5VWFGPVUYKVJVJGKT9KPPKPI%CPCTF%QPƄIWTC ƄPCNN[RTQXGFVJGCKTYQTVJKPGUUQHVJGKTFGUKIPUKP(GDTW- VKQP 2JKNKRR)KGNGT CT[

164 Aircraft Design

Research Focus Publications 2017 ■ Scenario and future analysis ■ %5EJKPYCNF/*QTPWPI'XCNWCVKQP ■ Aircraft design QH#KTRQTV%CRCEKV[1RVKOKUCVKQP ■ Analysis & evaluation of aircraft /GCUWTGU#+##5EK6GEJ75# EQPEGRVU ■ 6.CORN5/WUEJMQTIGN/*QTPWPI 2CTCOGVGTK\GF(NKIJV/KUUKQPHQT Univ.-Prof. Competence 5GEQPFCT[2QYGT4GSWKTGOGPV'UVKOC Dr.-Ing. ■ Scenario technique VKQPUQH%QOOGTEKCN6TCPURQTV#KTETCHV Mirko ■ #KTETCHVFGUKIP OCPPGFWPOCPPGF VJ#+###XKCVKQP6GEJPQNQI[+PVG Hornung OKNKVCT[EKXKN ITCVKQPCPF1RGTCVKQPU%QPHGTGPEG ■ Aircraft and system integration and &GPXGT75# Contact XGTKƄECVKQP 7#8URTQVQV[RGU ■ 25VCJN(/5GPFPGT#*GTOCPWV\ YYYNNUOYVWOFG ■ 2TQRWNUKQPKPVGITCVKQPGNGEVTKECNCPF %4Ò»NGT/*QTPWPI/KUUKQPCPF UGMTGVCTKCV"NNUOYVWOFG J[DTKFRTQRWNUKQPU[UVGOU #KTETCHV&GUKIPQH(.':127POCPPGF 2JQPG  ■ 1RGTCVKQPCNCUUGUUOGPVPQKUGCKTRQTV (N[KPI&GOQPUVTCVQTVQ6GUV(NWVVGT ECRCEKV[EQUV 5WRRTGUUKQPYKVJKP8KUWCN.KPGQH Management 5KIJVVJ#+###XKCVKQP6GEJPQNQI[ 7PKX2TQH&T+PI/KTMQ*QTPWPI Infrastructure +PVGITCVKQPCPF1RGTCVKQPU%QPHGT Director ■ Integrated aircraft design environment GPEG&GPXGT75# 2TQHJE&T+PI&TJE&KGVGT5EJOKVV ■ .CDQTCVQT[HQTFGOQPUVTCVQTCKTETCHV ■ )6C[2-GNNGT/*QTPWPI&GXGNQR 'OGTKVWU ■ 'ZRGTKOGPVCN7#5 GI+/27..57#8 ment of a Software Tool for Com- 2TQH+PI)GTQ/CFGNWPI'OGTKVWU ■ 2TQRWNUKQPKPVGITCVKQPNCD RTGJGPUKXG(NKIJV2GTHQTOCPEGCPF ■ /KUUKQPUKOWNCVKQP /KUUKQP#PCN[UKUQH*[DTKF'NGEVTKE Adjunct Professor ■ #KTRQTVUKOWNCVKQP #KTETCHVVJ%'#5#KT5RCEG%QP &KRN+PI#ZGN$GEMGT HGTGPEG$WMCTGUV4WOCPKC Courses ■ '(QMKPC,(GIGT/*QTPWPI#RRNK Administrative Staff ■ (WPFCOGPVCNUKP#GTQPCWVKEU LQKPVN[ cation of a visualization environment 0CVCNKG)WNQVVC YKVJVJG+PUVKVWVGHQT*GNKEQRVGT HQTVJGOKUUKQPRGTHQTOCPEGGXCNWCVKQP 6GEJPQNQI[ QHEKXKNKCP7#5VJ%'#5#KT5RCEG Research Scientists ■ Aircraft Design %QPHGTGPEG$WMCTGUV4WOCPKC &T+PI%JTKUVKCP4Ò»NGT ■ Aircraft Systems &KRN+PI,QJCPPGU#EJNGKVPGT ■ #GTQURCEG5VTWEVWTGU .[UCPFTQU#PCUVCUQRQWNQU/5E ■ (WPFCOGPVCNUQH#KTETCHV1RGTCVKQPU ,WNKWU$CTVCUGXKEKWU/'PI ■ 1RGTCVKQPCN#URGEVUQH#XKCVKQP &KRN+PI.[MQWTIQU$QWICU &KRN+PI,GPU(GIGT Practical Courses &KRN+PI'MCVGTKPC(QMKPC ■ #XKCVKQP5EGPCTKQU6GEJPQNQI[ 5GDCUVKCP*GTDUV/5E ■ 'XCNWCVKQP #PFTGCU*GTOCPWV\/5E ■ CAD in Aircraft Design 5GDCUVKCP-ÒDGTNG ■ Aircraft Design &KRN+PI6JQOCU.CORN &KRN+PI/CTVKP/CJN 5GDCUVKCP1DGTUEJYGPFVPGT/5E &KRN+PI%JTKUVQRJ5EJKPYCNF #PPC5EJQN\/5E (TCP\/KEJCGN5GPFPGT/5E 2JKNKRR5VCJN/5E &KRN+PI,QCEJKO5VWTO )KNDGTV6C[/5E /QTKV\6JKGNG/5E &KRN+PI(GNKZ9KNN

Technical Staff ,QJP.GYKU

165 Flow Control and Aeroacoustics

0WOGTKECNCPFGZRGTKOGPVCNUVWF[QHƅQYCPFUQWPFƄGNFUCPFVJGKTEQPVTQN

■ The focus of the research group in 2017 was the development, testing and usage of research VQQNUHQTVJGPWOGTKECNRTGFKEVKQPQHƅQYCPFUQWPFƄGNFUCPFVJGKORTQXGOGPVQHOQFGNUECNG experiments in wind tunnels.

Our research dealt with topics in three focus areas, was the successful application for substantial computer including the numerical and experimental modeling of resources for large-scale computations to be carried out the wake evolution of wind turbines, the numerical and with the LRZ facilities for high-performance computation experimental modeling of self-noise from splitter attenu- QPOCUUKXGN[RCTCNNGNEQORWVGTU[UVGOU6JG[HQTOVJG CVQTUCPFIGPGTKEƅQYEQPVTQNUVWFKGU#PCEJKGXGOGPV DCUKUHQTVJGQPIQKPIKPXGUVKICVKQPU

%QPVTQNQHC6JTGGFKOGPUKQPCN5JGCT.C[GTD[1DNKSWG8QTVKEGU

(KIWTG)GPGTKEIGQOGVT[HQTVJGKPXGUVKICVKQPQHQRGPNQQRƅQYEQPVTQND[QUEKNNCVQT[DNQYKPICPFUWEVKQPCNQPICUVTKRCNKIPGFYKVJVJGUVGRGFIG

#PGUVCDNKUJGFQRGPNQQRƅQYEQPVTQNOGVJQFHQTVJG VJGIGPGTKEEQPƄIWTCVKQPCOCZKOWOGHƄEKGPE[KPVGTOU OKVKICVKQPQHƅQYUGRCTCVKQPKUQUEKNNCVQT[DNQYKPICPF of shortening of the reattachment length was observed for suction through holes or slots in the vicinity of the sepa- a train of vortices with their axes deviating by an angle of TCVKQPNQECVKQPQPCDQF[KOOGTUGFKPCƅQY6JGCTVKƄEKCN 50oHTQOVJGFKTGEVKQPQHVJGUVGRGFIG6JGCEJKGXGOGPV insertion of steady or propagating vortices enhances the YCUUKOKNCTHQTDQVJVJGRNCPCTECUGYKVJVJGOGCPƅQY OQOGPVWOVTCPUHGTCETQUUVJGUJGCTNC[GT+PQTFGTVQ PQTOCNVQVJGUVGRCPFHQTCPKPƅQYRTQƄNGQTKGPVGFKPCP better understand the role of forcing parameters numerical angle of 40oVQYCTFUVJGUVGR investigations have been carried out by means of large- GFF[UKOWNCVKQPHQTVJGIGPGTKEEQPƄIWTCVKQPUJQYPKP (KI|+VEQPUKUVUQHCVWTDWNGPVDQWPFCT[NC[GTCRRTQCEJ- KPICUYGRVDCEMYCTFHCEKPIUVGRIGQOGVT[8QTVKEGU are generated by wall-normal blowing and suction along the step edge in terms of a wave propagating along the \CZKU Using a suitable choice of the forcing parameters angular frequency and wave-length along the z-axis oblique vortices are generated that are primarily advected by the OGCPƅQYKPVJGUJGCTNC[GTCUUJQYPKP(KI6JGKT Figure 2: Isosurfaces of the second invariant of the velocity gradient tensor mixing capability depends on their strength (related to the HQTVWTDWNGPVƅQYCETQUUCDCEMYCTFHCEKPIUVGRUWDLGEVVQJCTOQPKE forcing by means of a wave propagating along the step edge. HQTEKPICORNKVWFG VJGKTURCEKPICPFVJGKTQTKGPVCVKQP(QT

166 Flow Control and Aeroacousticsoustics

Numerical and Experimental /QFGNKPIQHVJG+PƅWGPEGQH )TQWPF4QWIJPGUUQPVJG9CMG 'XQNWVKQPQH9KPF6WTDKPGU

+PQTFGTVQKFGPVKH[VJGRQYGTRTQFWEGFD[COQFGNUECNGCNG YKPFVWTDKPG UWEJCUUJQYPKP(KI HTQOVJGXQNVCIG and current of the attached generator, the mechanical aandnd QVJGTNQUUGUQHVJGFTKXGVTCKPJCXGVQDGMPQYP9KVJKP the Eurotech collaboration on wind energy (Greentech RTQLGEV9KPFOCPCIGFWPFGTVJGCWURKEGUQH+)55' '  QWTRCTVPGTUCV'2(. ITQWRQH2TQH(2QTVG#IGN QHHGTGFGF us the possibility to calibrate the motors/generators for VYQOQFGNUECNGYKPFVWTDKPGUKPVJGHCEKNKVKGUQHVJG9+4'+4' lab at Lausanne which has recently acquired a suitable OKPKCVWTGVQTSWGOGVGT+PEQODKPCVKQPYKVJQWTHQTEG measurements these calibrations are mandatory for a proper determination of the dependence of thrust and

RQYGTEQGHƄEKGPVUE6 and cP as function of tip-speed ratiotio CPF[CYCPINGWPFGTFKHHGTGPVTQWIJPGUUEQPFKVKQPU

(KIWTG/QFGNUECNGYKPFVWTDKPGHQTVJGGZRGTKOGPVCNKPXGUVK(KIWTG  /QFGNUECNG YKPFVWTDKPGHQTVJG GZRGTKOGPVCNKPXGUVKICVICVKQPQHKQP QH VJGYCMGGXQNWVKQPQXGTTQWIJVGTTCKPKPVJGCVOQURJGTKEDQWPFCT[NC[GT wind tunnel of the Chair of Aerodynamics and Fluid Mechanics. The rotor diameter is abouit 450 mm.

167 Flow Control and Aeroacoustics

4GUGCTEJ(QEWU 2WDNKECVKQPU ■ Numerical prediction of generation and ■ ,ØTIGPU9-CNVGPDCEJ*, RTQRCICVKQPQHƅQYKPFWEGFPQKUG Control of a three-dimensional shear ■ Flow control with focus on suppression NC[GTD[OGCPUQHQDNKSWGXQTVKEGU QHƅQYUGRCTCVKQPCPFPQKUGOKVKICVKQP 6JGQT%QORWV(NWKF&[P   ■ 5GNHPQKUGQHURNKVVGTCVVGPWCVQTU JVVRUFQKQTIU ■ 9CMGKPVGTCEVKQPQHYKPFVWTDKPGU  2TQH&T+PI *CPU,CMQD Competence -CNVGPDCEJ ■ 0WOGTKECNRTGFKEVKQPQHƅQYCPFUQWPF ■ 'ZRGTKOGPVCNKPXGUVKICVKQPQHƅQYCPF Contact UQWPFƄGNFU YYYCGTOYVWOFG *CPU,CMQD-CNVGPDCEJ"VWOFG +PHTCUVTWEVWTG 2JQPG  ■ 7UCIGQHYKPFVWPPGNCVVJG+PUVKVWVGQH #GTQF[PCOKEUCPF(NWKF/GEJCPKEU Management ■ 6GUVUGVWRQHCOKETQRJQPGCTTC[ 2TQH&T+PI*CPU,CMQD-CNVGPDCEJ Courses #FOKPKUVTCVKXG5VCHH ■ %QPVKPWWO/GEJCPKEU HQT$5E #OGN[5EJYÒTGT 'PIKPGGTKPI5EKGPEGUQH/5'  UGETGVCT[VQVJG%JCKTQH#GTQF[PCOKEU ■ Grundlagen der numerischen 5VTÒOWPIUOGEJCPKM 4GUGCTEJ5EKGPVKUVU ■ #GTQCMWUVKM &KRN+PI8KEVQT5VGKP ■ 5VTÒOWPIUDGGKPƅWUUWPI ,KVJGPFTC6KTCMCNC/5E ■ 0WOGTKUEJG5VTÒOWPIUCMWUVKM -QPUVCPVKP8CEJPCF\G/5E ■ 2TCMVKMWO0WOGTKUEJG5VTÒOWPIU simulation ■ 2TCMVKMWO0WOGTKUEJG5VTÒOWPIU akustik

168 Plant and Process Technology

Modeling and simulation of chemical processes, equipment design, thermodynamic property data

The Institute of Plant and Process Design is a research center in the area of plant and process GPIKPGGTKPIYKVJCUVTQPIHQEWUQPVJGTOCNUGRCTCVKQPRTQEGUUGUNKMGFKUVKNNCVKQPTGEVKƄECVKQP absorption and desorption, heat exchange and membrane processes. The research is organized in the three focus areas of process design, equipment design methods, modelling as well as thermo dynamic property data. Thereby, modern experimental methods along with state of the art OCVJGOCVKECNUQHVYCTGVQQNUNKMGF[PCOKEUKOWNCVKQPCPFEQORWVCVKQPCNƅWKFF[PCOKEUCTGYKFGN[ used in the research activities.

Process Design

Energy intensive chemical production processes like consortium of the long term BMBF project Kopernikus alumina production and air separation can contribute to VJGGPGTI[KPVGPUKXGRTQEGUUHQTCKTUGRCTCVKQPWPKVU #57  UVCDKNK\GƅWEVWCVKPIGNGEVTKEGPGTI[ITKFUCPFOCTMGVU YCUUGNGEVGFCUCHCUVVTCEMGZCORNG#UCVCTIGVCKT However, chemical production processes are presently separation plants will be enabled to contribute to stabilize not designed for dynamic operation modes with rapid ƅWEVWCVKPIGNGEVTKEGPGTI[ITKFUCPFOCTMGVUYJKEJYKNNDG NQCFCPFRTQEGUUEJCPIGU6JGTGHQTGKVKUPGEGUUCT[VQ required when renewable energy sources such as wind FGOQPUVTCVGYJKEJRTQEGUUCPFGSWKROGPVOQFKƄECVKQPU CPFUQNCTRQYGTYKNNNGCFKPVJGNQPIVGTOVQƅWEVWCVKPI are required in order to operate processes like air separa- GPGTI[UWRRN[ VKQPWPFGTUGXGTGF[PCOKEEQPFKVKQPU9KVJKPVJG5[P'TIKG

Picture of a typical air separation plant (provided by Linde AG)

169 Plant and Process Technology

Modeling and Thermodynamic Property Data

FGUKIPQHNCTIGTCEGYC[V[RGCNICGRQPFU6JGFGXGNQRGF tool is essential since there is virtually no practical expe- TKGPEGCXCKNCDNGQPVJGDGJCXKQTQHVJGUGNCTIGRQPFU#

possible COUQWTEGKUƅWGICUQHRQYGTRNCPVUYJKEJECP either be used directly as feed for the algae pond or from

which the CO can be captured and then used as a pure

COHGGFICU$QVJQRVKQPUCTGEQXGTGFKPVJG/#6.#$ OQFGN#NVJQWIJITQYKPICNICGKPQRGPRQPFUJCUDGGP done for decades, there is still a lot of research necessary QPJQYVQGHƄEKGPVN[ITQYCNICGKPNCTIGU[UVGOUYKVJC surface area per pond of 10 ha and greater and therefore RTQFWEGDKQHWGNUGEQPQOKECNN[#VVJG+PUVKVWVGQH2NCPV

CPF2TQEGUU6GEJPQNQI[CEQPVTQNUEJGOGHQT%1 supply JCUDGGPFGXGNQRGFYKVJVJGHWNN[F[PCOKE/#6.#$ Typical dynamic behavior of pH value in open algae ponds OQFGN+VECPDGUGGPVJCVHQTJKIJ[KGNFCNIGCCOKPKOWO of three injection points are required for an algae pond A dynamic model for open algae ponds was developed in YKVJCNGPIVJQHOCPFCYKFVJQHO6JKUGPUWTGU /#6.#$CVVJG+PUVKVWVGQH2NCPVCPF2TQEGUU6GEJPQNQI[ VJCVVJGR*XCNWGUVC[UYKVJKPVJGTCPIGQHCPF 6JGOQFGNVCMGUTGCNYGCVJGTFCVCHQTUGNGEVGFNQECVKQPU 6JGGZGORNCT[UKOWNCVGFNQECVKQPUJQYPKU'XGTINCFGU as input and enables the process engineer to optimize the (NQTKFCVCMKPICHWNN[GCTQHCXCKNCDNGOGVGQTQNQIKECNFCVC

Equipment Design Methods

In the chemical industry bubble col- WOPUCTGWUGFCUOWNVKRJCUGTGCEVQTU In the literature numerous experimental studies investigate the regimes of homogeneous and heterogeneous DWDDNGƅQYYKVJNQYICUXGNQEKVKGUWR VQOUCPFRTQRQUGEQTTGNCVKQPU HQTVJGRTGFKEVKQPQHVJGICUEQPVGPV At the Institute of Plant and Process 6GEJPQNQI[CDWDDNGEQNWOPYKVJC diameter of 300 mm and a total height QHOYCUQRGTCVGFCVJKIJICU XGNQEKVKGUWRVQOU&KHHGTGPVOKZ- VWTGUQHYCVGTCPFKPXGTVUWICT solution were used to selectively vary the properties of the liquid, especially Simulation of irrigated structured packing VJGXKUEQUKV[6JGRJQVQITCRJUJQYU JGVGTQIGPGQWUDWDDNGƅQYKPVJGDNWG can now be described for varying material properties with EQNQTGFUQNWVKQPKPVJGEQNWOP#EQO- COCZKOWOFGXKCVKQPQH parison of the measurement data with 6JGOQFGNHQTFKOGPUKQPKPIOCUUVTCPUHGTEQNWOPUDCUGF different correlations for homogeneous QP%#&FCVCQHRCEMKPIGNGOGPVUYJKEJYCUFGXGNQRGF DWDDNGƅQYUUJQYUENGCTFGXKCVKQPU at the institute, was successfully extended to structured whereas some correlations show sim- RCEMKPIU6JGTGSWKTGFEQGHƄEKGPVUYGTGICKPGFHTQO ilar tendencies for the heterogeneous UKOWNCVKQPUYKVJEQORWVCVKQPCNƅWKFF[PCOKEU6JGRKEVWTG *GVGTQIGPGQWUƅQY DWDDNGƅQY$CUGFQPCUGOKGORKTKECN shows a representative element of structured packing of bubbles in a approach, the measured gas content YJKEJKUKTTKICVGFYKVJNKSWKF6JGOQFGNECPDGWUGFHQTC bubble column HQTVJGJGVGTQIGPGQWUƅQYQHDWDDNGU OQTGGHƄEKGPVFGUKIPQHFKUVKNNCVKQPCPFCDUQTRVKQPEQNWOPU

170 Plant and Process Technology

Research Focus Selected Publications 2017 ■ Process design ■ %CJCNCP64GJHGNFV5$CWGT|/ ■ Equipment design methods $GEMGT/-NGKP*#PCN[UKUQHOGO ■ Modeling and thermodynamic property branes used in external mem brane data JWOKFKƄECVKQPQH2'/HWGNEGNNU+PVGT PCVKQPCN,QWTPCNQH*[FTQIGP'PGTI[ Competence   ■ Process modeling and simulation ■ *CPWUEJ(4GJHGNFV5-NGKP|* Prof. Dr.-Ing. /#6.#$7PKUKO&GUKIP#URGP2NWU Flüssigkeitsmaldistribution in Füll- Harald Klein ■ Experimental measurement of MÒTRGTUEJØVVWPIGP'ZRGTKOGPVGNNG thermodynamic property data 7PVGTUWEJWPIFGT'KPƅWUURCTCOGVGT Contact ■ Predictive computation of %JGOKG+PIGPKGWT6GEJPKM   YYYCRVOYVWOFG thermodynamic property data  JCTCNFMNGKP"VWOFG ■ Experimental measurement of heat ■ 4CTTGM#4GJHGNFV5-NGKP* 2JQPG  VTCPUHGTEQGHƄEKGPVU Evaluation of the performance of a ■ Experimental measurement of simulation model for open algae ponds Management maldistribution and investigation of the operating 2TQH&T+PI*CTCNF-NGKP&KTGEVQT ■ %(&OQFGNKPICPFUKOWNCVKQPQHJGCV behavior of open algae ponds over a &T+PI5GDCUVKCP4GJHGNFV and mass transfer processes one-year period for different locations, ■ Pilot-scale investigations of apparatus %JGOKECN'PIKPGGTKPI4GUGCTEJCPF Emeritus Professors design methods &GUKIP 2TQH&T+PI,QJCPP5VKEJNOCKT'OGTKVWU ■ 5WPFDGTI,4GJHGNFV52GUEJGN|# Infrastructure -NGKP*2TQ\GUUQRVKOKGTWPICO Adjunct Professors ■ High pressure phase equilibrium Bei spiel der Methanolsynthese mit hilfe &T+PI#NGZCPFGT#NGMUGGX laboratory verschiedener lokaler Optimie rungs- 2TQH&T+PI*CTCNF)TQ»OCPP ■ Analytical laboratory CNIQTKVJOGP%JGOKG+PIGPKGWT6GEJPKM ■ &KUVKNNCVKQPEQNWOPU RKNQVUECNG    Research Scientists ■ Condensers and evaporators ■ %CTFGNNC7&GEMGT.5WPFDGTI 6QOCU%CJCNCP/'PI RKNQVUECNG ,-NGKP*2TQEGUUQRVKOK\CVKQPHQT &KRN+PI7ODGTVQ%CTFGNNC ■ 9QTMUJQR large-scale hydrogen liquefaction, #PPC'EMGT/5E ■ Computer room +PVGTPCVKQPCN,QWTPCNQH*[FTQIGP 2JKNKRR(TKVUEJ/5E 'PGTI[   2CVTKEM*CKFGT/5E Courses (NQTKCP*CPWUEJ/5E ■ Introduction to Process and Plant 'NQ[/GNK½P*GTP½PFG\/5E Engineering 5KOQP*KNN/5E ■ 6JGTOCN5GRCTCVKQP2TKPEKRNGU+++ (CDKCP*ÒJNGT/5E ■ *GCVCPF/CUU6TCPUHGT 4QDGTV-GPFGT/5E ■ Process and Plant Engineering &KRN+PI+UCDGN-KGPFN ■ 'SWKROGPV&GUKIP 6JQOCU-NGKPGT/5E ■ 2TQEGUU&GUKIP /QJCOGF1WFC/5E ■ Modeling of Chemical Engineering #PFTGCU4CTTGM/5E Processes 5KOQP5EJÀHGT/5E ■ 5KOKNCTKV[CPF&KOGPUKQPNGUU0WODGTU ,QJCPPGU5WPFDGTI/5E ■ .CD%QWTUGKP2TQEGUU'PIKPGGTKPI 6JQOCU9KPMNGT/5E ■ 2TCEVKECN%QWTUGKP2TQEGUU5KOWNCVKQP (NQTKCP9QNHGPUVGVVGT/5E ■ 2TKPEKRNGUQH4GHTKIGTCVKQPCPF +PFWUVTKCN.QY6GORGTCVWTG5[UVGOU Administrative Staff ■ 2CRGT6GEJPQNQI[ /GNCPKG.CWDGPDCEJGT

Technical Staff Marian Böswald .WMCU*CEM &CPWVC5V[TPKM 1NKXGT6KOO

171 Continuum Mechanics

Predictive computational modeling

The focus of the Continuum Mechanics Group in 2017 was the development of novel models, meth- odologies and computational tools for quantifying uncertainties and their effect in the simulation of engineering and physical systems. Our work has been directed towards four fronts: a) the calibration and validation of computational models using experimental data, b) uncertainty propagation in multiscale systems, c) design/control/ optimization of complex systems under uncertainty, and d) the extraction of governing equations from data in multiscale systems where effective models (or closures) remain elusive.

A highlight was the organization of the international Sym- putational physics, machine learning, uncertainty quan- posium on ‘Machine Learning Challenges in Complex Mul- VKƄECVKQPCPFEQORWVCVKQPCNOCVJGOCVKEU+PCFFKVKQP tiscale Physical Systems’ which took place in TUM-IAS there were three panel discussions on the outstanding during January 9-12 2017. It featured talks from several challenges in Bayesian statistics and machine learning, in internationally-renowned scientists in the areas of com- OWNVKUECNGOQFGNKPICPFKPWPEGTVCKPV[SWCPVKƄECVKQP

Nonlinear Forward and Inverse Stochastic Problems with Applications in Medical Diagnostics

This project is concerned with the numerical solution of high-dimensional, model-based, Bayesian inverse problems. Our motivating application stems from bio- mechanics where several studies have shown that the KFGPVKƄECVKQPQHOCVGTKCNRCTCOGVGTUHTQOFGHQTOCVKQP data can lead to earlier and more accurate diagnosis of various pathologies. We attempt to overcome two of the most important limitations, namely the high-computational

Figure 1: Visualization of the proposed, intrusive probabilistic approach for the solution of PDE-constrained inverse problems by employing probabil- istic graphical models where nodes corresponding to element-wise dened quantities are entangled by physical (conservation laws) and phenomeno- logical (constitutive) laws as well as observational data.

EQUVCPFVJGSWCPVKƄECVKQPQHOQFGNGTTQTUD[RTQRQUKPI a paradigm shift. Namely, we rephrase the solution of partial differential equations (PDEs) appearing in con- tinuum thermodynamics as a problem of probabilistic inference (probabilistic programming) where unknown UVCVGXCTKCDNGUCTGVTGCVGFCUTCPFQOƄGNFU (KIWTG  The solution of the inverse, PDE-constrained problem for solid mechanics problems can be carried out by adjoint-free, second-order methods over the joint space of displacements, stresses and unknown material param- eters. The method generalizes to nonlinear problems while the maximum-a-posteriori estimate recovers the results QDVCKPGFD[VJGOKZGFƄPKVGGNGOGPVOGVJQFFGTKXGFHTQO

(KIWTG/CZKOWO#2QUVGTKQTKUVTGUUƄGNFsvonMises and material parame- VJG*GNNKPIGT4GKUUPGTXCTKCVKQPCNRTKPEKRNG (KIWTG  ter y associated with the inverse problem as recovered by our probabilistic white-box model using a Taylor-Hood mixed function space

172 Continuum Mechanics

Coarse-Graining in Equilibrium Statistical Mechanics

The macroscopic behavior and properties of engineering developed makes use of generative probabilistic models materials depend on the microscopic characteristics and employs a parametrized probabilistic mapping which are not accounted in typical continuum-based HTQOEQCTUGVQƄPGUECNGFGUETKRVKQPUYJKEJKORNKEKVN[ models. In this project we operate on the atomistic scale, FGƄPGUVJGEQCTUGXCTKCDNGU6JGEQCTUGXCTKCDNGOQFGN and employ coarse-grained (CG) models as a computa- KUUGSWGPVKCNN[TGƄPGFD[CFFKPIHGCVWTGURTQXKFKPIVJG VKQPCNN[GHƄEKGPVOGCPUVQUVWF[NCTIGPWODGTUQHCVQOU largest anticipated information gain. In the context of over extended spatio-temporal scales. peptide simulations, the dimension has been reduced by A data-driven approach to CG has been proposed a factor of 30, while still capturing the main properties and within the the multidisciplinary joint project ‘Predictive TGXGCNKPIEQPƄIWTCVKQPCNUKOKNCTKVKGUKPVJGEQCTUGURCEG /CVGTKCNU/QFGNKPIoYKVJVJG*CPU(KUEJGT5GPKQT(GNNQY CUFGRKEVGFKP(KIWTGC2TGFKEVKQPUVJCVTGEQPUVTWEVVJG and TUM Ambassador, Prof. N. Zabaras (Viola D. Hank full atomistic picture, are probabilistic and account for Professor of Aerospace and Mechanical Engineering, WPEGTVCKPVKGUFWGVQNKOKVGFƄPGUECNGUKOWNCVKQPFCVCCPF Director of the Computational Science and Engineering information loss as a result of dimensionality reduction Laboratory, University of Notre Dame, USA). The method (KIWTGD 

Figure 3: Predictive Coarse-Graining

(a) Representation of the training data in the reduced (two dimensional) latent space of (b) Probabilistic prediction of the deviation of the radius of #NCPKPG&KRGRVKFG6JTGGENWUVGTUEQTTGURQPFKPIVQVJGEJCTCEVGTKUVKEEQPƄIWTCVKQPCN gyration from a common a– helix modes (a, b – 1, b – 2), arise in the latent space.

Model-order and Dimension Reduction of Random Heterogeneous Media

Well-established methods for the solution of sochastic partial differential equations (SPDEs) typically struggle in problems with high-dimen- UKQPCNKPRWVUQWVRWVU5WEJFKHƄEWNVKGUCTGQPN[ CORNKƄGFKPNCTIGUECNGCRRNKECVKQPUYJGTGGXGP a few tens of full-order model runs are impracti- cal. While dimensionality reduction can alleviate some of these issues, it is not known which and how many features of the (high-dimensional) input are actually predictive of the (high-dimen- sional) output. In this project, we advocate a Bayesian formulation that is capable of perform- Figure 4: Proposed framework

173 Continuum Mechanics

ing simultaneous dimension and model-order reduction (KIWTG +VEQPUKUVUQHCEQORQPGPVVJCVGPEQFGUVJG high-dimensional input into a low-dimensional set of feature functions by employing sparsity-enforcing priors and a decoding component that makes use of the solution of a coarse-grained model in order to reconstruct that of the full-order model. Both components are represented Figure 5: True solution (colored), predictive mean (blue), one standard with latent variables in a probabilistic graphical model and deviation (transparent gray) are simultaneously trained using stochastic variational inference methods. The model is capable of quantifying can give rise to random inputs with tens of thousands of the predictive uncertainty due to the information loss that variables. With a few tens of full-order model simulations, unavoidably takes place in any model-order/dimension the proposed model is capable of identifying salient phys- TGFWEVKQPCUYGNNCUVJGWPEGTVCKPV[CTKUKPIHTQOƄPKVG ical features and produce sharp predictions under dierent sized training datasets. We demonstrate its capabilities in boundary conditions of the full output which itself consists VJGEQPVGZVQHTCPFQOOGFKCYJGTGƄPGUECNGƅWEVWCVKQPU QHVJQWUCPFUQHEQORQPGPVU (KIWTG 

Physics-constrained, Data-driven Discovery of Coarse-grained Dynamics

This project is concerned with the discovery of data- interest might pertain to time scales that are greater by driven, dynamic, stochastic coarse-grained models from several orders of magnitude. The combination of high- ƄPGUECNGUKOWNCVKQPUYKVJCXKGYVQCFXCPEKPIOWNVKUECNG dimensionality and disparity of time scales has motivated modeling. Many problems in science and engineering are the development of coarse-grained (CG) formulations. modeled by high-dimensional systems of deterministic These aim at constructing a much lower-dimensional or stochastic, (non)linear, microscopic evolution laws model that is practical to integrate in time and can ade- (e.g ODEs). Their solution is generally dominated by the quately predict the outputs of interest over the time scales smaller time scales involved, even though the outputs of of interest. The challenge in multiscale physical systems such as those encountered in non-equilibrium statistical OGEJCPKEUKUGXGPITGCVGTCUCRCTVHTQOVJGKFGPVKƄECVKQP of an effective model, it is crucial to discover simultane- ously, a good set of CG state variables. In this project, we treat the CG model as a probabilistic state-space model where the transition law dictates the evolution of the CG state variables and the emission law VJGEQCTUGVQƄPGOCR (KIWTG 0CVWTCNN[QPGQHVJG most critical questions pertains to the form of the CG evolution law which poses a formidable model selec- VKQPKUUWG%QTTGEVKFGPVKƄECVKQPQHVJGTKIJVJCPFUKFG terms involved can also reveal qualitative features of the coarse-scale evolution such as the type of constitutive TGNCVKQPU+PQTFGTVQCXQKFQXGTƄVVKPICUYGNNCUGPFQYVJG estimates with robustness even in the presence of limited FCVCYGKPXQMGVJGRTKPEKRNGQHRCTUKOQP[VJCVKUTGƅGEVGF in the sparsity of the solutions.

Figure 6: Illustration of the predictive capabilities of the proposed model for the one-dimensional Burgers’ equation. The left-hand and right-hand columns correspond to two different initial conditions and the rows repre- sent snapshots of the system at different time instances. The green dashed line represents the true time evolution of the system. The red shaded area is the predicted 95 percent credible interval and the red dashed line the predicted mean.

174 Continuum Mechanics

Courses %QPVTKDWVKQPUVQ5EKGPVKƄE%QPHGTGPEGU B.Sc. and Symposia ■ 7PEGTVCKPV[3WCPVKƄECVKQPKP ■ C. Grigo, P.S. Koutsourelakis, Coarse- Mechanical Engineering (SS) grained models for PDEs with random ■ Modeling in Structural Mechanics (WS) EQGHƄEKGPVU5+#/%QORWVCVKQPCN Prof. Science and Engineering Conference, Phaedon- M.Sc. March 2017, Atlanta, GA, USA Stelios ■ Atomistic Modeling of Materials (WS) ■ +(TCPEMCPF25-QWVUQWTGNCMKU7P Koutsourelakis, ■ Bayesian Strategies for Inverse certain ty and constitutive model error Ph.D. Problems (SS) SWCPVKƄECVKQP)#///CTEJ ■ ,QWTPCN%NWD7PEGTVCKPV[3WCPVKƄECVKQP 2017, Weimar, Germany Contact (WS-SS) ■ M. Koschade, P.S. Koutsourelakis, www.contmech.mw.tum.de $C[GUKCP/WNVK(KFGNKV[1RVKOK\CVKQP [email protected] MSE under Uncertainty, SIAM Computational 2JQPG  ■ Continuum Mechanics (WS) Science and Engineering Conference, ■ Probability Theory and Uncertainty March 2017, Atlanta, GA, USA Management 3WCPVKƄECVKQP 95 ■ M. Schöberl , N. Zabaras, P.S. Kout- Prof. Phaedon-Stelios Koutsourelakis, ■ Uncertainty Modeling in Engineering sou relakis, Bayesian Coarse-Graining Ph.D., Director 55  6QR6GCEJKPI6TQRJ[ in Atomistic Simulations: Adaptive  +FGPVKƄECVKQPQHVJG&KOGPUKQPCNKV[CPF Administrative Staff 5CNKGPV(GCVWTGU5+#/%QORWVCVKQPCN Ms. S. Harnauer Publications 2017 Science and Engineering Conference, Archival Journal Publications March 2017, Atlanta, GA, USA Research Scientists ■ M. Schöberl, N. Zabaras, and P.S. ■ C. Grigo, P.S. Koutsourelakis, &T+UCDGNN(TCPEM Koutsourelakis, Predictive Coarse- Re duced-Order Models for PDEs with Markus Schöberl, M.Sc. Graining, Journal of Computational 4CPFQO%QGHƄEKGPVU70%'%1/2 Constantin Grigo, M.Sc. (Physics) 2J[UKEU8QNWOG/CTEJ June 2017, Greece M. Koschade, M.Sc. RR ■ M. Schöberl , N. Zabaras, C. Grigo, P.S. L. Bruder (M.Sc. thesis) ■ +/(TCPEMCPF25-QWVUQWTGNCMKU Koutsourelakis, Probabilistic Coarse- .(GNUDGTIGT /5EVJGUKU Constitutive model error and un certain- Graining: from Molecular Dynamics to ($QVV 5GOGUVGTVJGUKU V[SWCPVKƄECVKQP2TQEGGFKPIUKP Stochastic PDEs, SIAM Workshop on H. von Kleist (Bachelor’s thesis) Applied Mathematics and Mechanics, Parameter Space Dimension Reduction Wiley, November 2017 July 2017, Pittsburg, PA, USA Research Focus ■ A. Quaglino, S. Pezzuto, P.S. Kout sou- ■ M. Koschade, P.S. Koutsourelakis, ■ 7PEGTVCKPV[SWCPVKƄECVKQP relakis, A. Auricchio, and R. Krause, Opti mization of Random Systems ■ Random media (CUVWPEGTVCKPV[SWCPVKƄECVKQPKP 7UKPI/WNVK(KFGNKV[/QFGNU+PXKVGF ■ Coarse-graining in molecular dynamics RCVKGPVURGEKƄEECTFKCEGNGEVTQRJ[UKQ Talk, SIAM Annual Meeting, July 2017, ■ Bayesian inverse problems logy meeting clinical time constraints, Pitts burgh, PA, USA ■ Design/optimization under uncertainty accepted for publication International ■ P.S. Koutsourelakis, Physics-con ver- Journal for Numerical Methods in sant machine learning: from molecular Competence Biomedical Engineering, December F[PCOKEUVQUVQEJCUVKE2&'UVJ ■ Computer simulation 2017 Work shop on High-Performance Com- ■ Mathematical modeling of stochastic RWVKPIs7PEGTVCKPV[3WCPVKƄECVKQPCPF systems HPC, Invited Talk, University of Bern, September 2017 Infrastructure ■ M. Schöberl, N. Zabaras, P.S. Kout- ■ EQTG*2% sou relakis, Bayesian Coarse-Graining, European Congress on advanced materials and processes (EUROMAT), September 2017, Greece

175 Systems Biotechnology

Model-based metabolic engineering for bacterial systems

■ Systems Biotechnology combines methods from engineering sciences, microbiology, and computational sciences to improve biotechnological processes.

Systems Biotechnology focuses on application of al ly analyze the population behavior in dependence methods from systems biology to problems related to of different load strength. Here, a new experimental biotechnology. Central to our current projects is the approach that allows monitoring of mRNA as well pro understanding of resource allocation during growth and VGKPF[PCOKEUKPVJGUCOGEGNNCTGCRRNKGFCPFƄVVGFVQ production. The heterologous protein production with mathematical models. This opens new perspectives in the microorganisms becomes more and more an important understanding of single cell dynamics and in designing RKNNCTKPXCTKQWUƄGNFUQHDKQVGEJPQNQI[%QODKPIVJGQT new strains in biotechnology. GVKECNOGVJQFUYKVJGZRGTKOGPVCNUVWFKGUYGU[UVGOCVKE

Fundamentals for Experimental Analysis and Mathematical Modeling of Cellular Networks

Regulation of transcriptional and biochemical processes in a bacterial cell is essential for survival in changing environ mental conditions and the understanding of the events taking place is pivotal for the use of bacteria in industrially interesting applications. Research of the Systems Biotech nology Group targets different key regulatory devices, like the phosphotransferase system in Pseudomonas putida or the ComRS two component system in Streptococcus mutans. The experimental information derived either in the group’s own laboratory or by collaboration partners gives rise to mathematic models that contribute to a better understanding of cellular processes. Another research focus lies on the establishment of a EQEWNVWTGDGVYGGPCRJQVQU[PVJGVKECNN[CEVKXGQTICPKUO extruding sugar molecules together with heterotrophic organisms capable of producing industrially interesting compounds. To this end a photobioreactor is employed which allows the cultivation and collection of a vast COQWPVQHFCVCWUGFVQFGUETKDGVJGRQRWNCVKQPDCUGF variations in the overall process.

Project ■ GDKQƄNO$/$(G$KQKPKVKCVKXG

Metabolic Engineering of Halophiles: Towards Halomonas elongata as Industrial Producer

The project focuses on ectoine production by the halo adverse conditions. The current applications of ectoine philic bacterium Halomonas elongata. The reasons for EQXGTCYKFGTCPIGQHFKHHGTGPVƄGNFUNKMGDKQOGFKEKPG that choice are not only the interest of ectoine as a novel cosmetics, support roles in analytic and industrial pro product for medicine and cosmetics but also the potential cesses and bioremediation. of H. elongata for further biotechnological applications. Ectoine is a highly soluble organic molecule that belongs Projects to the group of compatible solutes and is found as an ■ OPHELIA – optimization of Halomonas elongate for osmotic agent in a wide range of cell types and has also KPFWUVTKCNCRRNKECVKQPU$/$(G$KQKPKVKCVKXG been shown to stabilize and protect macromolecules in ■ HOBBIT – Halophilic bacteria for bio catalysis

176 Systems Biotechnology

Metabolic Engineering of Escherichia coli: Combing Synthetic and Systems Biology

Escherichia coli is the organism of choice for basic Project research in biotechnology due to the possibility for genetic ■ DynOpt – dynamic process optimization in biotechnol alterations as well as its simple culture conditions. In two QI[$/$(DKQVGEJPQNQI[ KPKVKCVKXG5[U$KQ6GTR projects together with experimental partners from different – innovative strategies for a sustainable production of RNCEGUKP/WPKEJCPF)GTOCP[E. coli is used for the DKQCEVKXGOQNGEWNGU$/$(G$KQKPKVKCVKXG production of chemical bulk components or interesting precursors for medical applications. Based on genome UECNGOCVJGOCVKECNOQFGNUQRVKOCNƅWZFKUVTKDWVKQPUCPF optimal intervention strategies are determined that make VJGRTQEGUUGUOQTGGHƄEKGPV

177 Systems Biotechnology

Research Focus Publications 2016-17 ■ /CVJGOCVKECNOQFGNKPIQHEGNNWNCT ■ *CJN5CPF-TGONKPI##EQORC systems rison of deterministic and stochastic ■ /QFGNCPCN[UKU modelling approaches for biochemical ■ /QFGNDCUGFOGVCDQNKEGPIKPGGTKPI TGCEVKQPU[UVGOUQPƄZGFRQKPVU ■ Experimental design OGCPUCPFOQFGU(TQPVKGTUKP )GPGVKEU  HH  Prof. Dr.-Ing. Competence ■ .ÒYG*-TGONKPI#CPF/CTKP Andreas ■ /QFGNNKDTCT[HQTFKHHGTGPVOQFGN Sanguino, A.: Time hierarchies and Kremling systems (metabolic modules, gene OQFGNTGFWEVKQPKPECPQPKECNPQPNKPGCT expression modules, signaling OQFGNU(TQPVKGTUKP)GPGVKEU  |HH Contact modules)  www.biovt.mw.tum.de/ ■ Design space analysis ■ 8CNFGTTCOC)QOG\/#-TGKVOC[GT HIU[UVGODKQVGEJPQNQIKG ■ Time hierarchy analysis &9QNH5/CTKP5CPIWKPQ#CPF CMTGONKPI"NT\VWOWGPEJGPFG ■ Process design -TGONKPI##RRNKECVKQPQHVJGQTG 2JQPG  ti cal methods to increase succi nate Infrastructure production in engineered strains. Management ■ 5.CDQTCVQT[ CNNQYUYQTMYKVJ $KQRTQEGUUCPF$KQU[UVGOU'PIKP 2TQH&T+PI#PFTGCU-TGONKPI&KTGEVQT IGPGVKECNN[OQFKƄGFUVTCKPU GGTKPI  HH  ■ 2JQVQDKQTGCEVQTU[UVGO ■ Löwe, H., Schmauder, L., Hobmeier, Administrative Staff ■ 5VCPFCTFDKQTGCEVQTU[UVGO --TGONKPI#CPF2ƅØIGT)TCW- 5WUCPPG-WEJGPDCWT ■ Tecan reader /GVCDQNKEGPIKPGGTKPIVQGZRCPFVJG substrate spectrum of Pseudo monas Research Scientists Courses putidaVQYCTFUWETQUG/KETQDKQNQI[ &T#NDGTVQ/CTKP5CPIWKPQ HQT/CUVGTn+PFWUVTKCN$KQVGEJPQNQI[o 1RGPG  &T-CVJCTKPC2ƅØIGT)TCW /5' ■ .ÒYG**QDOGKGT-/QQU/ 5CDKPG9CIPGT/5E ■ #RRNKGF/CVJGOCVKEU -TGONKPI#CPF2ƅØIGT)TCW- *CPPGU.ÒYG/5E ■ /QFGNKPIQH%GNNWNCT5[UVGOU 2JQVQCWVQVTQRJKERTQFWEVKQPQHRQN[ /KIWGN8CNFGTTCOC/5E ■ Analysis and Design of Cellular hydro xyalkanoates in a synthetic mixed 5C[WTK*QTVUEJ/5E Systems culture of Synechococcus elongatus -TGKVOC[GT&KCPC/5E ■ Optimization in Biotechnology cscB and Pseudomonas putida cscAB. ■ &CVC#PCN[UKUCPF5VCVKUVKECN/QFGNU $KQVGEJPQNQI[HQT$KQHWGNU Technical Staff ■ Exercises in Simulation Studies in  Stefan Darchinger Biotechnology ■ -KPF\KGTUMK84CUEJMG5-PCDG0 5KGFNGT(5EJGHHGT$2ƅØIGT)TCW- et al.: Osmoregulation in the Halophilic Bacterium Halomonas elongata: A Case Study for Integrative Systems Biology. 2.Q510'  G 

178 Biomechanics

Biological (hybrid-)materials and bio-interfaces

■ The mission of the biomechanics group is to: 1. discover new, to date unknown material properties of biopolymer materials and biological interfaces; 2. identify the microscopic principles that govern those material properties (mechanics, permeability); 3. apply those principles to create biomimetic materials for biomedical or technical applications.

The biomaterials studied range from very soft gels such VGUV|VJGKTCRRNKECDKNKV[HQTDKQOGFKECNQTKPFWUVTKCNRWT- CUOWEWUCPFDKQƄNOUVQVKUUWGUUWEJCUECTVKNCIGCPF RQUGU*KIJNKIJVUKPYGTGVJGFGXGNQROGPVQHC JCTFCTVKƄEKCNOCVGTKCNUUWEJCUOQTVCTCPFEQPETGVG contact lens coating that prevents tissue damage on the Accordingly, a broad variety of characterization methods cornea and the detection of two types of hydrophobic KUWUGFKPVJG$KQOGEJCPKEU)TQWR$KQOGFKECNSWGUVKQPU DKQƄNOUWTHCEGUYJGTGVJGHQTOGTKUTGNCVGFVQNQVWUNGCXGU addressed include understanding the wetting resistance CPFVJGNCVGTVQTQUGRGVCNU QHDCEVGTKCNDKQƄNOUCPFFGXGNQRKPIUWTHCEGOQFKƄECVKQPU by biopolymers to reduce friction and wear on biological VKUUWGU In our highly interdisciplinary projects, we work together with chemists, pharmacists, physicists and medical researchers to generate, characterize and optimize existing and novel biopolymer-based materials and to

Biotribology and Biolubrication

We study the mechanical and tribological properties of DKQNQIKECNVKUUWGU$[GZRNQKVKPINQUUCPFICKPQHHWPEVKQP experiments, we aim to understand what molecular components are responsible for the outstanding mechan- ical properties of cartilage and which lubricants minimize HTKEVKQPCPFYGCT(WTVJGTOQTGYGGZCOKPGVJGGHHGEVKXG- ness of different biopolymers as lubricants on biological CPFCTVKƄEKCNUWTHCEGU 2WTKƄGFOWEKPU NKIJVDNWG HTQORKIUVQOCEJUHQTOCRTQVGEVKXGNC[GT Project on contact lenses. The experiments were conducted with porcine eyes (lower right). ■ Mucin coatings on contact lenses

/KETQƅWKFKE%JKRUHQT&KHHWUKQP5VWFKGU

PDMS microchips are a versatile platform to study the DGJCXKQTQHƅWKFUQPUOCNNFKOGPUKQPU9GCKOCVIGPGT- CVKPIOKETQEJKRUQNWVKQPUVQSWCPVKH[FKHHWUKXGRTQEGUUGU CVVJGNKSWKFIGNKPVGTHCEG9GCNUQVT[VQOKOKEEQORNGZ DKQNQIKECNKPVGTHCEGUUWEJCUVJGDNQQFUVTGCOEQPPGEVKXG VKUUWG+PEQNNCDQTCVKQPYKVJOGFKECNTGUGCTEJGTUCPF physicists, we then compare the results obtained from our IGNQPEJKRCUUC[UVQKPXKXQFCVCCPFVJGQTGVKECNOQFGNU /KETQƅWKFKEEJKRUCNNQYWUVQUVWF[VJGFKHHWUKXGGPVT[RTQEGUUQH molecules into and their transport across hydrogels. Project ■ Barrier properties of mucin hydrogels

179 Biomechanics

(Bio-)Hybrid-Materials

A combination of osmotic pressure and synthetic DNA constructs allows for the temporally controlled release of nanoparticles from a hydrogel matrix.

Many biomolecules offer outstanding properties but Examples for such hybrid materials are hydrogels with ECPPQVDGWUGFKPOGFKECNVGEJPKECNCRRNKECVKQPUQPVJGKT RTQITCOOCDNGFTWITGNGCUGMKPGVKEU QYP6JWUYGFGXGNQRJ[DTKFOCVGTKCNUYJGTGYGGKVJGT mix biological molecules in new combinations or add Project DKQNQIKECNEQORQPGPVUVQKPQTICPKEU[PVJGVKEOCVGTKCNU ■ Triggered nanoparticle release from hydrogels

/CVGTKCN2TQRGTVKGUQH$CEVGTKCN$KQƄNOU

Bacteria secrete a broad range of biopolymers, that form a RTQVGEVKXGOCVTKZCTQWPFVJGRTQMCT[QVGU6JKUEQOOWPKV[ QHDKQRQN[OGTUCPFDCEVGTKCKUTGHGTTGFVQCUCDKQƄNO $CEVGTKCNDKQƄNOUECPITQYQPCDTQCFXCTKGV[QHUWTHCEGU CPFEQPUVKVWVGCUGXGTGKUUWGKPKPFWUVT[CPFOGFKEKPG 9GCKOCVSWCPVKH[KPIVJGOGEJCPKECNCPFYCVGTTGRGNNGPV RTQRGTVKGUQHDCEVGTKCNDKQƄNOU9GCTGCNUQKPVGTGUVGFKP how different chemical environments affect those material RTQRGTVKGU$[FQKPIUQYGJQRGVQFGXGNQRPGYUVTCVG- IKGUHQTVJGTGOQXCNQHDKQƄNOUHTQOUWTHCEGU

Project ■ 5($/GEJCPKEUQHDCEVGTKCNDKQƄNOU

9CVGTFTQRUQPDKQƄNOU NGHVEQNWOP CPFRNCPVNGCXGU TKIJVEQNWOP  4QUGNKMGDGJCXKQTKUKPFKECVGFD[TGFDQZGUYJGTGCUNQVWUNKMGDGJCXKQT is depicted by green boxes.

180 Biomechanics

Research Focus Publications 2017 ■ Biological (hybrid-)materials ■ %0QYCNF$-ÀUFQTHCPF1.KGNGI ■ Cartilage and cartilage surrogate Controlled nanoparticle release from materials CJ[FTQIGND[&0#OGFKCVGFRCTVKENG ■ Biological hydrogels as selective disaggregation, Journal of Controlled diffusion barriers 4GNGCUG  ■ /CVGTKCNRTQRGTVKGUQHDCEVGTKCNDKQƄNOU ■ /6CNNCYK/1RKV\CPF1.KGNGI ■ Medical applications of nanoparticles Modulation of the mechanical 2TQH&T RTQRGTVKGUQHDCEVGTKCNDKQƄNOUKP Oliver Lieleg %QORGVGPEG response to environmental challenges, ■ Rheology, tribology $KQOCVGTKCNU5EKGPEG %QPVCEV ■ /KETQƅWKFKEUFKHHWUKQPOGCUWTGOGPVU  YYYOYVWOFGDOG ■ Surface characterization ■ /9GTD%(CNEÏP)CTEÉC0$CEJ5 QNKXGTNKGNGI"VWOFG ■ 2WTKƄECVKQPQHCPVKDCEVGTKCNCPVKXKTCN )TWODGKP55KGDGT/1RKV\CPF1 2JQPG  glycoproteins .KGNGI5WTHCEGVQRQNQI[CHHGEVUYGVVKPI ■ Cell culture, microbiology DGJCXKQTQH$CEKNNWUUWDVKNKUDKQƄNOU Management 02,$KQƄNOUCPF/KETQDKQOGU&1+ 2TQH&TTGTPCV1NKXGT.KGNGI Infrastructure U  )TQWR.GCFGT ■ Rheometer, tribometer ■ /6GPC5QNUQPC$4KG»4-)TÒVUEJ ■ 1RVKECNOKETQUEQRGU (%.ÒJTGT%9CP\MG$-ÀUFQTH #FOKPKUVTCVKXG5VCHH ■ 1RVKECNRTQƄNQOGVGT #4$CWUEJ2/ØNNGT$WUEJDCWO Iris König-Decker, Secretary ■ Scanning electron microscope 1.KGNGICPF,$QGMJQXGP0QP ■ 5NCDQTCVQT[ YQTMKPIRGTOKUUKQPHQT GSWKNKDTKWOFKUUKRCVKXGUWRTCOQNGEWNCT 6GEJPKECN5VCHH IGPGVKECNN[OQFKƄGFOKETQQTICPKUOUQH OCVGTKCNUYKVJCVWPCDNGNKHGVKOG0CVWTG %JTKUVKPG$TCKI/GF6GEJ#UUKUVCPV DKQUCHGV[NGXGN %QOOWPKECVKQPU  ■ .CDQTCVQT[HQTEGNNEWNVWTG ■ 5-GUGN$XQP$TQPM%(CNEÏP 4GUGCTEJ5EKGPVKUVU ■ 'SWKROGPVHQTRTQVGKPRWTKƄECVKQP )CTEKC#)ÒV\1.KGNGICPF/1RKV\ #IPGU$W»OCPP$5E ■ Quartz crystal microbalance Matrix composition determines the %CTQNKPC(CNEQP)CTEKC/5E FKOGPUKQPUQH$CEKNNWUUWDVKNKU0%+$ $GPLCOKP-ÀUFQTH/5E %QWTUGU DKQƄNOEQNQPKGUITQYPQP.$ /CVVJKCU/CTE\[PUMK$5E ■ Microscopic Biomechanics CICT45%#FXCPEGU (GNKZ5VCPIN/5E ■ 'ZRGTKOGPVCN6GEJPKSWGUHQTVJG  &T+PI/CTYC6CNNCYK Characterization of Biomaterials ■ $-ÀUFQTH(9GDGT)2GVTQW &KRN+PI#PFTGCU9GP\NGT ■ Design Principles in Biomaterials 85TKXCUVCXC6%TQW\KGTCPF1 $GPLCOKP9KPMGNLCPP/5E ■ Biomedical Materials and Technologies .KGNGI/WEKPKPURKTGFNWDTKECVKQPQP ■ .CD%QWTUG%JCTCEVGTK\CVKQPQH5QHV hydrophobic surfaces, Biomacro- Materials OQNGEWNGU  ■ $KQRJ[UKEU.CD%QWTUGHQT ■ $9KPMGNLCPP-$QGVVEJGT$$CN\GT Biochemistry Students CPF1.KGNGI/WEKPEQCVKPIURTGXGPV tissue damage at the cornea-contact lens-interface, Advanced Materials +PVGTHCEGU  ■ -$QGVVEJGT$9KPMGNLCPP6 5EJOKFVCPF1.KGNGI3WCPVKƄECVKQP of cartilage wear morphologies in WPKFKTGEVKQPCNUNKFKPIGZRGTKOGPVU KPƅWGPEGQHFKHHGTGPVOCETQOQNGEWNCT NWDTKECPVU$KQVTKDQNQI[FQK QTILDKQVTK 

181 Automotive Technology

Vehicle concepts – smart mobility – vehicle dynamics and control systems – driver assistance and safety – electric vehicle components

■ Under the direction of Prof. Lienkamp, the Institute of Automotive Technology deals with all the requirements of mobility. Particular emphasis in research is on electro mobility, as well as KVUEQORQPGPVUCPFKPHTCUVTWEVWTG6JGTGCTGƄXGTGUGCTEJITQWRUYKVJFKHHGTGPVUWDLGEVCTGCU Vehicle Dynamics and Control Systems, Driver Assistance and Safety, Vehicle Concepts, Electric Vehicle Components and Smart Mobility.

Mobility for Africa – testing of the ‘aCar’ and presentation at the IAA 2017

The second prototype and the development team at the International Automotive Show in Frankfurt

With the objective of providing sustainable mobility for UWD5CJCTCP#HTKECYGTGUGEWTGF6JGTGD[VJGGZRGTKGPEG rural regions in sub-Saharan Africa the Institutes of Auto- ICKPGFGORJCUK\GVJGC%CToUCDKNKV[VQVCEMNGVJGEJCN- motive Technology, Metal Forming and Casting, Industrial NGPIGUQHRTQXKFKPIUWUVCKPCDNGOQDKNKV[ Design and Strategy and Organization have developed VJGƄTUVRTQVQV[RGQHVJGC%CTRTQLGEV+PQTFGTVQXGTKH[ the estimated assumptions regarding environments of use CPFXGJKENGFGUKIPVJGƄTUVRTQVQV[RGJCUDGGPVGUVGFKP )JCPC#PQVJGTJKIJNKIJVKPYCUVJGFGXGNQROGPVQH the second prototype and its presentation to the public at VJG+## 6JGQDLGEVKXGQHVJGQPUKVGXGJKENGVTKCNYCUVJGEQPHQT- mation of assumptions regarding electric vehicle design, FTKXKPIRTQƄNGQHRTQURGEVKXGWUGTUCPFGPXKTQPOGPVCN EQPFKVKQPU 8CTKQWUWUGTVGUVUXGTKƄGFVJGC%CToUTCPIG(WTVJGTOQTG the tests proved the assumptions regarding the external KPƅWGPEGUNKMGVGORGTCVWTGTQCFRTQƄNGCPFVTCHƄEƅQY Conducting driving dynamic tests, driving safety and cross-country mobility under conditions prevailing in Prototype testing in Kumasi, Ghana

182 Automotive Technology

After concluding the vehicle testing, the development VGCOHQEWUGFQPVJG+PVGTPCVKQPCN#WVQOQVKXG5JQYKP (TCPMHWTVYJGTGVJGUGEQPFRTQVQV[RGYCURTGUGPVGFVQ VJGRWDNKE+ORTQXGOGPVRTKQTKV[YCUHWTVJGTFGXGNQROGPV QHVJGC%CToUFGUKIPKPQTFGTVQGPCDNGNQECNRTQFWEVKQP QHVJGXGJKENGoUKPVGTKQTCPFGZVGTKQTCUYGNNCUVJGƄPCN CUUGODN[QHVJGQXGTCNNXGJKENG'ZGORNCT[HQTVJKU FGXGNQROGPVKUVJGPGYRCUUGPIGTEQORCTVOGPVEJCTCE- terized by a simple assembly concept through a plug and CFJGUKXGU[UVGO#FFKVKQPCNPGYEQORQPGPVUNKMGYKPEJ YQTMNKIJVUCPFYCVGTRTQQHGFUYKVEJGUKPETGCUGGXGT[FC[ UWKVCDKNKV[KPUWD5CJCTCP#HTKEC#HVGTVJGUWEEGUUHWN presentation to the public the approval and vehicle trial CTGUEJGFWNGFHQTVJGPGZVOQPVJU Prototype testing in Kumasi, Ghana globalDrive

'XGT[[GCTVJG+PUVKVWVGQH#WVQOQVKXG6GEJPQNQI[CVVJG SCUBE Technical University of Munich hosts the globalDrive 6QIGVJGTYKVJVJG0CP[CPI6GEJPKECN7PKXGTUKV[CPF67/- 2TQLGEV+PVJKUUVWFGPVRTQLGEVKPVGTPCVKQPCNVGCOUQHGKIJV %4'#6'DQVJNQECVGFKP5KPICRQTGQPGVGCOFGXGNQRGF UVWFGPVUYQTMQPHWVWTGOQDKNKV[EQPEGRVU6QKFGPVKH[VJG COKETQOQDKNKV[EQPEGRVHQTVJGUVKNNITQYKPIOGVTQRQNKU VTGPFUGVVKPIVQRKEUKPVJGƄGNFQHOQDKNKV[VJG)GTOCP QH5KPICRQTG6QUQNXGVJGƄTUVCPFNCUVOKNGRTQDNGOCPF UVWFGPVUUVC[CDTQCFHQTCHGYYGGMUVQUVCTVVJGEQQR- by that enhancing usage of the public transport system, GTCVKQP+PVJGƄPCNUVCIGQHVJGRTQLGEVVJGKPVGTPCVKQPCN VJGCWVQPQOQWUFTKXKPIFGXKEGn5EWDGoYCUFGXGNQRGF RCTVPGTUEQOGVQ/WPKEJVQƄPKUJCPFRTGUGPVVJGƄPCN 5EWDGUCTGHTGGƅQCVKPIFGXKEGUYJKEJCTGUJCTGFCOQPI RTQVQV[RG VJGWUGTUQHVJGRWDNKEVTCPURQTVKPHTCUVTWEVWTG&TKXKPIQP

SCUBE – micro mobility for megacities

183 Automotive Technology

VYQYJGGNUCPFUVCDKNK\KPIKVUGNH5EWDGKUCDNGVQQRGTCVG YKVJCXGT[UOCNNHQQVRTKPV&TKXGPCWVQPQOQWUN[5EWDG HGCVWTGUCPCEVKXGVKNVKPIU[UVGOVQMGGRVJGRCUUGPIGT HTGGHTQOUJGGTKPIHQTEGUCPFGPUWTGCEQOHQTVCDNGTKFG To travel longer distances, the team proposes the novel DWUU[UVGOn5EWDG6TCPUo5EWDGUECPCVVCEJVJGOUGNXGU VQVJKUDWUU[UVGOYJKEJVTCXGNUCDQXGVJGVTCHƄE CPFVJGTGHQTGPGXGTPGGFUVQUVQR

Entry Mobility for India 6JGEQPEGRVEQPUKUVUQHCOQFWNCTDKMGYKVJCOWNVKHWPE- VKQPCNHTCOGCPFCUGRCTCVGGNGEVTKERTQRWNUKQPWPKVYJKEJ ECPCNUQDGCVVCEJGFVQCP[QVJGTGZKUVKPIDKMG6JKU GPCDNGUVJGEWUVQOGTUYJQQYPCDKMGCNTGCF[VQQPN[ HTCIKNGNQQMKPIUVCPFCTFDKMGHTCOGU#DKIIGTUGVQHVKTGU RWTEJCUGVJGRTQRWNUKQPWPKVCPFTGVTQƄVYKVJCOCLQTEQUV CTGCXCKNCDNGVQVCMGQXGTUWURGPUKQPHWPEVKQPCNKV[CPF CFXCPVCIGEQORCTGFVQVJGYJQNGU[UVGO+HVJGEWUVQOGT JGPEGRTQXKFGOQTGEQOHQTVGURGEKCNN[QPDCFTQCFU NCVGTQPHGGNUVJGPGGFHQTOQTGHGCVWTGUNKMGDGVVGTFGUKIP 6JGYJGGNDCUGKUNQPIGTVQRTQXKFGOQTGURCEGCPFVJG or increased payload, he or she can simply upgrade by HTCOGJCUCNQYUVGRVJTQWIJVQCNUQGPUWTGVJCVHGOCNG RWTEJCUKPIVJGHTCOGCVCNCVGTRQKPVKPVKOG$WVVJGYJQNG TKFGTUYGCTKPICVTCFKVKQPCN+PFKCP5CTKFQPQVGPEQWPVGT U[UVGOKUQHHGTGFYKVJCEQUVCFXCPVCIGEQORCTGFVQ RTQDNGOU UGRCTCVGRWTEJCUG $GUKFGVJGnV[RKECNoXGJKENGHGCVWTGUVJGEQPEGRVCNUQ The propulsion consists of a compact mid-mounted QHHGTUGZVTCHGCVWTGUFWGVQKVUOQFWNCTFGUKIP6JGHTCOG GNGEVTKEOQVQT+VECPDGCVVCEJGFVQCNOQUVCP[MKPFQH EQOGUYKVJURGEKCNOQWPVKPIJQNGUHQTFKHHGTGPVCFFQPU DKMGLWUVD[TGRNCEKPIVJGDQVVQODTCEMGVCPFETCPMU 6JG[ECPDGHQQVDQCTFUCTCEMQTCNCVGTCNVWDGUVTWEVWTG The separate detachable portable battery module can VJCVVQIGVJGTYKVJCPGVUGTXGUCUCNKIJVYGKIJVDWV DGOQWPVGFVQVJGFQYPVWDGQTQPVJGTCEMQHVJGDKMG JKIJDGCTKPIECTIQURCEG 6QOCMGVJGXGJKENGOQTGCVVTCEVKXGCPFKPETGCUGRGTHQT- In addition to the modular frame, the concept also mance, the propulsion unit includes a hand throttle so KPENWFGUCUGEQPFNKHGQRVKQPHQTVJGHTCOG+HRCTVUQHVJG VJCVVJGFTKXGTECPWUGJKUDKMGYKVJQWVGXGPVJGPGGFVQ XGJKENGCTGDTQMGPCPFKVPGGFUVQDGFKURQUGFQHGPVKTGN[ RGFCN*QYGXGTRGFCNUECPVJGPUVKNNDGWUGFVQGZVGPF the frame can still be reused and easily converted into a the range of the vehicle and in case recharging is not DKMGVTCKNGTCYJGGNDCTTQYQTGXGPCUKORNGVJTGGYJGGNGT RQUUKDNG9KVJVJKUUGVWRCRQVGPVKCNEWUVQOGTKUCDNGVQ $GECWUGQHVJGURGEKCNFGUKIPQHVJGHTCOGYKVJNCVGTCN carry passengers or goods more comfortably and extend JQNGUVYQHTCOGUYKVJVJGKTTGURGEVKXGDCEMYJGGNUECP JKUQTJGTOQDKNKV[TCFKWU GCUKN[DGEQODKPGFYKVJCHGYETQUUDCTU6JGPGYXGJKENG 6JGFGUKIPQHVJGXGJKENGKUOQTGOQVQTE[ENGNKMGVQ YJKEJTGUWNVUECPDGWUGFCUCVTCPURQTVCDNGOCTMGVRNCEG create a more appealing and sportier image compared to QTCVTCKNGTHQTUGXGTCNRCUUGPIGTU

Tele-Operated Driving

+VYCUVJGƄTUVVKOGKP'WTQRGVJCV)GPCDNGFVGNG QRGTCVGFFTKXKPIYCUWUGFVQEQPVTQNCEQPUWOGTXGJKENG TGOQVGN[sKPVJKUFGOQPUVTCVKQPVJGXGJKENGYCUNQECVGF CV5WTTG[7PKXGTUKV[ )+% CPFYCUEQPVTQNNGFHTQO VJG/$$(QTWOXGPWG.QPFQP'Z%GN6JGGPFVQGPF PGVYQTMNCVGPE[YCUNGUUVJCPOKNNKUGEQPFUCPFCKT KPVGTHCEGNCVGPE[YCUNGUUVJCPOKNNKUGEQPFUYJKEJ GPCDNGFVJGFTKXGTVQEQPVTQNCXGJKENGTGOQVGN[HTQO MKNQOGVGTUCYC[YKVJQPN[EODTCMKPIFGXKCVKQPYJGP KVYCUFTKXGPCVCRRTQZKOCVGN[MOJ The Institute of Automotive Technology has been .QPFQP7-VJ0QXGODGT#VVJ)NQDCN/QDKNG$TQCFDCPF TGUGCTEJKPIKPVQEQPVTQNNKPICXGJKENGTGOQVGN[UKPEG Forum, the Institute of Automotive Technology demonstrated 5G tele- operated driving with Huawei, Vodafone and the 5G Innovation Centre (TQORTQLGEVUNKMGVJG'72TQLGEV241/16*'75QTVJG (5GIC) of Surrey University.

184 Automotive Technology

EQORGVKVKQPUQHVJG75&GRCTVOGPVQH&GHGPUG *# %JCNNGPIGU KVECPDGUVCVGFVJCVVQFC[CWVQPQOQWU FTKXKPIKUQPN[RQUUKDNGKPEGTVCKPNGUUEQORNGZUEGPCTKQU 'URGEKCNN[KPVJGƄGNFQHWTDCPVTCHƄEYKVJOCP[FKHHGTGPV road users and confusing road topology autonomous cars YKNNPQVDGCDNGVQRGTHQTONKMGCJWOCPKPVJGPGZVEQWRNG QH[GCTU 6JGTGHQTGCXKCDNGCRRTQCEJKUVQDTKPIDCEMCJWOCP FTKXGTKPVQVJGEQPVTQNNQQRKPQTFGTVQFGCNYKVJVJGEQO- RNGZKV[QHVJGUKVWCVKQP#YKTGNGUUFCVCVTCPUOKUUKQP )CV VJGFGOQ EQPPGEVUVJGJWOCPFTKXGTYKVJVJGXGJKENG# server handles communication and can perform compu- VCVKQPCNN[KPVGPUKXGVCUMUQTRTQXKFGCFFKVKQPCNKPHQTOCVKQP HTQOVJGKPVGTPGV(WTVJGTC%CT5GTXGTEQOOWPKECVKQP KUDGKPIFGXGNQRGFUKOWNVCPGQWUN[YJKEJCRCTVHTQOVJG tele-operation, is able to provide information to the driver, 6JG+PUVKVWVGQH#WVQOQVKXG6GEJPQNQI[FGOQPUVTCVGU'WTQRGoUƄTUV NKMGTQCFUKVWCVKQPUN[KPICJGCF tele-operated driving with 5G.

New Projects

Vehicle Dynamics and Control Systems Electric Vehicle Components ■ Optimal body movement for highly automated driving ■ The rapid aging characterization of battery systems ■ Development of a methodology to support strategy ■ .KHGVKOGCPCN[UKUCPFRTGFKEVKQPHQTDCVVGT[RQYGTGF decisions in motorsports products ■ %QORGPUCVKQPQHOQFKƄGFUWURGPUKQPRCTCOGVGTU ■ Second-life of lithium-ion vehicle batteries using steering control Smart Mobility Driver Assistance and Safety ■ *[FTQIGPOQDKNKV[EQPEGRV ■ Safety assessment of highly automated vehicles ■ 9#6's9GDDCUGFCPCN[UKUVQQNGNGEVTQOQDKNKV[ ■ +PVGNNKIGPVOCPGWXGTCWVQOCVKQPsEQQRGTCVKXGTKUM ■ 31564''6s%NCUUKƄECVKQPQHTQCFUWTHCEGSWCNKV[YKVJ prevention in real time big data ■ %NCUUKƄECVKQPQHFCOCIGTKUMWPFGTVJGKPƅWGPEGQH advanced driver assistance systems GlobalDrive ■ Fusion of high-precision map data in the automotive Vehicle Concepts industry ■ ACAR – Vehicle concept for sub-Saharan Africa ■ Intelligent travel features in public transport of the ■ 5+/)'6*'4s%QNNCDQTCVKQPRNCVHQTOHQTKPVGTFKUEKRNK- future nary simulation ■ n2KORO[6YK\[os+PETGCUKPIVJGRGTHQTOCPEGCPF ■ Topology optimization of electric drive trains for four- range of an electric vehicle through optimized thermal YJGGNFTKXGXGJKENGU management

185 Automotive Technology

&KRN+PI/CPHTGF-NÒRRGN Infrastructure %JTKUVKCP-PKGU/5E ■ &2TKPVGT &KRN+PI5CUEJC-QDGTUVCGFV ■ Dynamic driving simulator #NGZCPFGT-QEJ/5E ■ /GEJCPKECNCPFGNGEVTKECNYQTMUJQR ,WNKCP-TGKDKEJ/5E ■ Dynamometer test rig :WG.KP/5E ■ $CVVGT[VGUVKPINCD .WMCU/GTMNG/5E ■ *CTFYCTGKPVJGNQQRVGUVUVCPFU Prof. Dr.-Ing. ,CP%GFTKE/GTVGPU/5E ■ Measurement of driving dynamics Markus -CVJCTKPC/KPPGTWR/5E ■ Mobile data captur via smartphones Lienkamp (GNKZ0QDKU/5E ■ Computing cluster #FKV[C2CVJCM/5E Contact 6JQOCU2QPP/5E Courses YYYHVOOYVWOFG %JTKUVQRJ4GKVGT/5E ■ $CUKEUQH/QVQT8GJKENG%QPUVTWEVKQP NKGPMCOR"HVOOYVWOFG 0CVCNKG4KEJCTFUQP/5E ■ Road Vehicles: Design and Simulation 2JQPG  &KRN+PI(GNKZ4ÒOGT ■ Dynamic of Passenger Cars 5VGRJCP4QJT/5E ■ &GUKIPQH'NGEVTKE8GJKENGU Management -QPUVCPVKP4KGFN/5E ■ Technology of Motorcycles 2TQH&T+PI/CTMWU.KGPMCOR&KTGEVQT ,WNKCP5EJCV\/5E ■ Race Rar Technology &T+PI(TCPM&KGTOG[GT 9GTPGT5EJOKF/5E /KEJCGN5EJOKFV/5E Selected Publications 2017 Adjunct Professors/Lecturers (GTFKPCPF5EJQEMGPJQHH/5E ■ 9CIPGT&CPKGN*QHHOCPP,.KGP 2TQH&T+PI7NTKEJ*GKFGP &KRN+PI#PFTGCU5EJWNV\G MCOR/&QYPUK\KPIRQVGPVKCNQH &T+PI*GTDGTV2HCD.KGDJGTT)OD* )CPGUJ5GVJWTCOCP/5E YJGGNDTCMGUKPGNGEVTKEXGJKENGU2' 2TQH&T+PI-CTN8KMVQT5EJCNNGT &KRN+PI/KEJCGN5KPPKPI 2HGHHGT 'F VJ+PVGTPCVKQPCN/WPKEJ 2TQH&T+PI2GVGT6TQRUEJWJ#7&+#) &KRN+PI/CTVKP5QNVGU %JCUUKU5[ORQUKWO5RTKPIGT 2TQH&T+PI.QVJCT9GEJ6*+PIQNUVCFV /CVVJKCU5VGKPUVTÀVGT/5E (CEJOGFKGP9KGUDCFGP)OD* ,QJCPPGU5VQEMGT/5E ■ 5CFGIJKRQWT'OCF&CPSWCJ Administrative Staff &KRN+PI2JKNKR9CEMGT $GPGFKMV1JGPG.KGPMCOR/CTMWU 5[NXKC$TKPMOCPP #FCO9CENCY/5E Acceleration-based criterion for in tru- 0KPC,WNKWU &CPKGN9CIPGT/5E UKQPUKPHTQPVCNKORCEVU+PVGTPCVKQPCN #NGZC.QJTGT 0KMQNCQU9CUUKNKCFKU/5E ,QWTPCNQH%TCUJYQTVJKPGUU   $GVVKPCXQP5VQMCT /KEJCGN9KVVOCPP/5E  Gabriele Weigand 5GDCUVKCP9QNHH/5E ■ (TKGU/KEJCGN/-TWVVUEJPKVV/ 6JQOCU

186 Automatic Control

Model-based analysis and design allow for the successful control of complex dynamical systems

■ The institute is focused on both the development of methods and their practical application. (QTCPGHƄEKGPVEQPVTQNQHVGEJPKECNRTQEGUUGUPGYVGEJPKSWGUCTGFGXKUGFKPPQPNKPGCTEQPVTQN GPGTI[DCUGFOQFGNKPICPFFGUKIPVJGEQPVTQNQHFKUVTKDWVGFRCTCOGVGTU[UVGOUOQFGNQTFGT TGFWEVKQPCUYGNNCUCFCRVKXGCPFRTGFKEVKXGEQPVTQNCPFOGVJQFUQHQRVKOK\CVKQPCPFEQORWVC- VKQPCNKPVGNNKIGPEG/QTGQXGTC%QNNCDQTCVKXG4GUGCTEJ%GPVTGRWVUCURQVNKIJVQPVJGOQFGNKPICPF CPCN[UKUQHPQPVGEJPKECNU[UVGOU0GYEQQRGTCVKQPUYKVJKPC&()2TKQTKV[2TQITCOCPFYKVJKPCLQKPV KPVGTPCVKQPCN#04&()HWPFKPIKPKVKCVKXGYGTGGUVCDNKUJGF %QPEGTPKPICRRNKECVKQPJKIJN[EJCNNGPIKPIRTQDNGOUKPENWFGVJGVTGCVOGPVQHXKDTCVKQPUKPOGEJCP- KECNU[UVGOUCPFKPCWVQOQDKNGUVJGTQDWUVEQPVTQNQHOWNVKEQRVGTUVJGEQPVTQNQHWPUVCDNGTQDQVU and the feedback control of technical and nontechnical industrial processes.

Active and Semi-Active Suspension Control

Active suspension systems ECPUKIPKƄECPVN[EQPVTKDWVG VQVJGEQOHQTVCPFUCHGV[ QHRCUUGPIGTECTUD[ OKPKOK\KPIXKDTCVKQPUCEVKPI QPRCUUGPIGTUCPFD[ TGFWEKPIF[PCOKEYJGGN NQCF4GEGPVFGXGNQROGPVU QHQWTTGUGCTEJKPENWFG PQPNKPGCTFKUVWTDCPEGEQORGPUCVQTUCPFQRVKOCNRTQCE- VKXGRTGXKGYEQPVTQN6JGTGD[FKHHGTGPVFGUKIPQDLGEVKXGU ECPDGCEJKGXGFVTCPURCTGPVN[6QICVJGTCPFOCPCIGVJG TGSWKTGFRTGXKGYFCVCYGNQQMKPVQCRRTQCEJGUKPENWFKPI XGJKENGDCUGFTQCFRTQƄNGGUVKOCVKQP UGGƄIWTGDGNQY  EQODKPGFYKVJXGJKENGVQKPHTCUVTWEVWTG 8+ EQOOWPKEC- VKQP6JGUQECNNGFJ[DTKFUWURGPUKQPU[UVGOFGXGNQRGF CVQWTKPUVKVWVGKUUJQYPKPVJGƄIWTGNGHVKVKPENWFGUC NQYDCPFYKFVJCEVWCVQTCPFCJKIJDCPFYKFVJXCTKCDNG FCORGTVQIGVJGTYKVJCUQRJKUVKECVGFEQPVTQNU[UVGO 'ZRGTKOGPVUCTGRGTHQTOGFCVCSWCTVGTECTVGUVUVCPFCXCKNCDNGKPVJG +PUVKVWVGQH#WVQOCVKE%QPVTQN

High-Performance Control of Constrained Fast Systems

6JGTGKUJWIGKPVGTGUVKPOQFGTPTQDQVUHQTVTCPURQTVCVKQP VQDGUQNXGFQPNKPGYKVJCUWHƄEKGPVCEEWTCE[KPQTFGTVQ CPFUGTXKEGECRCDNGQHRGTHQTOKPIHCUVOCPGWXGTUYJKNG QDVCKPFGUKTCDNGENQUGFNQQRF[PCOKEU%WTTGPVN[CPQXGN OCKPVCKPKPIUVCDKNKV[CVCNNVKOGU#UVJGUGU[UVGOUCTG EQPVTQNEQPEGRVHQTOWNVKTQVQTU[UVGOUWUKPICFCRVKXGCPF QHVGPKPJGTGPVN[PQPNKPGCTWPUVCDNGCPFHCUVEQPVTQN RTGFKEVKXGEQORQPGPVUKUFGXGNQRGFKPEQQRGTCVKQPYKVJ TGSWKTGOGPVUCTGKPETGCUKPITCRKFN[1WTITQWRURWTUWG VJG+PUVKVWVGQH(NKIJV5[UVGO&[PCOKEU VYQOCKPCRRTQCEJGUVQJKIJRGTHQTOCPEGEQPVTQNQHUWEJ .[CRWPQXDCUGFVGEJPKSWGUECPWUGCNKPGCTTGRTGUGPVC- U[UVGOUOQFGNRTGFKEVKXGEQPVTQN /2% CPF.[CRWPQX VKQPQHVJGPQPNKPGCTU[UVGOVQFGUKIPCEQPVTQNNGTVJCV DCUGFPQPNKPGCTEQPVTQNOGVJQFU6JGOCKPCFXCPVCIG NQECNN[UVCDKNK\GUCPQRGTCVKPIRQKPV2CTVKEWNCTN[NQYCPF QHVJG/2%RCTCFKIOKUVJGRQUUKDKNKV[QHU[UVGOCVKECNN[ JKIJICKPOGVJQFUTGSWKTGVJGUQNWVKQPQHGKVJGTC4KEECVK EQPUKFGTKPIEQPUVTCKPVUQPKPRWVCPFUVCVGXCTKCDNGU*QY- QTCRCTCOGVTKE.[CRWPQXGSWCVKQPRTQXKFKPICPQRVKOCN GXGTVJGTGCNYQTNFCRRNKECVKQPQHPQPNKPGCT/2%TGOCKPU EQPVTQNNCYVQIGVJGTYKVJCEQPVTCEVKXG.[CRWPQXHWPEVKQP EJCNNGPIKPICUPQPEQPXGZQRVKOK\CVKQPRTQDNGOUJCXG YJKEJHQTU[UVGOUWPFGTKPRWVUCVWTCVKQPECPDGWUGFCU

187 Automatic Control

CPGUVKOCVGQHVJGFQOCKPQHCVVTCEVKQP6JGOCKPCFXCP- PQOKPCNUGVRQKPVVJGNKPGCTK\CVKQPFQGUPQVCEEWTCVGN[ VCIGQHVJKUCRRTQCEJTGUKFGUKPVJGEQPVTQNNGTUVTWEVWTG TGƅGEVVJGDGJCXKQTQHVJGPQPNKPGCTU[UVGO6JGTGHQTGQWT YJKEJCNNQYUVJGEQPXGTIGPEGTCVGQHVJGVTCLGEVQTKGUVQ KPUVKVWVGEQPFWEVUHWTVJGTTGUGCTEJHQEWUKPIQPTGIWNCVKQP DGCEEGNGTCVGFD[FKUETGVGN[QTEQPVKPWQWUN[UEJGFWNKPIC CPFVTCEMKPIVCUMUWUKPIFKHHGTGPVPQPNKPGCTCRRTQCEJGU UKPINGRCTCOGVGT0GXGTVJGNGUUCUNQPICUVJGENQUGFNQQR NKMGEQOOCPFIQXGTPQTUCPFGZVGPFGFNKPGCTK\CVKQP U[UVGOKUPQVQRGTCVGFKPCTGIKQPUWHƄEKGPVN[ENQUGVQVJG

/2%ENQUGFNQQRVTCLGEVQT[ DNCEM CPFUGNGEVKQPQHTGEQORWVGFQRGPNQQR #DCNNDQVCPFCYJGGNGFKPXGTVGFRGPFWNWOCUGZCORNGUQHWPUVCDNG VTCLGEVQTKGU EQNQTGF nonlinear robots

Distributed Parameter Systems/Energy-based Modeling and Control

(QTVJGFKUETGVK\CVKQPCPFEQPVTQNQHFKUVTKDWVGFRCTCOGVGT U[UVGOUYGFGXGNQRPGYVGEJPKSWGUVJCVRTGUGTXGQTCTG KPURKTGFD[CPGPGTIGVKEOQFGNUVTWEVWTG'ZCORNGUCTG CNNMKPFUQHVTCPURQTVCPFFKHHWUKQPRJGPQOGPCGIVJG ƅQYQHRTGUUWTGFCKTVJTQWIJCVWDGQTJGCVVTCPUHGTKPC Numerical solution ECVCN[VKEHQCO#NUQƅGZKDNGOGEJCPKECNUVTWEVWTGUECP QHVJGYCXGGSWCVKQP under point excitation in DGTGRTGUGPVGFKPVJKUURKTKVYKVJKPVJGRQTV*COKNVQPKCP VJGEQTPGT7RYKPFKPI HTCOGYQTM%WTTGPVTGUGCTEJJKIJNKIJVUCTG KPVJGOKZGF)CNGTMKP structure-preserving FKUETGVK\CVKQPKORTQXGU /QFGNKPIKFGPVKƄECVKQP VJGCRRTQZKOCVKQPSWCNKV[ and control of pneumatic systems. 6JGDGPEJOCTM %QPVTQNQHƅGZKDNGOGEJCPKECNU[UVGOUDCUGFQP2* GZCORNGQHCRPGWOCVKE models. 9GFGXGNQRHGGFHQTYCTFCPFHGGFDCEMEQPVTQNNGTU VTCPUOKUUKQPNKPGYKVJ HQTFKUVTKDWVGFRCTCOGVGTU[UVGOUDCUGFQPUVTWEVWTGF PQPNKPGCTHTKEVKQPKUWUGFVQ PWOGTKECNOQFGNUKP2*HQTO6JGƅGZKDNGNKPMNCDOCPKRW- A pneumatic test XCNKFCVGFKHHGTGPVPWOGTKECNOQFGNU NCVQTUGTXGUCUCVGUVDGPEJHQTGZRGTKOGPVCNXCNKFCVKQP DGPEJYKVJKVUOCKP CPFVQFGXGNQRKPCNCVGNWORKPI components: a XCNXGCNQPIRPGW- CRRTQCEJƅCVPGUUDCUGFHGGFHQT- matic transmission YCTFCPFDCEMUVGRRKPIHGGFDCEM line and a tank EQPVTQNNGTU

Numerical methods for port-Hamiltonian systems. 2TGUGTXKPIVJGOCVJGOCVKECNUVTWEVWTGVJCVTGRTGUGPVU RQYGTGZEJCPIGCPFGPGTI[UVQTCIGKPRQTV*COKNVQPKCP 2* U[UVGOOQFGNUKUCFGUKTCDNGHGCVWTGQHFKUETGVK\CVKQP OGVJQFU9GYQTMQPCFLWUVCDNGUVTWEVWTGRTGUGTXKPI #OQFWNCTƅGZKDNGNKPMOCPKRWNCVQTKPVJGUKORNGUVEQPƄIWTCVKQPVQXCNKFCVG FKUETGVK\CVKQPUEJGOGUKPURCEGCPFVKOGYJKEJCTGCRRNK- VJGHCUVRQKPVVQRQKPVOQVKQPEQPVTQNQHVJGƅGZKDNGDGCODCUGFQPC2* FKUETGVK\GFOQFGN ECDNGVQU[UVGOUQHCTDKVTCT[FKOGPUKQPCPFIGQOGVT[

188 Automatic Control

Structured modeling and order reduction of coupled phenomena. 9KVJKPVJG&()#04HWPFGFRTQLGEV +0(+&*'/YGFGXGNQRKPCƄTUVUVCIGUVTWEVWTGFJKIJFK- OGPUKQPCNPWOGTKECNOQFGNUHQTVJGJGCVVTCPUHGTQPFWCN 4GRTGUGPVCVKQPQHCTGIWNCT EQORNGZGUCUIKXGPD[VJGUVTWEVWTGQHECVCN[VKEHQCOU metallic foam based on Kelvin cells. Image data from 6JGUVTWEVWTGQHVJGOQFGNUYKNNDGRTGUGTXGFKPCUGEQPF .)2%.[QPRTQEGUUGFYKVJ UVCIGQHRCTCOGVTKEOQFGNQTFGTTGFWEVKQP iMorph

Modeling and Control of Socio-Technical Systems

#URCTVQHVJGEQNNCDQTCVKXGTGUGCTEJEGPVGTn/CPCIKPI %[ENGUKP+PPQXCVKQP2TQEGUUGUoVJG%JCKTQH#WVQOCVKE %QPVTQNKUEQPEGTPGFYKVJVJGOQFGNKPICPFEQPVTQNQH UQEKQVGEJPKECNCPFE[DGTRJ[UKECNU[UVGOU#UQRRQUGF VQRJ[UKECNU[UVGOUUQEKQVGEJPKECNU[UVGOUQHVGPKPJGTKV UVTQPIWPEGTVCKPVKGUEQORNGZOKETQCPFOCETQF[PCOKEU CPFCTGEQOOQPN[OQFGNGFCUCIGPVDCUGFOQFGNU HQTYJKEJPQIGPGTCNEQPVTQNFGUKIPOGVJQFKUCXCKNCDNG 6JWUFGUKIPOGVJQFUYJKEJCTGXCNKFHQTCDTQCFENCUU QHF[PCOKECNU[UVGOUNKMGHW\\[EQPVTQNCPFNGCTPKPI CNIQTKVJOUCTGKPVJGHQEWUQHVJKUTGUGCTEJITQWR9JKNG DGKPIRTKOCTKN[FGXGNQRGFHQTUQEKQVGEJPKECNU[UVGOUVJG CNIQTKVJOUCTGCNUQVTCPUHGTTGFVQTGCNRNCPVUCPFOCEJKP- GT[HQTXCNKFCVKQPCPFEQORCTKUQP 8CNWGHWPEVKQPTGUWNVKPIHTQOCNGCTPKPICNIQTKVJOVTCKPGFQPCU[UVGOYKVJ VYQUVCVGXCTKCDNGU

Model Order Reduction

6JGOQFGNKPIQHF[PCOKEU[UVGOU HTGSWGPVN[NGCFUVQNCTIGUGVUQH Logo of the open source FKHHGTGPVKCNGSWCVKQPU6JGIQCNQH toolbox OQFGNQTFGTTGFWEVKQPKUVQƄPFC OWEJUOCNNGT TGFWEGF OQFGNRTGUGTXKPIVJGOQUVKORQT- VCPVRTQRGTVKGUQHVJGQTKIKPCNOQFGN4GEGPVTGUGCTEJ KPQWTITQWRFGCNUYKVJTGFWEKPIRCTCOGVGTFGRGPFGPV U[UVGOUPQPNKPGCTU[UVGOUOGEJCPKECNUVTWEVWTGU

+55CUCPGZCORNGQHCJKIJQTFGTƅGZKDNGUVTWEVWTG 2JQVQ0#5#

RQTV*COKNVQPKCPOQFGNUCPFU[UVGOUQHFKHHGTGPVKCN CNIGDTCKEGSWCVKQPU6JGTGUWNVKPIPGYOGVJQFUIWCTCPVGG JKIJCRRTQZKOCVKQPCEEWTCE[YJKNGDGKPIPWOGTKECNN[ 0QPNKPGCT('OQFGNKPICNNQYUHQTEQPUKFGTCVKQPQHUVTWEVWTCNF[PCOKEU GHƄEKGPV,WUVTGEGPVN[VJGHTGGCPFQRGPUQWTEGUUU/14 YKVJNCTIGFGHQTOCVKQPU(WTVJGTCPCN[UKUQRVKOK\CVKQPCPFEQPVTQNQHVJG 6QQNDQZJCUDGGPGZVGPFGFD[VJGPGYRUUU/14VQQNDQZ TGUWNVKPIJKIJQTFGTOQFGNUTGSWKTGRTKQTTGFWEVKQP HQTRCTCOGVTKEOQFGNTGFWEVKQP

189 Automatic Control

Research Focus Publications 2017 ■ #WVQOQVKXGCPFCEVKXGXKDTCVKQPEQPVTQN ■ &GPINGT%5EJÒPOCPP#.QJOCPP ■ /QFGNQTFGTTGFWEVKQP $4GKPJCTV)%[ENGQTKGPVGF'XCNW ■ /QFGNRTGFKEVKXGCPFQRVKOCNEQPVTQN CVKQPQH2TQFWEVKQP6GEJPQNQIKGU ■ 'PGTI[DCUGFOQFGNKPICPFEQPVTQN 'ZVGPFKPIVJG/QFGNQHVJG2TQFWEVKQP ■ /QFGNKPICPFEQPVTQNQHFKUVTKDWVGF %[ENG2TQEGFKC%+42'NUGXKGT$8 RCTCOGVGTU[UVGOU  Prof. Dr.-Ing. ■ 6CMCIK5WIGPQOQFGNUCIGPVDCUGF ■ 0KGTOG[GT22CM/.QJOCPP$ habil. Boris OQFGNKPICPFNGCTPKPIEQPVTQN #%QPVTQN'HHGEVKXGPGUU'UVKOCVQT Lohmann YKVJC/QXKPI*QTK\QP4QDWUVPGUU Competence /QFKƄECVKQPHQT(CWNV6QNGTCPV*GZC Contact ■ /GEJCVTQPKEU[UVGOUFGUKIPCPF EQRVGT%QPVTQN2TQEVJ+(#%9QTNF YYYTVOYVWOFG EQPVTQN %QPITGUU6QWNQWUG(TCPEG UGMTGVCTKCV"TVOYVWOFG ■ /QFGNKPICPCN[UKUCPFEQPVTQNQH ■ 2NGVUEJGP0&KGRQNF-,0QPNKPGCT 2JQPG  VGEJPKECNCPFPQPVGEJPKECNRTQEGUUGU 5VCVG'UVKOCVKQPHQT5WURGPUKQP ■ %QPVTQNCPFQRVKOK\CVKQP %QPVTQN#RRNKECVKQPU#6CMCIK5WIGPQ Management ■ #FCRVKXGCPFOQFGNRTGFKEVKXGEQPVTQN -CNOCP(KNVGTKPI#RRTQCEJ%QPVTQN 2TQH&T+PIJCDKN$QTKU.QJOCPP 'PIKPGGTKPI2TCEVKEG &KTGEVQT Infrastructure ■ 9CPI/$GUVNGT#-QV[E\MC2 ■ 6YQSWCTVGTECTVGUVUVCPFU /QFGNKPIFKUETGVK\CVKQPCPFOQVKQP Administrative Staff ■ 8CTKQWUOGEJCVTQPKEVGUVTKIUCPF EQPVTQNQHCƅGZKDNGDGCOKPVJGRQTV 4GIKPG/CTMYQTV CWVQPQOQWU TQDQVU *COKNVQPKCPHTCOGYQTM2TQEVJ ■ /QFWNCTƅGZKDNGNKPMOCPKRWNCVQT +(#%9QTNF%QPITGUU6QWNQWUG Research Scientists ■ *KIJTGUQNWVKQPQRVKECNVTCEMKPIU[UVGO (TCPEGRR &T+PI0KEQNG)GJTKPI ■ %QPVTQNU[UVGOUFGUKIPNCD ■ %CUVCIPQVVQ#%TW\8CTQPC/ &T+PI2CWN-QV[E\MC ■ 'NGEVTKECNCPFOGEJCPKECNYQTMUJQR ,GUEJGM..QJOCPP$UUU -NCWU#NDGTV/5E UUU/14#PCN[UKUCPF4GFWEVKQP (GNKZ#PJCNV/5E Courses QH.CTIG5ECNG&[PCOKE5[UVGOUKP #NGUUCPFTQ%CUVCIPQVVQ/5E ■ 4GIGNWPIUVGEJPKM /#6.#$CV#WVQOCVKUKGTWPIUVGEJPKM /CTKC%TW\8CTQPC/5E ■ 5[UVGOVJGQTKGKPFGT/GEJCVTQPKM    %JTKUVKCP&GPINGT/5E ■ /QFGTPG/GVJQFGPFGT4GIGNWPIU ,WNKQ(TCPEQ2ÅTG\%TW\/5E VGEJPKM 4KEJCTF-GTP/5E ■ 4GIGNWPIXQP5[UVGOGPOKVXGTVGKNVGP %JTKUVQRJGT.GTEJ/5E *QPU 2CTCOGVGTP 2JKNKRR0KGTOG[GT/5E ■ #FXCPEGF%QPVTQN 'TVWI1NEC[/5E ■ 0QPNKPGCT%QPVTQN /KMJCKN2CM/5E ■ .CD%QWTUGn%QORWVGTIGUVØV\VGT 6QDKCU5EJGWGTOCPP/5E 4GIGNWPIUGPVYWTHo ,QJCPPGU5VTQJO/5E ■ .CD%QWTUGn/QFGTPG/GVJQFGPFGT /GK9CPI/5E 4GIGNWPIUVGEJPKMo #NGZCPFGT9KUEJPGYUMK/5E ■ .CD%QWTUGn4GINGTKORNGOGPVKGTWPI CWH/KMTQEQPVTQNNGTPo Technical Staff 6JQOCU*WDGT 4CNH*ØDPGT

190 Micro Technology and Medical Device Technology

%QORWVCVKQPCNFGUKIPCPFTCRKFOCPWHCEVWTKPIQHEGTVKƄGFFGXKEGUOGEJCPKUOUCPFTQDQVU

■ The focus of the Institute of Micro Technology and Medical Device Technology is to accelerate the process of developing ideas into products. In research and science, the time required for implemen- VCVKQPKUCUKIPKƄECPVHCEVQTHQTUWEEGUU6JGTGHQTGTCRKFRTQVQV[RKPICPFTCRKFOCPWHCEVWTKPIVGEJ- nologies are part of our main research interest. We are systematically developing and analyzing new rapid technologies, as well as applying them in the areas of precision engineering, micro technology and medical device technology. We are systematically validating our research devices to achieve TGNKCDNGUEKGPVKƄETGUWNVU+PVJGCTGCQHOGFKECNVGEJPQNQI[YGFGXGNQRCEEQTFKPIVQ+51 EGTVKH[QWTFGXKEGUCEEQTFKPIVQ/&&(&#CPFRGTHQTOENKPKECNUVWFKGUCEEQTFKPIVQ+51

Most additive manufacturing processes today are based research project in cooperation with the Chair of Metal on polymeric building materials. Despite their superior Forming and Casting (utg). properties, metals are a far less common building material In this project, a pneumatically actuated droplet generator for three dimensional printing (3DP). Although there are is used to generate droplets of molten aluminum alloys at commercial processes for the additive manufacturing of temperatures of up to 750 °C. The droplets are deposited metallic products, the high equipment costs impede their on a heated build platform which is mounted on a com- widespread adoption. Therefore a novel 3DP process puter controlled translation stage situated in an inert gas based on the direct deposition of droplets of molten alu- atmosphere. This setup allows for the cost effective 3DP minum was developed in a joint DFG-funded (LU604/42) of aluminum parts without any intermediate steps.

2CVKGPV+PFKXKFWCN*CPF4GJCDKNKVCVKQP4QDQV A frequent consequence of stroke is limited hand function. As there are high CPVJTQRQOGVTKEXCTKCPEGUKPJCPFCPFƄPIGTCPCVQO[CRCVKGPVKPFKXKFWCN hand rehabilitation robot was developed. The individual design ensures an ergonomic interface which allows longtime wearing of the device. In order to provide cost-effective production, we propose an auto- OCVGFFGUKIPRTQEGUU6JGKPFKXKFWCNƄPIGTUCTGOCPWHCEVWTGF monolithically using the selective laser sintering of poly- COKFG6JGƄPIGTUCTGOQXGFD[YKTGUEQPPGEVGFXKC Bowden cables to a servo motor. The device presented is portable and can be used for repetitive train- ing as well as for grasping things.

Patient individual hand rehabilitation robot considering high anthropometric variances KPƄPIGTCPCVQO[ /K/GF

191 Micro Technology and Medical Device Technology

Additive Manufacturing Technologies

The claim in additive manufacturing changes more and more from just generating prototypes for demonstrating KUUWGUVQRTQFWEKPIƄPCNHWPEVKQPCNRCTVU6JKUKPETGCUGU the requirements concerning the freedom of material, dimensional accuracy and component properties. In 2013, after a collaboration with our institute, Arburg GmbH introduced Arburg plastic freeforming (APF) as a novel droplet-based additive manufacturing method. Using conventional thermoplastic polymers, the Arburg Freeformer expands the freedom of manufacturing. In earlier collaborations, our institute took part in designing the droplet generator and the data preprocessing. Current research concentrates on investigating in the achievable component properties and introducing new materials for the manufacturing process. Furthermore, material parameters and dimensional accuracy of the OCPWHCEVWTGFRCTVUUJQWNFDGQRVKOK\GFU[UVGOCVKECNN Therefore, new building strategies are developed to KPƅWGPEGVJGVGORGTCVWTGFKUVTKDWVKQPFWTKPIVJGOCPW facturing process. This way unwanted effects like curling can be reduced and dimensional accuracy can be Arburg Freeformer improved.

Augmented Reality in Laparoscopic Partial Nephrectomy

Laparoscopic partial nephrectomy allows the surgical resection of kidney tumors with the aim of partially preserving kidney function. For intraoperative imaging a NCRCTQUEQRGKUWUGFYJKEJCNNQYUQPN[UWRGTƄEKCNKOCIKPI of the abdominal cavity. Additionally, a laparoscopic ultrasound probe can be used to gain information about the subsurface of the organ in order to determine the resection line for the removal of the tumor. Usually, images from the laparoscope and the ultrasound system are displayed on separate screens. Matching information from both imaging sources to the anatomical context in the mind is challenging and error-prone. The aim of this project, which is funded by the German Research Foundation (Deutsche Forschungsgemein- schaft), is to improve laparoscopic partial nephrectomy KPVJGƄGNFQHKPVTCQRGTCVKXGKOCIKPICPFXKUWCNK\CVKQPQH information by integrating augmented reality features by superimposing additional information gained with the ultrasound probe onto the laparoscopic image. First realization of the augmented reality feature in a model by super- imposing the contour of a tumor and a safety margin onto the surface QHVJGQTICP /K/GF 

192 Micro Technology and Medical Device Technology

Micro-Macro Manipulator System

Micro-surgeries in the middle ear require the surgeon to OCPKRWNCVGGZVTGOGN[FGNKECVGUVTWEVWTGUYKVJƄPGVQQNU while staying in a non-ergonomic posture for extended periods of time. This strain on the surgeon may nega- tively affect the outcome of the operation. Therefore, a micro-manipulator was developed at our institute, capable of using standard surgical instruments and controlled via a console. In order to increase the applicability and versatility of the micro-manipulator, a macro-manipulator was introduced, a lightweight 6DoF robot with a reach of 0.8 m. An adapter system was developed to connect the micro-manipulator to the tip of the robot arm. Using the macro-manipulator drastically increases the workspace. Furthermore, additional features were introduced, such as a simultaneous control of both micro- and macro-manip- ulator, hands-on-manipulation and autonomous reposi- tioning. Additionally, a new approach to control the robot was developed, circumventing the built-in controller and directly accessing the communication bus. This allows for the direct control of each individual joint by a user-written CRRNKECVKQPCUYGNNCUEQPƄIWTCVKQPUWUKPICFKHHGTGPV number of arm elements. The project is funded by the German Research Foundation (Deutsche Forschungs- /CETQOCPKRWNCVQT DNCEM YKVJCVVCEJGFOKETQOCPKRWNCVQT YJKVG gemeinschaft). /K/GF

Patient Individual 3D Printed Heart Valve Models for Operation Planning

Heart valve reconstructions are complex operations. To improve the planning of heart valve reconstructions our institute collaborates with TOMTEC Imaging Systems GmbH, the Klinikum rechts der Isar (Cardiovascular Imag- ing) and the Ludwig-Maximilians-Universität München (Cardiosurgery) in a project funded by the German Federal Ministry of Education and Research (Support programme: n-/7KPPQXCVKX/GFK\KPVGEJPKMo%QPVTCEVPWODGT 13GW0115A). The aim of the project is to design patient individual 3D printed heart valve models for operation RNCPPKPICPFUWTIKECNVGORNCVGUHQTVJGTGCNK\CVKQPQHVJG RNCPPKPI(TQO&WNVTCUQWPFKOCIGFCVCQHRCVKGPVUo hearts, the heart valves are segmented and models of the heart valves are 3D printed. Heart surgeons can use these models to plan the reconstruction preoperatively with con- ventional surgical techniques. Based on the planning at #&RTKPVGFOQFGNQHCOKVTCNXCNXG /K/GF the model, a surgical template to assist the heart surgeon YKVJVJGTGCNK\CVKQPQHVJGRNCPPKPIFWTKPIVJGQRGTCVKQPKU designed.

193 Micro Technology and Medical Device Technology

Automated Design Process of Manipulators for Minimally Invasive Surgery

Since minimally invasive surgery is distinguished by signif- KECPVDGPGƄVUHQTVJGRCVKGPVVQFC[oUTGUGCTEJHQEWUGUQP the development of novel instruments for this advancing ƄGNF6JGFGXGNQRGF5KPING2QTV1XGTVWDG/CPKRWNCVQT (SPOT) is designed as an overtube structure for standard GPFQUEQRGUCPFRQUUGUUGUYQTMKPIEJCPPGNUVJCVƄVHQT standard endoscopic instruments. Thereby, the system can be adapted to the equipment the surgeon is used to. For the actuation a novel electrical control unit can be used beside the established mechanical control unit. The shape of the manipulator (i.e. workspace of the manipula- VQTCTOU ECPGCUKN[DGCFCRVGFVQVJGRCVKGPVoUCPCVQO[ by using the automated design process in combination with 3D printing as the manufacturing method. Further- more, the design process now allows for the adaption of the system to different surgical tasks. Thereby, current research focuses on the investigation on thin-walled structures fabricated using additive manufacturing and their clinical evaluation. 2CVKGPVKPFKXKFWCN5216OCPKRWNCVQT /K/GF

Kinematic Design and Rapid Prototyping

This project focuses on supporting the design of kine- more, this project investigates the similitude of original matic linkages. Therefore software tools are developed to mechanisms and model mechanisms manufactured support, accelerate and reduce the costs of the design with rapid prototyping techniques. This work is done in processes. These are based on state-of-the-art methods collaboration with BMW AG and Webasto Edscha Cabrio of kinematic design as well as those being subject of GmbH and is funded by the Bayerische Forschungs- research and are integrated into CAD software. Further- stiftung (BFS).

%#&KPVGITCVGFMKPGOCVKE FGUKIP /K/GF

194 Micro Technology and Medical Device Technology

Technical Staff 2WDNKECVKQPU )GTJCTF4KDPKV\M[(QTGOCP ■ Brecht, S.; Hein, C.; Krieger, Y.; Lüth, Markus Wörl, Assistant T. C. (2017): Patientenindividuelle Dominik Karges, Apprentice /GFK\KPRTQFWMVGCWUFGO&&TWEMGT Michael Stanglmeir, Apprentice /GFK\KPVGEJPKMKP$C[GTP Thomas Weiß-Vogtmann, Apprentice RR| Lukas Staudigl, Apprentice ■ Krieger Y. S., Kuball C.-M., Rum- UEJQGVVGN&&KGV\%2HGKHHGT,* Prof. Dr. Research Focus Roppenecker D.; Lueth T. C. (2017): Tim C. Lüth ■ Medical navigation and robotics Fatigue Strength of Laser Sintered ■ 3D printing of robots and instruments Flexure Hinge Structures for Soft Contact ■ Additive production technology Robotic Applications. IROS 2017 IEEE/ www.mimed.mw.tum.de ■ Micro-technological production RSJ International Conference on Intelli- [email protected] ■ Synthesis of kinematics gent Robots and Systems, Vancouver, Phone +49.89.289.15190 ■ Assistance systems for the aging Canada, 24.-28.09.2017, pp. 1-6 society ■ Krieger, Y. S.; Roppenecker, D. B.; Management Kuru, I.; Lüth, T. C. (2017): Multi-Arm Prof. Dr. rer. nat. Dipl.-Ing. Tim C. Lüth, Competence Snake-Like Robot. ICRA 2017 IEEE Director ■ Automatic CAD construction/matlab International Conference on Robotics &T+PI(TCP\+TNKPIGT#ECFGOKE&KTGEVQT ■ Synthesis of joint mechanisms and Automation, Singapore, 20.05.- Renate Heuser, Secretary ■ 3D measurement technology 03.06.2017, pp. 1-6 Anke Harisch, Secretary (optical, EM) ■ Laudahn, S.; Irlinger, F.; Abdul-Sater, ■ Robotics -  #ƅGZKDNGFKUETGVGDWKNFKPI Adjunct Professors ■ Mechatronic control block synthesis approach as basis for 2TQH&T9CNVGT-WEJCTE\[M+#5(KUEJGT ■ Quality management (ISO 9001/13485) the design of planar linkages. ASME Senior Fellow (Univ. Toronto) ■ Droplet generation 2017 International Design Engineering Prof. Dr. Gero Strauß, Medical Technical Conferences, Cleveland, %QQTFKPCVQT 7PKX.GKR\KI Infrastructure Ohio, USA, 06.-09.08.2017, pp. 1-10 Prof. Dr.-Ing. Jörg Vollrath, Electronics, ■ Precision mechanics workshop ■ Rumschoettel, D.; Griebel, B.; Irlinger, Olching, Kempten (ISO13485) F.; Lueth, T. C. (2017): A fast pneumatic ■ Micro-technology laser treatment droplet generator for the ejection of Research Scientists ■ Additive manufacturing systems OQNVGPCNWOKPWO2CP2CEKƄE Dr.-Ing. Kassim Abdul-Sater (3D printing, FDM, SLS, freeformer) Microelectronics Symposium, Kauai, Dipl.-Ing. Sandra Brecht ■ %GTVKƄGF14 Hawaii, USA, 06.-09.02.2017, pp. 1-8 Suat Cömert, M.Sc. ■ Electronics workshop 5COWGN&GV\GN/5E %JTKUVKCP&KGV\/5E Courses Dipl.-Math. Max Dingler ■ Microsystem Technology Tatiana Eliseeva, M.Sc. ■ Medical Device Technology Christina Hein, M.Sc. ■ Automation in Medicine Dipl.-Ing. Eva Graf ■ Admission of Medical Devices (TCP\KUMC-NGKP/5E ■ Kinematics Yannick Krieger, M.Sc. Michael Kruttschnitt, M.Sc. Dipl.-Ing. Ismail Kuru Simon Laudahn, M.Sc. Dipl.-Ing. Tobias Lüddemann Alexandra Mercader, M.Sc. Dipl.-Ing. Jonas Pfeiffer Jelena Prša, M.Sc. (Hons) Samuel Reimer, M.Eng. Dipl.-Ing. Dominik Rumschöttel Felix Schoppa, M.Sc. Andreas Schröffer, M.Sc.

195 Medical Materials and Medical Implant Design

Polymer engineering, additive manufacturing, cell-based medical engineering, IoT and materials

■6JG%JCKTQH/GFKECN/CVGTKCNUCPF/GFKECN+ORNCPV&GUKIPKUUKIPKƄECPVN[KPXQNXGFKP VJG/CUVGToURTQITCO/GFKECN6GEJPQNQI[CPF'PIKPGGTKPI+PTGUGCTEJCPFVGCEJKPIVJG VGCOFGCNUYKVJRTQFWEVKQPVGEJPQNQIKGUCPFOCVGTKCNUHQTOGFKECNVGEJPQNQI[YKVJC RCTVKEWNCTHQEWUQPRNCUVKEUVGEJPQNQI[

The year 2017 was marked in research and teaching OCKPN[D[CPKPVGPUKƄECVKQPQHRQN[OGTKECFFKVKXGOCPW HCEVWTKPI&TKXGPD[VJGCRRTQXCNQHCP':+566TCPUHGT QH4GUGCTEJITCPV&RTKPVGTUHQTFGOCPFKPIOGFKECN OCVGTKCNU 2''-62'UKNKEQPG EQWNFDGFGXGNQRGF+P CFFKVKQPVJGEJCKTJCUVCMGPQXGTCEQQTFKPCVKPITQNG KPVJG%QOOWPKV[QH2TCEVKEGn+Q6/CVGTKCNUoQHVJG

Individualized Medical Technology – Palate Plates for the Treatment of Cleft Lip and Palate

%NGHVNKRCPFRCNCVGTGRTGUGPVUYKVJCPKPEKFGPEGQH |KPPGYDQTPUVJGOQUVEQOOQPETCPKQHCEKCNDKTVJ KORCKTOGPV9KVJQWVVTGCVOGPVVJGOCNHQTOCVKQPYQWNF JCTODTGCUVHGGFKPIJKPFGTXQKEGCPFCWFKVQT[FGXGNQR $CD[UWHHGTKPIHTQOENGHVNKRCPFRCNCVGVTGCVGFYKVJCPKPVTCQTCNIWKFKPIRNCVG OGPVCPFVJGXKUWCNCRRGCTCPEGYQWNFTGOCKPFKUVQTVGF #UCRTGUWTIKECNVTGCVOGPVPCUQCNXGQNCTOQNFKPI 0#/  VQFGUKIPVJG0#/RNCVGUYKVJKPOKPWVGUKPCHWNN[ CFFTGUUGUTGFWEVKQPQHVJGENGHVICRCPFKORTQXGOGPVQH CWVQOCVGFRTQEGUUDCUGFQPLWUVCUKPINGKORTGUUKQP PCUCNU[OOGVT[D[WUGQHCPKPVTCQTCNIWKFKPIRNCVGYJKEJ VCMGPKPKVKCNN[6JGRNCVGUCTGOCPWHCEVWTGFCFFKVKXGN[ GPEQWTCIGUVJGCNXGQNCTUGIOGPVUVQITQYVQYCTFUGCEJ 5QHCTCNTGCF[UKZRCVKGPVUJCXGDGGPVTGCVGFYKVJUWEJ QVJGT+PVJGRTQLGEV4CRKF0#/CU[UVGOYCUFGXGNQRGF CWVQOCVKECNN[IGPGTCVGF0#/RNCVGUGVU

Process chain for automated generation of intraoral guiding plates

196 Medical Materials and Medical Implant Design

Polymer Technology – Novel Plastics with Germicidal Effect

)GTOUCTGHQWPFKPCNNCTGCUQHGXGT[FC[NKHGCPFECPNGCF VQFCPIGTQWUKPHGEVKQPU6QTGFWEGVJGTKUMQHKPHGEVKQPKP UCPKVCT[HCEKNKVKGUCPFJQURKVCNUUWTHCEGUYKVJCPVKOKETQDKCN RTQRGTVKGUECPDGWUGF6JGCKOQHVJGRTQLGEV#PVK/KM KUVQQDVCKPRQN[OGTEQORQWPFUYKVJCPVKOKETQDKCN RTQRGTVKGUHQTVJGRTGXGPVKXGTGFWEVKQPQHOKETQQTICPKUOU KPVJGJGCNVJECTGUGEVQT0CPQUECNGRJQVQECVCN[VKECNN[

CEVKXGVKVCPKWOFKQZKFG 6K12 KUKPEQTRQTCVGFKPVQFKHHGTGPV

RQN[OGTOCVTKZU[UVGOU6JG6K12KPFWEGUTCFKECNUQPVJG UWTHCEGVJCVJCXGVJGRQVGPVKCNVQMKNNIGTOU6JGQDLGEVKXG QHVJKURTQLGEVKUVQKFGPVKH[CPFRTQEGUUOCVTKZƄNNGTEQO DKPCVKQPUYKVJCJKIJIGTOTGFWEVKQPTCVGCPFTGUKUVCPEG CICKPUVOCVGTKCNCIGKPI

#ICTRNCVGYKVJITQYPDCEVGTKCEQNQPKGUVQCUUGUUCPVKOKETQDKCNRQN[OGT compounds

Medtech in Least Developed Countries – Robust 3D Printed Prostheses for the Poorest

#RRTQZKOCVGN[DKNNKQPRGQRNGNKXGKPUQECNNGFNGCUVFGXGN QRGFEQWPVTKGU .&% &TKXGPD[VJGKPKVKCVKXGQHVJGUVWFGPVU VJGRTQLGEVn/GF6GEJHQT.&%oETGCVGUCMPQYNGFIGCPF EQQRGTCVKQPDCUKUHQTVJGFGXGNQROGPVQHOGFKECNFGXKEGU VJCVECPDGOCPWHCEVWTGFCPFOCTMGVGFWPFGTVJGEQPFK VKQPUKP.&%U+PCƄTUVCRRTQCEJCEQQRGTCVKQPYCU GUVCDNKUJGFYKVJ#FFKU#DCDC7PKXGTUKV[CPFVJG 0)1%JGUJKTG5GTXKEGU'VJKQRKCYJKEJRTQXKFGVJG EJKNFTGPQHVJGRQQTGUVYKVJUKORNGRTQUVJGUGU

5VWFGPV(CDKCP,QFGKVYKVJJKU'VJKQRKCPEQQRGTCVKQPRCTVPGTU 4QDWUV&RTKPVGFRTQUVJGUKUHQTWUGKPNGCUVFGXGNQRGFEQWPVTKGU

197 Medical Materials and Medical Implant Design

Dental Technology – Novel Dental Veneers Made of Thermoplasts

6JGJKIJRTKQTKV[QHHWPEVKQPKPICGUVJGVKECNN[RNGCUKPI VGGVJOQVKXCVGUVJGEQPVKPWQWUQRVKOK\CVKQPQHFGPVCN RTQUVJGUGUCPFVJGOCVGTKCNUWUGFHQTVJGO#UCP CNVGTPCVKXGVQEWTTGPVN[WUGFEGTCOKEUVJGTOQRNCUVUQT EQODKPCVKQPUQHCEGTCOKEHTCOGYQTMCPFCRQN[OGTKE XGPGGTCTGDGKPIWUGFKPETGCUKPIN[+PQTFGTVQGZRNQKVVJG CFXCPVCIGUQHVJGTOQRNCUVUCPFCVVJGUCOGVKOGVQOGGV VJGOGEJCPKECNCPFQRVKECNTGSWKTGOGPVUQHFGPVWTGUVJG 6JGXGT6GEJRTQLGEVKPEQQRGTCVKQPYKVJVJG2QNKMNKPKMHØT

%GTCOKEDTKFIG VQR YKVJVJGTOQRNCUVKEXGPGGT DQVVQO

Smart Technology – Integration of IoT Electronics into Medical Plastic Parts

6JGTGUGCTEJITQWRn+Q62QN[OGTUoU[UVGOCVKECNN[ VJGKTDKQEQORCVKDKNKV[CPFDKQRTQVGEVKXGGHHGEV RTGXGPVKQP KPXGUVKICVGUVJGKPVGTCEVKQPDGVYGGPRNCUVKEUCPFVJGKTRTQ QHVJGTGNGCUGQHVQZKECPFCNNGTIGPKEUWDUVCPEGU  EGUUKPIQPVJGQPGJCPFCPF+Q6GNGEVTQPKEUQPVJGQVJGT 7UGKPVJGOGFKECNGPXKTQPOGPVRNCEGUURGEKCNFGOCPFU QP+Q6CWIOGPVGFRNCUVKERCTVU6JGUGKPENWFGUVTCKPU HTQOUVGTKNK\CVKQPQTFKUKPHGEVKQPRTQEGUUGUCUYGNNCUVJG WUGKPVJGQTICPKUOoUCSWGQWUGPXKTQPOGPVYKVJCTKUMQH UJQTVEKTEWKVCPFEQTTQUKQP4GUGCTEJHQEWUGUQPKPVG ITCVKQPUVTCVGIKGUYKVJEQCVKPIUCPFECUVKPIEQORQWPFU HQTEWUJKQPKPIOGEJCPKECNHQTEGUKPVJGKPLGEVKQPOQNFKPI RTQEGUUUWTHCEGVGEJPQNQIKGUHQTQRVKOK\KPIEQORQUKVG OCVGTKCNUYKVJTGICTFVQEQPHQTOCNKPVGITCVKQPCPFVJG KPXGUVKICVKQPQHVJGKPƅWGPEGQHRNCUVKEUQPGNGEVTQOCI PGVKEYCXGU5WKVCDNGOCVGTKCNUHQTVJGTGCNK\CVKQPQH RNCUVKEGNGEVTQPKEEQORQUKVGUCTGKFGPVKƄGFYKVJTGICTFVQ $KQRTQVGEVKXGEQPHQTOCNRQN[OGTKEGPECRUWNCVKQPQH+Q6GNGEVTQPKEU

Regenerative Medicine – Automated Production of Patient’s Own Therapeutic Blood Products

2NCVGNGVTKEJRNCUOC 242 KUIGPGTCVGFHTQOCRCVKGPVoU QYPDNQQFD[EGPVTKHWICVKQP2NCVGNGVUEQPVCKPITQYVJHCE VQTUYJKEJIWKFGVKUUWGTGIGPGTCVKQPCPFGPJCPEGJGCN KPI6JWU242ECPDGVJGTCRGWVKECNN[CRRNKGFVQYQWPF UKVGUVQUWRRQTVVJGDQF[oUJGCNKPIRTQEGUU*QYGXGTKP EWTTGPVU[UVGOUPWOGTQWUOCPWCNUVGRUKPVJGOCPWHCE VWTKPIRTQEGUUGUNGCFVQTGFWEGFTGRTQFWEKDKNKV[QHVJG SWCNKV[QHVJKURCVKGPVoUQYPVJGTCRGWVKECIGPV6JGTGHQTG CEGPVTKHWICVKQPU[UVGOGPCDNKPIHWNN[CWVQOCVGFRTQ FWEVKQPQH242JCUDGGPFGXGNQRGFCPFKUPQYDGKPI NCWPEJGFQPVJGOCTMGV1RVKOK\CVKQPCPFGZRCPUKQPQH VJGU[UVGOVQRTQFWEGXCTKQWUDNQQFRTQFWEVUQHHGTKPIC #WVQOCVGFU[UVGOHQTRTQFWEVKQPQHRCVKGPVoUQYPDNQQFRTQFWEVUHQT DTQCFVJGTCRGWVKEƄGNFKUEWTTGPVN[WPFGTKPXGUVKICVKQP therapeutic use

198 Medical Materials and Medical Implant Design

Spin-off KUMOVIS – 3D Printer for Medical Applications

-7/18+52''-RTKPVGTHQT CFFKVKXGOCPWHCEVWTKPIQH OGFKECNFGXKEGU

#FFKVKXGOCPWHCEVWTKPI &RTKPVKPI KUUGGPCUCFKUTWR VKXGVGEJPQNQI[KPRTQFWEVKQP'URGEKCNN[HQTOGFKECNCRRNK ECVKQPUCFFKVKXGOCPWHCEVWTKPIYKNNDGCMG[VGEJPQNQI[ VQRTQFWEGUOCNNUGTKGURTQFWEVUCUYGNNCUKPFKXKFWCNK\GF KORNCPVU5VCTVKPICUCUVWFGPVRTQLGEVKPVJGVGCO #//GFKECNFGXGNQRGFCRTKPVGTHQTVJGRTQEGUUKPIQH GUVCDNKUJGFOGFKECNITCFGRNCUVKEUDCUGFQP((( HWUGF ƄNCOGPVHCDTKECVKQP 6JGVGCOKUPQYHWPFGFD[':+56 6TCPUHGTQH4GUGCTEJCPFTGEGPVN[HQWPFGFVJG-7/18+5 )OD*6JG-7/18+5RTKPVGTGPCDNGUCPGEQPQOKECNN[ HGCUKDNGRTQEGUUKPIQHOGFKECNITCFGJKIJRGTHQTOCPEG RNCUVKEUUWEJCU2''-CPFƅGZKDNGRNCUVKEU GI62'  #FFKVKQPCNN[VJGVGCOKUYQTMKPIQPVJGHCDTKECVKQPQH ƄNCOGPVUVQIWCTCPVGGCEQORNGVGRTQFWEVKQPRTQEGUU EJCKPHWNƄNNKPIOGFKECNUVCPFCTFUNKMGDKQEQORCVKDKNKV[CPF -7/18+5CV(QTOPGZV'WTQRGoUOQUVKORQTVCPVHCKTHQTCFFKVKXG VJGCDUGPEGQHRCTVKENGU manufacturing

Lab 4.0 – Highly Function Integrated Smart Bioreactors

.CDQTCVQT[OGFKEKPGKUQHVGPIKXGPNKVVNGEQPUKFGTCVKQPKP VJGEQPVGZVQHJGCNVJECTGDGECWUGKVNCEMUFKTGEVRCVKGPV EQPVCEV0GXGTVJGNGUUKVKUXGT[UKIPKƄECPVKPVGTOUQH JGCNVJGEQPQOKEU+PCFFKVKQPVQVCUMUKPENCUUKECNFKCI PQUKU GIDNQQFCPFVKUUWGGZCOKPCVKQPU NCDQTCVQT[ OGFKEKPGCNUQRNC[UCOCLQTTQNGKPHWVWTGQTKGPVGFRTQ EGFWTGUUWEJCUUVGOEGNNQTCWVQNQIQWUDNQQFVJGTCR[ 1WVUKFGQHJKIJVGEJDNQQFCPCN[UKUNCDQTCVQTKGUOCP[ CEVKXKVKGUKPDKQOGFKECNNCDUCTGUVKNNRGTHQTOGFD[JCPFCV JKIJEQUVCPFTKUMQHJWOCPGTTQTU GIUCORNGEQPHWUKQP OKUUJCPFNKPI 6JGCKOQHVJGTGUGCTEJCTGCn.CDoKU VJGTGHQTGVJGFGXGNQROGPVQHJKIJN[HWPEVKQPKPVGITCVGF CWVQPQOQWUCPFRTQEGUUOQPKVQTGFU[UVGOUHQTVJG EWNVKXCVKQPQHDKQNQIKECNUCORNGU #FFKVKXGOCPWHCEVWTGFOKPKCVWTK\GFDKQTGCEVQTYKVJKPVGITCVGFYCNNJGCVKPI HQTDKQEQORCVKDKNKV[VGUVU

199 Medical Materials and Medical Implant Design

Research Focus Selected Publications 2017 ■ /GFKECNOCVGTKCNU ■ $CWGT(:5EJÒPDGTIGT/)CV ■ 2QN[OGTVGEJPQNQI[ VKPIGT,'DNGPMCOR/9KPVGT ■ /CEJKPGCPFRTQEGUUVGEJPQNQI[ OCPVGN'4CW#)ØNN(&9QNHH ■ %GNNDCUGFOGFKECNGPIKPGGTKPI -&.QGHHGNDGKP&,4CRKF0#/ ■ +ORNCPVQNQI[ IGPGTCVKXGOCPWHCEVWTKPICRRTQCEJ QHPCUQCNXGQNCTOQNFKPIFGXKEGU Competence HQTRTGUWTIKECNENGHVNKRCPFRCNCVG Prof. Dr. ■ 2QN[OGTRTQEGUUKPI VTGCVOGPV$KQOGFKECN'PIKPGGTKPI Tim C. Lüth ■ #FFKVKXGOCPWHCEVWTKPI $KQOGFK\KPKUEJG6GEJPKM   ■ /CVGTKCNVGUVKPIKPENDKQEQORCVKDKNKV[  ■ $KQTGCEVQTFGUKIPKPI ■ $QFFGP.0KPC.ØOMGOCPP0 ■ $NQQFRTQEGUUKPI -ÒJNGT8'KEJDGTIGT/5VCYCTE\[M $+ORCEVQHVJGJGCVKPISWGPEJKPI Infrastructure RTQEGUUQPVJGOGEJCPKECNQRVKECN ■ 6GEJPKECNNCD %0%OKNNKPIOCEJKPG CPFVJGTOQF[PCOKERTQRGTVKGUQH YCVGTLGVEWVVKPIGVE RQN[GVJGTGVJGTMGVQPG 2''- ƄNOU ■ $KQNCD DKQEQORCVKDKNKV[CPFUVGTKNKV[ &GPVCN/CVGTKCNU   VGUVKPI  Dr. Markus ■ 2QN[OGTNCD KPLGEVKQPOQNFKPI ■ &ØTGIIGT-(TGP\GN5'DNGPMCOR Eblenkamp GZVTWUKQPEQORQWPFKPIVGUVKPI /#WVQNQIQWUƄDTKPINWGCWVQOCVGF ■ &NCD &.2(((OWNVKLGVRTKPVKPI RTQFWEVKQPCPFCFJGUKXGSWCNKV[ Contact ■ 'NGEVTQPKENCD CPGEJQKEEJCODGT %WTTGPV&KTGEVKQPUKP$KQOGFKECN YYYOGFVGEJOYVWOFG OKETQITCRJCPCN[UKUGVE 'PIKPGGTKPI   OCTMWUGDNGPMCOR"VWOFG ■ 'DNGPMCOR/&ØTGIIGT-.GQP 2JQPG  Courses JCTFV5$KQOKOKET[s1PG.C[GTCVC ■ +PVTQFWEVKQPKP/GFKECNCPF2QN[OGT 6KOG*KIJ(WPEVKQP+PVGITCVGF2NCUVKEU Management 6GEJPQNQI[ 5[UVGOUHQTVJG%GNN$CUGF.CDQTCVQT[ 2TQH&T6KO%.ØVJ ■ $KQEQORCVKDNG/CVGTKCNU /GFKEKPG-WPUVUVQHHGKPVGTPCVKQPCN &T/CTMWU'DNGPMCOR ■ 2NCUVKEUCPF2NCUVKE2TQEGUUKPI  ■ 6TGPFUKP/GFKECN'PIKPGGTKPI ■ 9GTPGT8/ØNNGT63K:

Technical Staff /CTMWU#JTGPU$5E 7NK'DPGT /CUVGT )GQTI.GTEJN +NUG5EJWPP (NQTKCP*WDGT 5CJGN;WUQH\CK (CDKCP*ØVVKPIGT

200 Nuclear Engineering

Nuclear engineering and nuclear safety

■ The focus of the Institute of Nuclear Engineering in 2017 was placed on activities for the development of multi-physics nuclear safety methodologies with coupled code systems; the simulation of the behavior of plant components under off-operation conditions; experimental VYQRJCUGƅQYVJGTOCNJ[FTCWNKEUVJGFGXGNQROGPVQHWPEGTVCKPV[OGVJQFQNQIKGUHQTOWNVK physics applications, the simulation of nuclear fuel behavior; the development of advanced molten salt reactor concepts; and the development of a methodology for the characterization of local instability in nuclear reactors. Most of this work has been carried out in collaboration with other German and international research institutes (NBJC (PL), KIT (D), ITU (D), GRS (D)) and university departments (UPV (E), KTH(S), Chalmers (S), etc).

Highlights for 2017 were the participation in the large for nuclear reactor dynamics and the publication of an EU-CORTEX Project awarded this year for the devel- article in the prestigious International Journal of Multi- opment of experimental and analytical methodologies phase Flow.

Nuclear Reactor Safety Analysis of Current and Future Reactor Designs

The safe operation of nuclear reactors requires the couple in real time with state-of-the-art multi-dimensional evaluation of their safety with sophisticated computational VKOGFGRGPFGPVPGWVTQPKEEQFGU 2#4%5 &[PCOKE methods. The most advanced ones are based on multi- feedback can be then calculated and the detailed local physics approaches by coupling computer codes able description obtained of the thermal-hydraulics and in order to simulate the processes driving the response PGWVTQPƅWZFKUVTKDWVKQPKUWUGFHQTHWNNU[UVGOCPCN[UGU of nuclear systems. We make use of the computational YKVJEQFGUUWEJCU64#%'CPF#6*.'6 ƅWKFF[PCOKEU %(& EQFGU#05;5%(:CPF1RGP(1#/ In 2017 the focus was on the development of uncertainty and sensitivity methodologies for coupled multi-physics applications for liquid metal fast reactors in the context of VJG5'5#/'2TQLGEVVJGCRRNKECVKQPCPFGZRCPUKQPQHC novel spectral methodology for local analysis of instabili- ties in reactor cores in the context of the CORTEX Project and the development and application of local methods to FGUETKDGPGWVTQPƅWZQUEKNNCVKQPUKPUKFGHWGNCUUGODNKGU 6JKUNCUVRTQLGEVJCURTQFWEGFCEQWRNGF #05;5%(: 2#4%5 OQFGNNKPIU[UVGOECRCDNGQHECNEWNCVKPIXGT[ detailed neutronic thermal-hydraulic feedback, which can TGRTQFWEGPGWVTQPƅWZQUEKNNCVKQPUECWUGFD[RGTVWTDC- VKQPUKPVJGOQFGTCVQTEQQNCPVƅQYCPFD[VJGOQXGOGPV of the fuel assemblies.

Projects ■ &GXGNQROGPVCPF#UUGUUOGPVQH/GVJQFQNQIKGUHQTVJG #PCN[UKUQH0GWVTQP1UEKNNCVKQPUKP294U(WGN#UUGO- DNKGU $/9K ■ &GXGNQROGPVQHC/GVJQFQNQI[HQT.QECN$945VCDKNKV[ #PCN[UKU 5V/9(- ■ 5'5#/'2TQLGEVQP7PEGTVCKPV[#PCN[UKUCRRNKGFVQ .KSWKF.GCF%QQNGF4GCEVQTU '74#61/ ■ %146':2TQLGEVQP0GWVTQP(NWZ1UEKNNCVKQPU '74- Local power distribution in a fuel assembly (PARCS-ANSYS/CFX coupled #61/ calculations (Z. Du, Ph.D. work)

201 Nuclear Engineering

Experimental Two-Phase Flow Thermal-hydraulics

#VVJG+PUVKVWVGQH0WENGCT'PIKPGGTKPIYGQRGTCVGC VYQRJCUGƅQYGZRGTKOGPVCNNCDQTCVQT[YKVJVJTGG facilities: a scaled hot leg of a PWR reactor with injection QHGOGTIGPE[EQQNCPV %1..+&'4 CNQYRTGUUWTGNQQR with a vertical test section to study bubble condensation 5%7$# CPFCUECNGFXGTUKQPQHCUCHGV[EQQNCPVVCPM in which steam condensation can be studied. The three facilities are instrumented with high speed cameras, and continuous and pulsed lasers with particle velocimetry VGEJPKSWGU+PCURGEKCNUGEVKQPKP%1..+&'4JCU %QWPVGTEWTTGPVƅQYUVWF[KPVJG%1..+&'4GZRGTKOGPVCNHCEKNKV[ been designed and installed that contains a hoop in (by Dr. S. Al Issa) the safety injection, similar to advanced PWR designs. Experiments will be carried out in order to determine the Projects effect of such a device in the hold-up of coolant in the ■ 5%7$#'ZRGTKOGPVCNKPXGUVKICVKQPQHVJGEQPFGPUCVKQP NGIFWTKPI.1%#OKVKICVKQPQRGTCVKQPU5WEJCHCEKNKV[KU phenomena in large steam bubbles at atmospheric unique in the world. RTGUUWTG '1P-GTPMTCHV Experiments in the three facilities have provided very ■ %1..+&'4'ZRGTKOGPVCNKPXGUVKICVKQPQHEQWPVGT valuable data for the assessment of system codes and EWTTGPVƅQYKPCUECNGFOQFGNQHVJGJQVNGIQHC %(&ECNEWNCVKQPUCPFJCXGTGUWNVGFKPVJGFGXGNQROGPV -QPXQK294 '1P-GTPMTCHV of new correlations for condensation and counter-current ■ Experimental studies of condensation in the suppres- ƅQYNKOKVCVKQPOQFGNUYKVJGPVTCKPOGPV%QNNCDQTCVKQPYKVJ UKQPRQQNQH$94TGCEVQTU YKVJ72QNKVÅEPKECFG the Universidad Politecnica de Madrid has continued and /CFTKF ' a new program for the simulation of bubble condensation ■ &GXGNQROGPVQHGZRGTKOGPVCNCPFCPCN[VKECNVGEJPKSWGU KPVWTDWNGPVƅQYUJCUUVCTVGFYKVJVJG7PKXGTUKV[,CWOG+ HQTDWDDNGEQPFGPUCVKQP YKVJ7PKXGTUKFCF,CWOG+ KP5RCKP %CUVGNNQP '

Development and Design Optimization of the Dual Fluid Reactor (DFR) Concept

6JGFWCNƅWKFTGCEVQT &(4 KUCPGYEQPEGRVQHPWENGCT made use of coupled analysis computer programs and TGCEVQTEQPEGKXGFCVVJG+PUVKVWVGQH5QNKF/CVVGTCPF OQFGNUDCUGFQPVJGEQFGU#6*.'664#%'2#4%5CPF 0WENGCT2J[UKEU +(- KP$GTNKP+VEQPUKUVUQHCOQNVGPUCNV 5'42'06#05;5%(:CPF%1/51.6JGUGOQFGNU core and second molten metal as coolant. have proven their usefulness in design 5WEJCEQPƄIWTCVKQPRTQXKFGUVJG&(4 QRVKOK\CVKQPCPFUCHGV[UVWFKGUCPFYKNNDG with many advantages compared to other the basis for further design efforts planned current and advanced reactor concepts. for 2018 in collaboration with the Center 6JG&(4ECPFGUVTQ[VJGNQPINKXGF HQT0WENGCT4GUGCTEJ 0%$, KP2QNCPFCPF radioactive isotopes in spent nuclear fuel, VJG67&TGUFGP thus removing the need to supervise nuclear +PEQNNCDQTCVKQPYKVJVJG+(-CRTQLGEV waste for very long periods of time. The has been carried out aimed at studying TGCEVQTKUCNUQGZVTGOGN[GHƄEKGPVKPVJG the chemical processing needed for the use of the available nuclear fuel resources, QPNKPGGNKOKPCVKQPQHVJGƄUUKQPRTQFWEVU because it can breed new fuel as it operates HTQOVJG&(4 and it can use thorium and uranium as fuel. In 2017 we have continued our research Projects VQIGVJGTYKVJVJG+(-KPQTFGTVQCPCN[\G ■ &GXGNQROGPVQHCEQWRNGFPGWVTQPKECPF the neutronic characteristics of the design VJGTOCNJ[FTCWNKEOQFGNUHQTVJGFWCNƅWKF TGCEVQTEQPEGRV OQNVGPUCNVEQQNCPV  '1P and to determine its safety under a series of -GTPMTCHV operating strategies. The ultimate goal is to Radial and axial energy deposition ■ 0W&GUV2TQLGEV&GXGNQROGPVQHEJGOKECN in the DFR molten salt reactor EQPXGTIGKPCPQRVKOK\GFCPFUCHGFGUKIP VGEJPKSWGUHQTVJGR[TQRTQEGUUKPIQHƄUUKQP (MCNP Calculation). that can be eventually built. The work has (Dr. X. Wang, Ph.D. work) RTQFWEVUCPFOKPQTCEVKPKFGU $/9K

202 Nuclear Engineering

Material and Mechanical Fuel Behavior Analysis

The safe and economic operation of nuclear reactors depends to a large extent on the behavior of the nuclear fuel. We carry out research in this topic through a series of projects on model development and the simulations of fuel rod and fuel assembly behavior for a large range of operating and transient conditions. The use of thorium fuel-cycle in future reactors is becoming a hot topic around the world because of its better performance in terms of nuclear waste compared to the current ura- PKWOE[ENG&WTKPICRTQLGEVYCUEQORNGVGFVJCV GZRCPFGFVJGECRCDKNKVKGUQHVJGHWGNCPCN[UKUEQFG64#0- 574#075KPEQNNCDQTCVKQPYKVJVJG+PUVKVWVGHQT6TCP- (WGNCUUGODN[DQYKPICPFHQTEGUECWUGFD[ƅWKFUVTWEVWTGKPVGTCEVKQPUKP UWTCPKE'NGOGPVU +67 KP-CTNUTWJGVQVJGUKOWNCVKQPQH the core of a PWR (A. Wanninger, Ph.D. Work)

VJQTKWODCUGFHWGNU 6J2W 12CPF 6J7 12 D[KPENWFKPI OQFGNUHQTƄUUKQPICUTGNGCUGVJGTOCNRTQRGTVKGUDWTPWR PGYHWGNOCVGTKCNUKP.94UJCURTQFWEGFXGT[KPVGTGUVKPI and fracture dynamics models with very good results. insights into their properties and open the possibility of #PQVJGTQPIQKPIRTQLGEVNQQMUKPVQVJGNQPIVGTOETGGR using them in the future. FGHQTOCVKQPQH294 RTGUUWTK\GFYCVGTTGCEVQT HWGN CUUGODNKGU (# CNUQMPQYPCU(#DQY#UQRJKUVKECVGF Projects OGEJCPKECNOQFGNJCUDGGPFGXGNQRGFYKVJ#05;5 ■ &GXGNQROGPVQHOQFGNUHQTVJGRTGFKEVKQPQHVJQTKWO VJCVCNUQEQPVCKPUHWGNUVTWEVWTGKPVGTCEVKQPU5WEJC DCUGFHWGN '1P-GTPMTCHV development makes it possible to carry out studies of ■ Experimental and analytical analysis of the performance fuel assembly displacements and full core mechanical QHPWENGCTHWGNWPFGT.1%#EQPFKVKQPU '1P-GTPMTCHV QUEKNNCVKQPU(KPCNN[CEQNNCDQTCVKQPYKVJVJG%'#CPF ■ Mechanical analysis of bowing in PWR fuel assemblies '1P-GTPMTCHV VQFC[2TGWUUGT'NGMVTC QPVJGDGJCXKQTQH '1P-GTPMTCHV

203 Nuclear Engineering

Research Focus Selected Publications 2017 ■ Thermal-hydraulic and neutronic ■ #N+UUC5CPF/CEK½P,WCP4+OCIG analysis of current and advanced processing of time-averaged interface nuclear systems FKUVTKDWVKQPUTGRTGUGPVKPI%%(. ■ Reactor dynamics characteristics in a large scale model of ■ 0WENGCTHWGNDGJCXKQT C294JQVNGIRKRGIGQOGVT[#PPCNU ■ 'ZRGTKOGPVCNVYQRJCUGƅQY QH0WENGCT'PGTI[  Prof. Dr. ■ Radiation transport and radiation ■ #N+UUC5/CEKCP,WCP4%(& Rafael protection XCNKFCVKQPQHPGY0W4GEQTTGNCVKQPU Macián-Juan ■ Medical applications of radiation for the condensation of large steam ■ The development and application of DWDDNGUFKTGEVN[KPLGEVGFKPVQCƅQYKP Contact uncertainty analysis methodologies a vertical pipe and effects of bubbles www.ntech.mw.tum.de forces upon momentum transfer, [email protected] Competence International Journal of Multiphase Phone +49.89.289.15621 ■ 5CHGV[CPCN[UKUHQTPWENGCTU[UVGOUCPF (NQY  fuel behavior ■ 9CPI:CPF/CEK½P,WCP4 Management: ■ 6YQRJCUGƅQYGZRGTKOGPVCN Comparative study of basic reactor 2TQH&T4CHCGN/CEK½P,WCP&KTGEVQT measurements RJ[UKEUQHVJG&(4EQPEGRVWUKPI ■ Monte Carlo-based radiation transport U-PU and TRU fuel salts, 25th Adjunct Professor and radiation dosimetry calculations +PVGTPCVKQPCN%QPHGTGPEGQP0WENGCT 2TQH&T#PVQPKPQ%CTFGNNC ■ 5KPINGCPFVYQRJCUGƅQY 'PIKPGGTKPI2TQEGGFKPIU+%10' EQORWVCVKQPCNƅWKFF[PCOKEU 8QN5JCPIJCK%JKPC,WN[ Administrative Staff ■ 0WENGCTTGCEVQTF[PCOKEU VJTQWIJ,WN[%QFG  &KRN+PI (* /CTIKVVC(TCPMG ■ Molten salt reactor technology ■ &W<5GKFN/CPF/CEKCP,WCP|4 Petra Popp-Münich &GXGNQROGPVQHCOWNVKRJ[UKEU Infrastructure CRRTQCEJYKVJ#05;5%(:CPF2#4%5 Research Scientists ■ 6JGTOCNJ[FTCWNKEVYQRJCUGƅQY for local analysis of neutron oscillation, &T+PI5WNGKOCP#N+UUC laboratory 25th International Conference on &TTGTPCV)ÒV\4WRTGEJV ■ Computer laboratory with state-of-the- 0WENGCT'PIKPGGTKPI2TQEGGFKPIU 2TQH&T-QPTCF%\GTUMK art nuclear safety codes +%10'8QN5JCPIJCK%JKPC,WN[ &CPKGN9GK»DCEJ/5E VJTQWIJ,WN[%QFG /5E+PI&W

204 Vibroacoustics of Vehicles and Machines

Vibroacoustics, acoustics of vehicles, experimental acoustics, computational acoustics (FEM/BEM), structural F[PCOKEUCPFUVTWEVWTGDQTPGUQWPFWPEGTVCKPV[SWCPVKƄECVKQPFCOCIGFGVGEVKQPCEQWUVKERQTQWUOCVGTKCNU

■ In 2017, the Chair of Vibroacoustics of Vehicles and Machines put emphasis on multidisciplinary research and development and establishing the new test facilities. Research funds have been successfully launched to continue fundamental and applied research at the Chair. The purchase and establishment process of experimental test facilities started in 2016 have been completed.

Research Projects

+PPQXCVKXGCPFOQTGGHƄEKGPVUVTCVGI[QP OQFGNKPIXKDTQCEQWUVKEU[UVGOU $(5 This project concentrates on the modeling process of vibroacoustic problems. The case study is the engine-transmission unit in a vehicle, with a special focus on bolted assemblies. An assembly is the combination of monolithic components joined together. The joint area is a vulnerable point in &ƄPKVGGNGOGPVOQFGNQHCPGPIKPGVTCPUOKUUKQPCUUGODN[ structural dynamics and has to be carefully investigated. of utilizing CAE methods, the manufacturer can increase the technological performance level. Virtual simulations together with experimental tests provide useful informa- tion about possible sources of excessive vibration and sound emission to keep them at a minimum level. In this way, an optimized stage podium with improved stage elevator performance is developed. Further, the project provides realistic minimum noise level criteria to support requirements of tender documents.

First vibration mode shape

Development of the sound-optimized Pianissimo UVCIGU <+/5$5 (*

205 Vibroacoustics of Vehicles and Machines

&GEQWRNKPI%QWRNGF5VTWEVWTCN#EQWUVKE5[UVGOU +PXGUVKICVKQPQH5VTWEVWTCN#EQWUVKE&CORKPI Mechanisms (DFG) In the framework of a project within the DFG priority program 1897 ‘Calm, Smooth and Smart’, dissipation of kinetic energy of vibrating structures into the acoustic far ƄGNFKUUVWFKGF+VECPDGWPFGTUVQQFCUTCFKCVKQPFCORKPI and is particularly relevant for weakly damped structures, such as sandwich panels and musical instruments. The mathematical access to radiation damping involves the coupled equations of time-harmonic elastodynamics and acoustics, which are addressed respectively by means of ƄPKVGCPFDQWPFCT[GNGOGPVOGVJQFUCPFUQNXGFOQPQ lithically. The main work packages include systematic #EQWUVKEOQFGKPCPWPDQWPFGFEQORWVCVKQPCNCKTƄNNGFFQOCKPCTQWPFC investigation of radiation damping and the derivation of car model PWOGTKECNHQTOWNCVKQPYJKEJGPCDNGCPGHƄEKGPVEQPUKFGT- ation of the phenomenon in decoupled structural simula- orthogonal eigenvectors or modes, whose superimposi- tions. Overall, the project aims for a better understanding tion again results in the real vibration behavior. In order to of the effect of acoustic radiation damping and to estimate be able to reduce the computational effort, those modes its relevance in future research. CTGVQDGKFGPVKƄGFD[OGCPUQHOCVJGOCVKECNETKVGTKC YJKEJCNTGCF[RTQXKFGCUWHƄEKGPVN[CEEWTCVGTGUWNVHQT /QFCNSWCPVKVKGUCPFVJGKTWUCIGHQTGXCNWCVKQP the sound pressure or the radiated sound power when QHTCFKCVGFUQWPFRQYGT &() superimposed, so that the complete basis of modes need In order to describe acoustic sources, the sound power not be considered and calculated. is often used as a variable, since it is independent of the position of the viewer. The sound power can only be ade- 5QWPFGOKUUKQPQHOWNVKNC[GTEQORQUKVGUYKVJPQP quately determined if the sound source is examined under NKPGCTCPFNQECNN[XCT[KPIFCORKPIRTQRGTVKGU &() HTGGƄGNFEQPFKVKQPUKGVJGUQWTEGKUKPCTGƅGEVKQPHTGG The project goal is focused on the simulation of sound GPXKTQPOGPVUQVJGKPƅWGPEGQHVJGUWTTQWPFKPITQQO radiation caused by the vibroacoustic behavior of thin- FQGUPQVKPƅWGPEGVJGTGUWNVU+HQPGYCPVUVQRTQFWEG walled structures. Lightweight structures of multi-layer this condition in a computer-aided simulation, then special ƄDGTTGKPHQTEGFEQORQUKVGUCPFJ[DTKFOGVCNRNCUVKE OGVJQFUCTGTGSWKTGFUWEJCUVJGUQECNNGFKPƄPKVG composites offer high damping capabilities and a high element method (IFEM), which can map the properties of stiffness-weight ratio. The mechanical properties of CPKPƄPKVGN[NCTIGUWTTQWPFKPICTGCYKVJCƄPKVGPWODGTQH UWEJEQORQPGPVUCTGKPƅWGPEGFD[KPVGTHCEGUCPFNQECN discrete degrees of freedom and for a physically correct inhomogeneities resulting in uncertainties and non-linear- decay of the sound pressure with increasing distance. ities of the characterizing parameters. The investigations Subject of the research of this project is the decomposi- are focused on the simulation of amplitude depending tion of the vibrations in the acoustic exterior domain into FCORKPID[ƄPKVGGNGOGPVRTQEGFWTGU

206 Vibroacoustics of Vehicles and Machines

Experimental Test Facility

In 2017, the Chair of Vibroacoustics of Vehicles and ■ Sound source localization with the help of an acoustic /CEJKPGURWTEJCUGFVYQOCLQTUEKGPVKƄEOGCUWTGOGPV camera and/or a sound intensity probe systems, namely a PSV500 3D-scanning-laser-Doppler ■ .QPIVKOGƄGNFOGCUWTGOGPVUQHXCTKQWURJ[UKECN vibrometer (LDV) from Polytec and a 56-multi-channal quantities such as sound pressure level (SPL), sound acquisition system from Brüel & Kjaer. The following intensity, structural velocity and acceleration, rotational measurements and analysis methods can be conducted speed, dynamic forces using both systems: ■ Bi-naural sound measurements for psycho acoustic ■ Contact-free excitation and three dimensional meas- analysis urements of structural dynamics of large structures at ■ Measurement of room acoustic parameters such as XKTVWCNN[CPKPƄPKVGPWODGTQHOGCUWTGOGPVRQKPVU SPL, reverberation time, speech intelligibility ■ Operational and experimental modal analysis (excita- ■ Sound wave visualization through refractor vibrometry tion force of modal shaker between 1N and 600N) ■ /GCUWTGOGPVCPFXKUWCNK\CVKQPQHQRGTCVKQPCNFGƅGEVKQP Furthermore, the chair received two new laboratory shapes (ODS) rooms both of which will be equipped with large vibration ■ Measurement of high frequency Lamb wave propaga- KUQNCVGFVCDNGUHQTOGCUWTGOGPVUYKVJJKIJUEKGPVKƄE tion up to 10Mhz precision and quality.

+PVGTCEVKXG#EQWUVKE#RRUKP4GUGCTEJCPF6GCEJKPI

In lectures or exercises physical problems can be clearly demonstrated with experiments. Depending on the exper- iment, special laboratory conditions may be necessary or the set up and tidying requires a considerable amount of time. Using modern simulation tools, however, numerous phenomena of acoustics and vibration theory can be demonstrated clearly and with little effort. In the form of interactive apps in the web browser, the chair develops a range of freely-accessible applications for teaching in school and further education, which can help visualize acoustic phenomena without further ado in the lecture or subsequently on the computer or on the touch screen of a tablet computer or smartphone for understanding and trial. Among the applications already developed are Using an application for vibrations of bells on a tablet computer in a bell apps for the acoustics of musical instruments, vehicles in tower during a student tutorial the wind channel, vibrations of bells and glasses and the effect of acoustical grating).

*WODQNFV(GNNQY

Due to the long-term collaboration with Associate Profes- October to end of February 2018 at the Chair. In addition sor Vasant Matsagar from the Indian Institute of Technol- to his professional background in structural dynamics, he ogy in Delhi, his Humboldt application was accepted as a YKNNHQEWUQPVJGƄGNFQHXKDTCVKQPTGFWEVKQPCPFOQFGNKPI research fellow in the early 2017. He has attended a Ger- uincertainties together during his stay at the Chair. man course in Munich and will be working from the end of

207 Vibroacoustics of Vehicles and Machines

Research Focus 5GNGEVGF2WDNKECVKQPUCPF-G[PQVGU ■ Computational acoustics (FEM, BEM) ■ Chen, L., Marburg, S., Chen, H., Zhang, ■ Virtual prototyping H., Gao, H.: An Adjoint Operator ■ +FGPVKƄECVKQPQHWPEGTVCKPRCTCOGVGTU Approach for Sensitivity Analysis ■ Lightweight material characterization of Radiated Sound Power in Fully ■ Non-destructive testing for damage Coupled Structural-Acoustic Systems detection (2017) Journal of Computational 2TQH&T+PI ■ 5QWPFRTQRCICVKQPKPƅQY Acoustics, 25 (1), art. No. 1750003 5VGHHGP ■ Normal modes in external acoustics ■ Langer, P., Sepahvand, K., Guist, C., /CTDWTI ■ Acoustics in porous media Marburg, S.: Finite element modeling for structural dynamic analysis of bol- %QPVCEV %QORGVGPEG ted joints under uncertainty (2017) Pro- www.vib.mw.tum.de ■ Vibrational and acoustical cedia Engineering, 199, pp. 954-959 [email protected] measurements ■ Lennart M. and Marburg S.: Numerical Phone +49.89.289.55121 ■ Computational acoustics (FEM, BEM) Methods for Vibro-Acoustics and Aero- ■ Modal analysis CEQWUVKEU+PƄPKVG'NGOGPVUCPF6JGKT /CPCIGOGPV ■ Vibroacoustic simulation +PƅWGPEGQP0QTOCNCPF4CFKCVKQP Prof. Dr.-Ing. Steffen Marburg ■ Fluid-structure interaction Modes in Exterior Acoustics. Journal ■ Self-sustained vibrations of Computational Acoustics, Vol. 25, #FOKPKUVTCVKXG5VCHH ■ Structural-acoustic optimization 0Q|   RCIGU Elke Reichardt ■ +FGPVKƄECVKQPQHCFOKVVCPEGDQWPFCT[ ■ Sepahvand, K., Marburg, S.: Spectral conditions UVQEJCUVKEƄPKVGGNGOGPVOGVJQF #MCFGOKUEJGT4CV KPXKDTQCEQWUVKECPCN[UKUQHƄDGT Dr.-Ing. Kheirollah Sepahvand Infrastructure reinforced composites (2017) Procedia ■ 3D laser Doppler scanning vibrometer Engineering, 199, pp. 1134-1139 #ECFGOKE5VCHH (Polytec) ■ 5GRCJXCPF-5VQEJCUVKEƄPKVG Sourav Chandra, M.Eng. ■ Multichannel measurement system element method for random harmonic (Ph.D. student with scholarship) (B&K) analysis of composite plates with Suhaib Koji Baydoun, M.Sc. ■ Acoustic camera (B&K) uncertain modal damping parameters Dr. phil. Monika Gatt-Walter (2017) Journal of Sound and Vibration, Christian Geweth, M.Sc. %QWTUGU 400, pp. 1-12 Christopher Jelich, M.Sc. Various courses, training sessions Patrick Langer, M.Eng. and workshop modules have been Keynotes at International Conferences Lennart Moheit, M.Sc. developed and offered in graduate and ■ Steffen Marburg. Surface Contribution Ferina Saati Khosroshahi, M.Sc. undergraduate levels during the last Analysis Using Non-Negative Intensity, Magdalena Scholz, M.Sc. academic year. the 13th International Conference on Theoretical and Computational 8KUKVKPI5EJQNCTU ■ Introduction to Vibroacoustics Acoustics (ICTCA2017), 30 July to Peter Risby Andersen ■ Computational Acoustics |#WIWUV8KGPPC#WUVTKC Shubham Garg ■ Applied FEM in Vibroacoustics ■ Steffen Marburg. Conventional Boun- Nian Yang ■ Stochastic Finite Element Method in dary Element Techniques: Recent Wenchang Zhao Vibroacoustics Develop ments and Opportunities, ■ Modeling in Vibroacoustics INTER-NOISE 2017, the 46th Inter- ■ Sound Radiation national Congress and Exposition ■ Colloquium on Acoustics on Noise Control Engineering, 27-30 ■ Philosophy of Nature and the August 2017, Hong Kong, China Philosophical Basis of Acoustics ■ -JGKTQNNCJ5GRCJXCPF+FGPVKƄECVKQP ■ Vibroacoustics in Industrial Practice of random elastic and damping ■ Introduction to Philosophy for para meters of composite structures, Engineers TF|+PVGTPCVKQPCN%QPHGTGPEG ■ Ethics for Engineers on Mechanics of Composites (MECHCOMP3), 4-7 July 2017, Bologna, Italy

208 Plasma Material Interaction

Properties and optimisation of materials facing high temperature plasmas

■ The highlight for the Plasma Material Interaction Group in 2017 was the manufacture and UWEEGUUHWNVGUVKPIQHCJKIJJGCVƅWZEQORQPGPVYKVJVWPIUVGPƄDTGTGKPHQTEGFEQRRGTVWDG as cooling channel.

Tungsten Fibre-Reinforced Copper Tubes for High Temperature Applications

(KI:6WPIUVGPƄDTGTGKPHQTEGFEQRRGT 9f%W VWDGCUEQQNKPIEJCPPGNQHCJKIJJGCVƅWZ **( EQORQPGPV(TQONGHVVQTKIJV9fRTGHQTO%WKPƄNVTCVGF

9fRTGHQTO9f%WVWDGYKVJUYKTNVCRGKPUGTVEQORNGVGEQORQPGPVYKVJ9OQPQDNQEMCTOQWT

The highlight for the Plasma Material Interaction Group DTCKFKPI6JG[YGTGOCPWHCEVWTGF KPEQNNCDQTCVKQPYKVJ KPYCUVJGOCPWHCEVWTGQHCJKIJJGCVƅWZ **(  +68&GPMGPFQTH KPUWEJCYC[ JKIJDTCKFKPICPINGUGG EQORQPGPVOQEMWRGSWKRRGFYKVJCVWPIUVGPƄDTG (KI|:NGHV VJCVVJGVJGTOQOGEJCPKECNRTQRGTVKGUKPJQQR

TGKPHQTEGFEQRRGT 9f%W VWDGCUEQQNKPIUVTWEVWTGCPFKVU FKTGEVKQPQHVJGVWDGCTGQRVKOKUGF(KPCNN[VJGEQORQUKVG UWEEGUUHWNVGUVKPIKPVJG**(VGUVHCEKNKV[).#&+5 OCVGTKCNKUOCPWHCEVWTGFD[EGPVTKHWICNN[OGNVKPƄNVTCVKPI #OCLQTEJCNNGPIGKPXKGYQHVJGFGUKIPQHCOCIPGVKE %WKPVQVJGƄDTQWU9RTGHQTO5KOWNCVKQPUDCUGFQP EQPƄPGOGPVPWENGCTHWUKQPFGOQPUVTCVKQPRQYGTRNCPV JQOQIGPKUCVKQPQHCTGRTGUGPVCVKXGXQNWOGGNGOGPV &'/1 KUVJGTGNKCDNGGZJCWUVQHRQYGTCPFRCTVKENGU+P 48' CUYGNNCUGZRGTKOGPVUEQPƄTOVJCVVJGOGEJCPKECN UWEJCTGCEVQTJKIJN[NQCFGFRNCUOCHCEKPIEQORQPGPVU RGTHQTOCPEGCV|Œ%KUGPJCPEGFD[OQTGVJCPCHCEVQT 2(%U JCXGVQYKVJUVCPFUGXGTGRCTVKENGCPFJGCVƅWZ QHVYQEQORCTGFVQUVCVGQHVJGCTV%WCNNQ[UCNTGCF[ CUYGNNCUEQPUKFGTCDNGPGWVTQPKTTCFKCVKQP'ZKUVKPI CVCƄDTGXQNWOGHTCEVKQPQH9CTOQWTOQPQDNQEMU

2(%FGUKIPUCTGDCUGFQPOQPQNKVJKEVWPIUVGP 9 CPF YGTGLQKPGFVQVJG9f%WVWDG KPEQNNCDQTCVKQPYKVJ'0'# EQRRGT %W OCVGTKCNU5WEJCPCRRTQCEJJQYGXGT (TCUECVK CPFCVYKUVGFUYKTNVCRGYCUKPUGTVGFKPVQVJG DGCTUGPIKPGGTKPIFKHƄEWNVKGUCU9CPF%WCTGOCVGTKCNU VWDGKPQTFGTVQGPJCPEGVJGJGCVVTCPUHGTVQVJGEQQNCPV YKVJKPJGTGPVN[FKHHGTGPVVJGTOQOGEJCPKECNRTQRGTVKGU 6JGCEVKXGN[YCVGTEQQNGFEQORQPGPV (KI:TKIJV YCU and their preferred operating temperature windows do UWDLGEVGFVQE[ENKEJKIJJGCVƅWZVGUVUKPVJG).#&+5KQP PQVQXGTNCR#ICKPUVVJKUDCEMITQWPF9%WEQORQUKVG DGCOHCEKNKV[UWTXKXKPIRWNUGUCV/9O2 for 10 s materials are promising candidates regarding the appli- VJGVKOGVQTGCEJVJGTOCNGSWKNKDTKWOKUCDQWVU WPFGT ECVKQPVQVJGEQQNKPIUVTWEVWTGQHJKIJN[NQCFGF2(%U6JG &'/1TGNGXCPVEQPFKVKQPU YCVGTKPNGVVGORGTCVWTG|Œ%

9f%WEQORQUKVGJCFDGGPFGXGNQRGFFWTKPIVJGRTGXKQWU RTGUUWTG/2C 9KVJVJGUGXGT[UWEEGUUHWNVGUVUVJG [GCT UGG#PPWCN4GRQTV CUCOCVGTKCNVJCVRTQXKFGU EQORQPGPVSWCNKƄGFHQTVJGPGZVTQWPFQHGZRGTKOGPVU GPJCPEGFJKIJVGORGTCVWTGUVTGPIVJHQTWUGCVGNGXCVGF YJKEJCTGUWRRQTVGFD[VJG'WTQRGCPHWUKQPEQPUQTVKWO VGORGTCVWTGU Œ% %[NKPFTKECN9ƄDTGRTGHQTOU n'741HWUKQPo YGTGDTCKFGFWUKPIƄDTGUYKVJCPQOKPCNFKCOGVGTQH |‘O+PQTFGTVQƄNNVJGYJQNGYKFVJQHVJGVWDGYCNN Project YKVJTGKPHQTEKPI9ƄDTGUOWNVKNC[GTGFRTGHQTOUYKVJ ■ 5WRRQTVGFD['741HWUKQP  |RNKGUYGTGOCPWHCEVWTGFD[OGCPUQHOCPFTGNQXGT-

209 Plasma Material Interaction

Tungsten Heavy Alloys as First Wall Material in Fusion Devices

6WPIUVGP 9 KUEWTTGPVN[VJGOQUVRTQOKUKPIECPFK- The magnetisation of these materials is moderate FCVGCUCTOQWTOCVGTKCNQHVJGƄTUVYCNNKPCHWVWTG `#OŽMI CPFUCVWTCVGUCNTGCF[CVNQYOCIPGVKEƄGNF HWUKQPRQYGTRNCPV5KPEGVJG)CTEJKPIHWUKQP `1G 6JGVJGTOCNEQPFWEVKXKV[CVTQQOVGORGTCVWTG GZRGTKOGPV#5&':7RITCFG #7) QRGTCVGFD[VJG KUCHCEVQTQHVYQUOCNNGTVJCPVJCVQHRWTG9 9 O-  /CZ2NCPEM+PUVKVWVGHQT2NCUOC2J[UKEUJCUDGGPWUKPI DWVKPEQPVTCUVVQ9KVKPETGCUGUYKVJVGORGTCVWTGNGCFKPI DWNMVWPIUVGPVKNGUCVKVUOQUVNQCFGFCTGCVJGFKXGTVQT VQCUKOKNCTVJGTOCNRGTHQTOCPEGCDQXGŒ%*KIJJGCV TGEGKXKPIWRVQ/9OŽQHJGCVNQCF5KPEGVJGDCUG ƅWZVGUVUYKVJRQYGTNQCFUQHWRVQ/9OŽCPFUWT- QRGTCVKPIVGORGTCVWTGQH#7)KUTQQOVGORGTCVWTG HCEGVGORGTCVWTGUQHWRVQŒ%YGTGRGTHQTOGF#U YJGTGDWNMVWPIUVGPDGJCXGUOQUVN[DTKVVNGN[ETCEMUKP GZRGEVGFCUWTHCEGOQFKƄECVKQPYCUQDUGTXGFYJGPVJG OQUVQHVJGVKNGUYGTGQDUGTXGFCHVGTQPN[CHGYJWPFTGF OGNVKPIVGORGTCVWTGQHVJGDKPFGTRJCUGYCUGZEGGFGF RNCUOCFKUEJCTIGU#RQUUKDNGQRVKQPEQWNFDGVJG *QYGXGTVJGHCKNWTGDGJCXKQWTWPFGTQXGTNQCFKUXGT[ WUGQHOQTGFWEVKNG9JGCX[CNNQ[U 9*# CUVJG[CTG DGPKIPUGITGICVKQPQH0K(GKPVJGVQROQUVOKETQOGVTGU RTQFWEGFEQOOGTEKCNN[D[UGXGTCNEQORCPKGU9*#U DWVVJGDWNMUVTWEVWTGYCUPQVCHHGEVGFWPFGTVJGEQPFK- EQPUKUVQHWRVQYGKIJV9CPF0K(GCFOKZVWTGU VKQPUVGUVGFJGTG.QPIVGTOGZRQUWTGQHQPG9*#VKNG +PEQORCTKUQPVQDWNM9VJGUGOCVGTKCNUCTGEQPUKF- KP#7) YKVJVJGUQECNNGFn&KXGTVQT/CPKRWNCVQTosUGG GTCDN[EJGCRGTFWGVQVJGHCEKNKVCVGFUKPVGTKPIRTQEGUU #PPWCN4GRQTV WPFGTVJGJKIJGUVRQUUKDNGRQYGT CPFVJG[UJQYKORTQXGFOCEJKPCDKNKV[CPFFWEVKNKV[CV CPFGPGTI[KPLGEVKQPEQPƄTOGFVJGTCVJGTRQUKVKXGTGUWNVU TQQOVGORGTCVWTG6JGKTOCLQTFTCYDCEMUKPXKGYQH QHVJG).#&+5**(VGUVU+VYCUVJGTGHQTGFGEKFGFVQ VJGCRRNKECVKQPKPHWUKQPGZRGTKOGPVUCTGVJGTCVJGT GSWKRVJGFKXGTVQTYKVJ9*#VKNGURTGHGTGPVKCNN[CV NQYOGNVKPIVGORGTCVWTG `Œ% CPFVJGKTOCIPGVKE NQECVKQPUYJGTGVJGOGEJCPKECNNQCF FWGVQGNGEVTQ RTQRGTVKGU+PQTFGTVQGZRNQTGVJGKTHGCUKDKNKV[9*#U OCIPGVKEHQTEGU KUGZRGEVGFVQDGJKIJGUV(KTUVTGUWNVU HTQOVYQUWRRNKGTU 2NCPUGG%QORQUKVG/CVGTKCNU)OD* TGXGCNGFVJGGZRGEVGFRQUKVKXGRTQRGTVKGU&GRGPFKPIQP & CPF*%5VCTEM*GTOUFQTH)OD* *2/  QPIQKPIKPXGUVKICVKQPQPVJGKTJ[FTQIGPTGVGPVKQPCPFVJGKT YGTGKPXGUVKICVGFEQPEGTPKPIVJGKTVJGTOCNCPFOCIPGVKE DGJCXKQWTWPFGTPGWVTQPKTTCFKCVKQP9*#UEQWNFGXGP RTQRGTVKGUCPFUWDLGEVGFVQUETGGPKPIVGUVUCPFE[ENKE SWCNKH[CUCTOQWTOCVGTKCNKPCHWVWTGHWUKQPTGCEVQTCV NQCFKPIKPVJGJKIJJGCVƅWZVGUVHCEKNKV[).#&+5 NQECVKQPUYKVJKPVGTOGFKCVGJGCVNQCF

(KI:C CPFD 5ECPPKPIGNGEVTQPOKETQITCRJYKVJQTKGPVCVKQPEQPVTCUVQH9JGCX[CNNQ[ *2/0K(G  6JG[GNNQYUSWCTGUOCTMVJGTGIKQPUYKVJJKIJGTOCIPKƄECVKQPE F G '&:OCRUUJQYKPIVJGFKUVTKDWVKQPQH90K CPF(GTGURGEVKXGN[

210 Plasma Material Interaction

Research Focus Selected Publications 2017 ■ &GVCKNGFWPFGTUVCPFKPIQHEQORNGZ ■ 2.CPI4/CKPIK&-/CPUƄGNF KPVGTCEVKQPRTQEGUUGUDGVYGGPRNCUOC 4//E>OQVV40GWGVCNn+ORCEV and material of lithium pellets on the plasma per - ■ &GXGNQROGPVQHPQXGNOCVGTKCNUYKVJ HQTOCPEGKPVJG#5&':7RITCFGCNN KORTQXGFRTQRGTVKGUHQTJKIJJGCVNQCF OGVCNYCNNVQMCOCMo0WEN(WUKQP| applications   ■ Integration of new materials into ■ 40GW,4KGUEJ#XQP/ØNNGT Prof. Dr. plasma-facing components /|$CNFGP,9%QGPGP*)KGVN Rudolf Neu 6*ÒUEJGP/.K59WTUVGT,* Competence ;QWn6WPIUVGP(KDTG4GKPHQTEGF Contact ■ Measurement and modeling of erosion, %QORQUKVGUHQT#FXCPEGF2NCUOC YYYROYOYVWOFG UWTHCEGEQORQUKVKQPCPFJ[FTQIGP (CEKPI%QORQPGPVUo0WENGCT/CVGTKCNU 4WFQNH0GW"KRRORIFG retention of materials CPF'PGTI[   2JQPG  ■ .CDQTCVQT[UECNGRTQFWEVKQPQHVJKP ■ *)KGVN,4KGUEJ,9%QGPGP coatings 6|*QGUEJGP%J.KPUOGKGT40GW Management ■ .CDQTCVQT[UECNGRTQFWEVKQPQH n/CVGTKCNSWCNKƄECVKQPQHVWPIUVGP 2TQH&T4WFQNH0GW VWPIUVGPƄDTGTGKPHQTEGFOCVGTKCNU ƄDTGTGKPHQTEGFVWPIUVGPEQORQUKVG ■ 2GTHQTOCPEGCPFCPCN[UKUQHJKIJ D[OGCPUQHVGPUKQPVGUVUo(WU'PI Research Scientists JGCVƅWZVGUVUQHKPGTVKCNN[CPFCEVKXGN[ &GUKIP   /2+HØT2NCUOCRJ[UKM  cooled materials and components ■ 40GW*/CKGT/$CNFGP5'NIGVK &TTGTPCV/CTVKP$CNFGP ■ 6JGTOQOGEJCPKECNCPCN[UKUQHJKIJ *)KGVN*)TGWPGT#*GTTOCPP &TTGTPCV#NGMUCPFGT&TGPKM JGCVƅWZEQORQPGPVU 6|*ÒUEJGP#*QWDGP84QJFG &KRN2J[U (* 5VGHCP'NIGVK $|5KGINKP+

Courses ■ 2NCUOC2J[UKEUHQT'PIKPGGTU ■ Plasma Material Interaction

Research Group at: /CZ2NCPEM+PUVKVWVHØT2NCUOCRJ[UKM HWPFGFD[/2)*)(CPFUWRRQTVGFD[ '741HWUKQP

211 Thermo-Fluid Dynamics

High performance simulation with added value

■+PYGJCXGOCFGUKIPKƄECPVRTQITGUUKPVJGFGXGNQROGPVQHOQFGNNKPIEQPEGRVUCPFUKO- WNCVKQPUQHVYCTGHQTEQODWUVKQPF[PCOKEUCPFEQODWUVKQPPQKUG(WTVJGTOQTGEQPUGSWGPEGUQH KPVTKPUKEVJGTOQCEQWUVKEHGGFDCEMHQTVJGEQPXGEVKXGUECNKPIQHGKIGPHTGSWGPEKGUYGTGGNWEKFCVGF

Thomas Emmert was awarded the Dissertation Prize of Wolfgang Polifke and Camilo Silva contributed a course the Faculty of Mechanical Engineering for his doctoral YKVJVJGVKVNGn5[UVGOKFGPVKƄMCVKQPDGK7PUKEJGTJGKVGPs0KZ thesis ‘State Space Modeling of Thermoacoustic Systems g’naus woas ma ned’ to the Ferienakademie Sarntal. with Application to Intrinsic Feedback’.

Research Focus

In recent years, the research efforts of the TFD group have pollutants, limited range of operability or severe mechan- HQEWUGFCNOQUVGZENWUKXGN[QPVJGTOQCEQWUVKEEQODWU- ical damage to a combustor. Thermoacoustic instabilities VKQPKPUVCDKNKVKGU6JKUV[RGQHUGNHGZEKVGFKPUVCDKNKV[TGUWNVU have hindered the development of low-emission, reliable HTQOHGGFDCEMDGVYGGPƅWEVWCVKQPUQHJGCVTGNGCUGTCVG CPFƅGZKDNGEQODWUVKQPU[UVGOUHQTRQYGTIGPGTCVKQP and acoustic perturbations of velocity and pressure, and propulsion. Due to their multi-scale and multi-physics and may occur in combustion applications as diverse as nature, the prediction and control of such instabilities is a domestic heaters, gas turbines or rocket engines. Pos- XGT[EJCNNGPIKPIRTQDNGOYKVJOCPKHQNFGZEKVKPITGUGCTEJ sible consequences are increased emissions of noise or opportunities.

Linearized (Reactive) Flow Solvers

Analysis of thermoacoustic combustion instabilities is typically based on linearized perturbation equations for EQORTGUUKDNGTGCEVKXGƅQYYKVJKORQTVCPVGHHGEVUQH EQPXGEVKQPD[OGCPƅQY#FKUEQPVKPWQWU)CNGTMKPƄPKVG element method with superior accuracy and stability for this type of equation has been developed in the TFD group. Combined with the state-space framework of the in-house taX software, this method makes possible the &KUVTKDWVKQPQHJGCVTGNGCUGTCVGƅWEVWCVKQPUQHVJGKPVTKPUKEVJGTOQCEQWUVKE computation of transfer functions and thermoacoustic GKIGPOQFGQHCNCOKPCTƅCOG HTQO#XFQPKPGVCNUWDOKVVGFVQ2TQE %QODWUV+PUV 

GKIGPOQFGUYKVJWPRTGEGFGPVGFURGGFCPFƅGZKDKNKV[ Inclusion of a linearized source term for species pro- FWEVKQPCPFJGCVTGNGCUGCNNQYUVJGGZRNKEKVKPENWUKQP QHƅQYƅCOGCEQWUVKEEQWRNKPIKPVJGEQORWVCVKQPQH thermoacoustic eigenmodes, which has hitherto not been possible. Inertial waves as well as entropy waves can also be described in this framework. First results on the propa- gation speed of inertial waves, the effect of inertial waves QPƅCOGF[PCOKEUCPFVJGUQWTEGVGTOQHGPVTQR[YCXGU have been achieved and published. Such fundamental KPXGUVKICVKQPUQHƅQYƅCOGCEQWUVKEKPVGTCEVKQPURTQXKFG important guidance for the proper formulation of analysis and design tools for thermoacoustic stability.

Project ■ #)6WTDQ%114'(.':(88n8QTJGTUCIGXQP(NCO- mentransferfunktionen’ #ZKCNXGNQEKV[QHVJGWPUVCDNGKPVTKPUKEVJGTOQCEQWUVKEGKIGPOQFGQHCUYKTN DWTPGT HTQO/GKPFNGVCNUWDOKVVGFVQ,%QOR2J[U 

212 Thermo-Fluid Dynamics

7PEGTVCKPV[SWCPVKƄECVKQP

Thermoacoustic instabilities are highly unpredictable, because they respond in a very sensitive manner to slight changes in operating or boundary conditions. As a result instabilities are detected often only at the later stages of FGXGNQROGPVKPHWNNEQODWUVQTVGUVUTGUWNVKPIKPUKIPKƄ- cant overruns of development cost or time. It is essential to deploy robust and reliable simulation methodologies that include strategies to quantify the uncertainty of model predictions and their sensitivity to parameter changes. The TFD group has developed and applied successfully CXCTKGV[QHUVTCVGIKGUHQTWPEGTVCKPV[SWCPVKƄECVKQPKP thermoacoustics, such as non-intrusive polynomial chaos GZRCPUKQPQTCEVKXGUWDURCEG6JGFGXGNQROGPVQH UWTTQICVGOQFGNUD[CPCN[VKECNOGCPUQTD[GZRNQKVKPI adjoint numerical solutions, has played an important role in these efforts.

Project 7PEGTVCKPV[QHITQYVJTCVGUCPFTKUMHCEVQTQHVJGTOQCEQWUVKEKPUVCDKNKV[ ■ %5%5EJQNCTUJKR#)6WTDQ%114'(.': RTGFKEVGFYKVJCFLQKPVDCUGFUWTTQICVGOQFGNUQHKPETGCUKPIQTFGT HTQO 5KNXCGVCN,)62 

Combustion noise

In the past year, the TFD group has developed charac- OQFGNUCUYGNNCUEQPƄFGPEGKPVGTXCNUHTQOVKOGUGTKGU teristic-based, state-space boundary conditions, which FCVCIGPGTCVGFD[JKIJƄFGNKV[UKOWNCVKQPU%QODKPKPI allow to impose non-trivial acoustic impedances at the these techniques with large eddy simulation of turbulent EQORWVCVKQPCNFQOCKPDQWPFCTKGUKPCTQDWUVCPFƅGZKDNG EQODWUVKQPOCMGURQUUKDNGVJGCEEWTCVGCPFGHƄEKGPV manner. Furthermore, advanced techniques for system prediction of combustion noise. Furthermore, eigenmode KFGPVKƄECVKQPYGTGKPVTQFWEGFYJKEJGUVKOCVGPQKUG CPCN[UKUQHVJGURGEVTCNFKUVTKDWVKQPQHRTGUUWTGƅWEVWC- tions elucidates the interplay between combustion noise IGPGTCVKQPƅCOGF[PCOKEUCPFVJGTOQCEQWUVKETGUQ- nances. The results emphasize the necessity of including HWNNVYQYC[EQWRNKPIKPUKOWNCVKQPUQHƅQYƅCOGCEQWU- tic interactions.

Project ■ &()#040QKUG&[P

2QYGTURGEVTCNFKUVTKDWVKQPQHRTGUUWTGƅWEVWCVKQPUIGPGTCVGFD[CP GPENQUGFVWTDWNGPVUYKTNDWTPGT/GCUWTGOGPVU 1 XUOQFGNNKPIYKVJ QPGYC[ — CPFVYQYC[EQWRNKPI — 5JCFKPIKPFKECVGUVJG EQPƄFGPEGKPVGTXCNQHTGUWNVU /GTMGVCNUWDOKVVGFVQ2TQE%QODWUV+PUV

213 Thermo-Fluid Dynamics

Research Focus Selected Publications 2017 ■ Thermo- and aeroacoustics ■ Albayrak, A., Steinbacher, T., Komarek, ■ 6WTDWNGPVTGCEVKPIƅQY T., and Polifke, W., ‘Convective ■ Heat and mass transfer Scaling of Intrinsic Thermo-Acoustic 'KIGPHTGSWGPEKGUQHC2TGOKZGF5YKTN Research Competence %QODWUVQTo,'PI)CU6WTDKPGU ■ Modelling and simulation CPF2QYGTXQN&1+ ■ Stability analysis RR Prof. Wolfgang ■ 5[UVGOKFGPVKƄECVKQP 041510-9 Polifke, Ph.D. ■ Model reduction ■ Avdonin, A., Jaensch, S., Silva, C. ■ 7PEGTVCKPV[SWCPVKƄECVKQP (ëGwPQXCT/CPF2QNKHMG9 Contact ■ #8$21RGP(1#/ n7PEGTVCKPV[SWCPVKƄECVKQPCPF www.tfd.mw.tum.de ■ taX sensitivity analysis of thermoacoustic [email protected] stability with non-intrusive polynomial Phone 0049.89.289.16216 Courses EJCQUGZRCPUKQPo%QODWUVKQPCPF ■ Engineering Thermodynamics (MSE) (NCOGXQN/CT&1+ Administrative Staff ■ Wärmetransportphänomene LEQODWUVƅCOG Helga Bassett ■ Wärme- und Stoffübertragung RRs &KRN+PI (* 5KITKF5EJWN\4GKEJYCNF ■ )TWPFNCIGPFGT/GJTRJCUGPUVTÒOWPI ■ Emmert, T., Bomberg, S., Jaensch, ■ )TWPFNCIGPFGTPWOGTKUEJGP6(& S., and Polifke, W., ‘Acoustic and Research Scientists ■ Computational Thermo-Fluid Dynamics Intrinsic Thermoacoustic Modes of a Alp Albayrak, M.Sc. ■ 5KOWNCVKQPQH6JGTOQƅWKFUYKVJ 2TGOKZGF%QODWUVQTo2TQEGGFKPIU #NGZCPFGT#XFQPKP/5E 1RGP5QWTEG6QQNU QHVJG%QODWUVKQP+PUVKVWVGXQN Kilian Förner, M.Sc. &1+LRTQEK #DFWCNNC)JCPK2J& RR| 5JWCK)WQ/5E ■ 5KNXC%(/CITK.4WPVG6CPF Matthias Härniger, M.Sc. 2QNKHMG9n7PEGTVCKPV[SWCPVKƄECVKQP Alfredo Hernandez, M.Sc. of growth rates of thermoacoustic %JTKUVKCP.CPI/5E instability by an adjoint Helmholtz ,QQJYC5CTCJ.GG/5E UQNXGTo,'PI)CU6WTDKPGU /CZ/GKPFN/5E CPF2QYGTXQN&1+ Malte Merk, M.Sc. R &TKGM4QWYGPJQTUV/5E ■ Silva, C. F., Merk, M., Komarek, T., &KRN+PI(GNKZ5EJKN[ and Polifke, W., ‘The Contribution of Camilo Silva, Ph.D. Intrinsic Thermoacoustic Feedback to Dipl.-Ing. Thomas Steinbacher %QODWUVKQP0QKUGCPF4GUQPCPEGU Simon van Buren, M.Sc. QHC%QPƄPGF6WTDWNGPV2TGOKZGF Dipl.-Ing. Armin Witte Flame’, Combustion and Flame, XQN&1+L EQODWUVƅCOG RR|

214 Safe Embedded Systems

&GXGNQROGPVEQPVTQNXGTKƄECVKQPCPFXCNKFCVKQPQHFGRGPFCDNGE[DGTRJ[UKECNU[UVGOU

■ The activities of the Assistant Professorship of Safe Embedded Systems (SES) focus on the development of formal methods and tools to improve the dependability of cyber-physical systems. These methods are applied throughout the different phases of the development and implementation of a system, from the formalization of its requirement to its long-life support. As part of the Depart- ment of Mechanical Engineering, these activities play an interface role between the formal methods FGXGNQRGFKPVJGEQORWVGTUEKGPEGƄGNFCPFCRRNKECVKQPUKPOGEJCPKECNGPIKPGGTKPI

/QFGN$CUGF6GUVKPIQH'ODGFFGF5[UVGOU

URGEKƄECVKQPOQFGNUVJKUEQWNFNGCFVQVJGKORQUUKDKNKV[QH validating the behavior of a controller by means of testing. In 2017, SES extended its design-to-test approach for dis- crete event systems. This approach aims at improving the testability of controllers and reducing the additional human YQTMNQCFTGSWKTGFVQVGUVETKVKECNNQIKEEQPVTQNNGTUTGNKCDN[ Also, to guide, in the early phase, the effort of testing to the nominal behavior of a cyber-physical system, SES has developed an approach which permits the extraction of simple features from the physical behavior and to com- DKPGVJGOYKVJVJGURGEKƄECVKQPOQFGNU6JKUCRRTQCEJ TGSWKTGUNKOKVGFGZRGTVMPQYNGFIGCDQWVVJGRJ[UKECN behavior but leads to a drastic reduction in the test UGSWGPEGNGPIVJ The current focus in this area is the extension of the existing approaches to timed and hybrid systems. Framework of the testing with plant features approach Projects Validation by testing is a mandatory procedure for safety- ■ Design-to-test and testing with plant features critical controllers. However, the validation of a logic approaches for black-box testing of programmable controller is often only considered in the later phases of controllers (internal) KVUFGXGNQROGPV6JWUKHURGEKƄEPQPHWPEVKQPCNTGSWKTG- ■ 6GUVCPFXGTKƄECVKQPQHOCEJKPGNGCTPKPIDCUGF ments related to testing are not initially considered in the systems (internal)

&[PCOKE5QHVYCTG7RFCVGQH2TQITCOOCDNG%QPVTQNNGTU

Current industrial automation plants are controlled by case completely elimi- programmable logic controllers (PLC), soft-PLCs or indus- nated, thus increasing the trial PCs. Using a software-based PLC or an industrial productivity of the plant. PC enables the implementation of new methods such as In 2017, SES started a dynamic software updating (DSU). new project on the devel- Since the lifetime of a production facility can be very long, opment of methods to for- the need to update the software at some point is inevitable. Illustration of a troublesome required malize and implement IEC restart after a software update It may include the implementation of new features, an 61499 models in Erlang KPETGCUGKPRGTHQTOCPEGQTUKORNGDWIƄZGU&GRGPFKPI Runtime System; thus, supporting an industrial standard on how severe this change is, the update of the facility may KPVJGƄGNFQHRTQFWEVKQPCWVQOCVKQPCPFDGPGƄVKPIHTQO not be feasible due to downtimes caused by the shutdown, VJGGZRGTKGPEGQH&57KPVJGVGNGEQOOWPKECVKQPƄGNF update and restart phases of the plant. By using DSU, OQFKƄECVKQPUQHVJGOQFGNECPUVKNNDGRTGRCTGFQHƅKPG Project and follow the same modelling procedure as before, but ■ Dynamic Software Update of Programmable Logic the downtime can be drastically decreased and in the best Controllers (BMWi ZIM)

215 Safe Embedded Systems

5WRGTXKUQT[%QPVTQN6JGQT[

Didactic platform – supervisory control theory applied to production automation

Supervisory control theory (SCT) is a model-based First, a formal approach using a signal-based formalism approach that permits the automatic generation of was investigated. This aimed at reducing the gap between correct-by-construction supervisory controllers. Thanks the classical event-based approach of SCT and industrial to the SCT approach, which uses mathematically proven CRRNKECVKQPUWUKPIUKIPCNUCPFFCVCƅQYUVQTGRTGUGPVCPF algorithms, generated controllers do not need to be veri- exchange sensor and actuator values. ƄGFCP[OQTG6JGFGUKIPGTUECPVJGPHQEWUOQTGQPVJG Secondly, SES also investigated the integration of SCT TGSWKTGOGPVUFGƄPKVKQPCPFVJGURGEKƄECVKQPOQFGNKPI# methods in a broader systems engineering perspective. UGVQHURGEKƄECVKQPURGTOKVUGCEJTGSWKTGOGPV HWPEVKQPCN The goal is to establish good practice and business CPFPQPHWPEVKQPCNTGSWKTGOGPVUUCHGV[CPFNKXGPGUU rules to simplify the application of SCT in the production TGSWKTGOGPVUQRVKOK\CVKQPETKVGTKCGVE VQDGURGEKƄGF automation industry. independently. Then, synthesis algorithms are applied on VJGUGVQHURGEKƄECVKQPCPFRNCPVOQFGNUVQIGPGTCVGC Projects supervisory controller. The supervisory controller obtained ■ A Signal-Interpreted Approach to Supervisory Control is then guaranteed to be deadlock-free and maximally Theory (internal) RGTOKUUKXG CNNVJGURGEKƄECVKQPUCTGHWNƄNNGFCPFQPN[ ■ Application of Supervisory Control Theory to the VJGUGURGEKƄECVKQPUCTGHWNƄNNGF  Production Automation Industry (internal) In 2017, SES further investigated the obstacles to a wide application of SCT in industry.

4QDWUVFKCIPQUKUHQT#ODKGPV#UUKUVGF.KXKPI

According to the World Health Organization, the world’s intruding into their lives. An important aspect of the population percentage of people aged over 60 is expected reliability of such systems lies in the capability of handling to double in the next decades; it will increase from 12% sensors’ faults. Indeed, a fault in one of the sensors of the in 2015 to 22% in 2050. Ambient assisted living (AAL) AAL could lead to misleading results in activity recogni- integrates sensors in an unobtrusive intelligent way that tion. In emergency situations, this could have dramatic can track the health status of elderly people at home and EQPUGSWGPEGUHQTVJGJGCNVJQHVJGKPJCDKVCPV detect early signs of diseases by monitoring their activities of daily living. Project SES is working on the development of reliable AAL meth- ■ Robust Diagnosis for Ambient Assisted Living (DAAD) ods that are capable of monitoring elderly people without

216 Safe Embedded Systems

4GUGCTEJ(QEWU Selected Publications 2017 ■ (QTOCNOGVJQFUHQTXGTKƄECVKQPCPF ■ Canlong Ma; Julien Provost (2017): validation A model-based testing framework ■ Formalisation and control of discrete with reduced set of test cases for event systems programmable controllers. In: 13th IEEE Conference on Automation %QORGVGPEG Science and Engineering ■ Model-based component and system ■ Laurin Prenzel; Julien Provost (2017): Prof. Dr. testing Dynamic Software Updating of Julien Provost ■ Supervisory control theory IEC 61499 Implementation Using ■ Dynamic software update Erlang Runtime System. In: 20th %QPVCEV World Congress of the International www.ses.mw.tum.de Infrastructure Federation of Automatic Control [email protected] ■ Test bench for (safety) programmable ■ -GXKP(QWSWGV,WNKGP2TQXQUV   Phone +49.89.289.16424 logic controllers A Signal-Interpreted Approach to the ■ Didactic platform for supervisory Supervisory Control Theory Problem. /CPCIGOGPV control In: 20th World Congress of the Prof. Dr. Julien Provost ■ Demonstrators for dynamic software International Federation of Automatic update Control 4GUGCTEJ5EKGPVKUVU ■ Claudius Jordan; Canlong Ma; Julien Nancy Elhady, M.Sc. %QWTUGU Provost (2017): An Educational Toolbox Jordan Claudius, M.Sc. ■ Basics of Dependable Systems on Supervisory Control Theory using Canlong Ma, M.Sc. ■ Control of Discrete Event Systems /#6.#$5KOWNKPM5VCVGƅQYs(TQO Laurin Prenzel, M.Sc. ■ Safe Embedded Systems Theory to Practice in one week. In: 8th ■ Fault-Tolerant Control and Supervisory IEEE Global Engineering Education Control Theory Lab Conference ■ Eduardo Manas Pont; Christian Kuenzel; Julien Provost (2017): Development of a Methodology for Monitoring and Prediction of Road Surface Conditions in Highly Automated Driving. In: 22nd IEEE International Conference on Emerging Technologies And Factory Automation

217 Industrial Management and Assembly Technology

Perspectives for production

■ The Chair for Industrial Management and Assembly Technology is one of the largest research centers in Germany. In 2017 we considered in particular the possibilities of how humans can be integrated into the objectives of Industry 4.0. In addition, the further development of electromobility KP)GTOCP[oURTQFWEVKQPCTGCYCUURGEKƄECNN[VCTIGVGF

Founded in 1875 the Institute for Machine Tools and Industrial Management (iwb) at the Technical University of Munich is one of the largest research institutions for production technology in Germany. It encompasses two chairs at the Faculty of Mechanical Engineering in Garching near Munich.

In addition to all technological developments in the context of industry 4.0 humans also play a central role in the factory of the future. In order to be able to make reliable statements about the potential and dangers of its networking with the production system, the research ƄGNFn/CPKPVJGHCEVQT[oUGVWRCPFEQOOKUUKQPGFCP experimental and learning laboratory. With the Mittelstand 4.0 Competence Center Augsburg, a contact point for digitization and industry 4.0 topics is available for small and medium-sized companies in the region of Bavaria. +PNKPGYKVJVJGUVTWEVWTCNEQPFKVKQPUQPUKVGVJGEGPVGToU range of services is geared to manufacturing industry, which is strongly represented there.

The focus is on industry and craft enterprises in mechani- cal engineering, the manufacturing of metal products and electronic products as well as vehicle construction. The EGPVGToUQHHGTKUQHEQWTUGCNUQCXCKNCDNGVQEQORCPKGU HTQOQVJGTUGEVQTU#PKORQTVCPVƄGNFQHTGUGCTEJKUVJG planning and control of autonomous production that is based on cyber-physical systems, where the customer-in- novated products will be produced. It is linked directly to Combined jaw suction pad for handling of cell holders the open-innovation platform to ensure that the customer is always well informed of the feasibility of their design, conjunction with production planning, in order to increase and at the same time receives a delivery schedule and machine availability. The results offer companies a very cost estimate. innovative business model with the opportunity to position themselves on the market with customer-innovated prod- In the next few years the iwb will be involved in the WEVUCPFVQUVTGPIVJGP)GTOCP[oURQUKVKQPCUCDWUKPGUU '7*QTK\QPTGUGCTEJRTQLGEVn2TG%Q/oYJKEJ location in the long term. investigates the concept of predictive maintenance in

218 Industrial Management and Assembly Technology

Production Management and Logistics

(WTVJGTOQTGVJGTGUGCTEJITQWRKUGSWKRRGFYKVJCTGCN production environment through the Learning Factory for .GCP2TQFWEVKQP .52 CPFCNCDVJCVUWRRQTVUTGUGCTEJ teaching and training in the context of human resources in production.

Projects ■ 5($s/CPCIKPIE[ENGUKPKPPQXCVKQPRTQEGUUGU UWDRTQLGEVU$n/QFGNDCUGFHQTGECUVKPICPFCUUGUU- OGPVQHEJCPIGKORCEVUKPRTQFWEVKQPoCPF$n5[U- temic change management for the design of change E[ENGUKPRTQFWEVKQPoKPVJGHWPFKPIRJCUG++CPFVJG VTCPUHGTRTQLGEV6n%[ENKECNN[1TKGPVGF#UUGUUOGPVCPF 2NCPPKPIQH6GEJPQNQI[5GSWGPEGUCPF'SWKROGPVHQT #UUGODN[2TQEGUUGUo &() ■ Intelligent logistics planning based on big data (BMW) ■ 'HƄEKGPVFCVCOCPCIGOGPVHQTVJGWUGQHOCVJGOCVKECN optimization models in the production strategy (BMW) ■ Individual and dynamic worker information (MAN) ■ 'HƄEKGPVRTGRTQFWEVKQPFGXGNQROGPVQHXCTKCPVTKEJ Digital worker assistance system (Uli Benz, TUM) small series production (MAN) ■ 2TGFKEVKXGEQIPKVKXGOCKPVGPCPEGFGEKUKQPUWRRQTV 6JGTGUGCTEJITQWR2TQFWEVKQP/CPCIGOGPVCPF system (EU) Logistics is working on projects aimed at enhancing ■ /KVVGNUVCPFs%QORGVGPEG%GPVGT#WIUDWTI $/9K GHHGEVKXGPGUUCPFGHƄEKGPE[QHRTQFWEVKQP6JGTGUGCTEJ UEQRGEQXGTUVJTGGOCKPƄGNFUQHKPVGTGUV6JGƄTUVƄGNF comprises the design of an effective manufacturing change management and the management of production technologies as well as factory planning. The second ƄGNFEQPFWEVUTGUGCTEJQPVJGGHƄEKGPVKPVGITCVKQPQH human resources in an increasingly digital and networked production environment.

6JGUGƄGNFUCTGEQORNGOGPVGFD[TGUGCTEJQPQRVKOK\C tion methods for industrial application and on approaches HQTGHƄEKGPVGZRNQTCVKQPQHTGSWKTGFFCVC6JGITQWRoU wide-ranging expertise in all areas of production manage- ment and logistics is based on current and former com- prehensive research. Courses at the new nLearning factory for lean productiono

219 Industrial Management and Assembly Technology

Assembly Technology and Robotics

Real robot cell and its virtual model

The robotics research groupassembly technologies Projects and robotics research group addresses the processes ■ %GNN(Ks#EEGNGTCVKQPQHGNGEVTQN[VGWRVCMGVJTQWIJ regarding the last step in production chain. Here, the QRVKOK\GFƄNNKPICPFYGVVKPIRTQEGUUGU CUUGODN[RTQEGUUJCUCUKIPKƄECPVKPƅWGPEGQPVJGEQUVU ■ %[/G2TQs%[DGTRJ[UKECNOGVTQNQI[HQT&FKIKVK\CVKQP CPFSWCNKV[QHVJGGPFRTQFWEVVJWUKPPQXCVKXGKFGCUCPF in networked production VGEJPQNQIKGUCTGTGSWKTGFHQTCEJKGXKPIEQUVGPGTI[CPF ■ 'Z

Presentation of a jaw suction pad for handling of cell holders at Automatica 2017

220 Industrial Management and Assembly Technology

Research Focus Published Book ■ 2TQFWEVKQPOCPCIGOGPVCPFNQIKUVKEU ■ 4GKPJCTV)WPVGT *TUI *CPFDWEJ ■ Assembly technology and robotics Industrie 4.0, Geschäftsmodelle | 2TQ\GUUG^6GEJPKM+5$0 Competence  ■ Battery production ■ Cyber-physical assembly systems Selected Publications 2017 Prof. Dr.-Ing. ■ Industrial robotics ■ )TGKVGOCPP,5VCJN$5EJÒPOCPP Gunther ■ 2TQFWEVKQPVGEJPQNQI[OCPCIGOGPV #.QJOCPP$4GKPJCTV)5VTCVGIKE Reinhart ■ Human factors in factory environments production technology planning using ■ Industrial optimization and data a dynamic technology chain calendar. Contact analytics 2TQFWEVKQP'PIKPGGTKPI   www.iwb.mw.tum.de RR| [email protected] Infrastructure ■ 4KEJVGT%*CEMGPDGTI)

Technical Staff Fritz Grimmer 1NKXGT*QN\OCPP #PFTGCU5GDCNF'JTGPVJCNGT

221 Applied Mechanics

Development, simulation and experimental investigation of complex dynamical and mechatronic systems

■6JG%JCKTQH#RRNKGF/GEJCPKEUKUCNGCFKPITGUGCTEJEGPVGTKPVJGƄGNFQHF[PCOKEUQH OGEJCPKECNCPFTQDQVKEU[UVGOU6JGEQTGQHKVUCEVKXKVKGUHQEWUGUQPVJGFGXGNQROGPVQHPQXGN UKOWNCVKQPCPFGZRGTKOGPVCNVGEJPKSWGUHQTGHƄEKGPVCPCN[UKUQHEQORNGZUVTWEVWTCNF[PCOKEU CPFQPVJGFGUKIPEQPUVTWEVKQPCPFEQPVTQNQHCFXCPEGFTQDQVKEOCEJKPGU6JGTGUGCTEJKU QTICPK\GFKPVJTGGOCKPCTGCU&[PCOKE5KOWNCVKQPCPF0WOGTKECN6GEJPKSWGU'ZRGTKOGPVCN &[PCOKEUCPF4QDQVKEUCPF/GEJCVTQPKEU'CEJTGUGCTEJITQWRDWPFNGUURGEKƄEGZRGTVKUG OQPKVQTUKPVGTPCVKQPCNCFXCPEGUCPFCEVKXGN[FKUEWUUGUHWVWTGTGUGCTEJFKTGEVKQPU

Dynamic Simulation and Numerical Techniques

Designing and optimizing high-tech systems necessitates CEEWTCVGCPFGHƄEKGPVOQFGNKPI6JGGZRGTVKUGCPF TGUGCTEJHQEWUQHVJGEJCKTKUOCKPN[QPOQFGNTGFWEVKQP CURGEVURCTCNNGNEQORWVKPIUVTCVGIKGUCPF PWOGTKECNVGEJPKSWGUVQUKOWNCVGUVTWE VWTCNF[PCOKEU 6JGUKOWNCVKQPQHOCP[CFXCPEGF OGEJCPKECNUVTWEVWTGUVJCVWPFGTIQNCTIG FGHQTOCVKQPUUWEJCUOKETQGNGEVTQOGEJCPKECN U[UVGOUQTYKPFVWTDKPGDNCFGUQHVGPTGSWKTGUNQPI EQORWVCVKQPVKOGU1PGCRRTQCEJVQTGFWEGEQORWVCVKQP VKOGKUOQFGNQTFGTTGFWEVKQPYJKEJJCUDGGPCEGPVTCN TGUGCTEJKPVGTGUVCVVJGEJCKTHQTOCP[[GCTU4GEGPVN[ 5KOWNCVKQPHTGGVTCKPKPIUGV UQECNNGFUKOWNCVKQPHTGGJ[RGTTGFWEVKQPOGVJQFUVJCV HQTJ[RGTTGFWEVKQPQHCECPVKNGXGTDGCO ECPUKIPKƄECPVN[TGFWEGUKOWNCVKQPVKOGJCXGDGGPFGXGN- QRGFCPFKORNGOGPVGFKPVJGEJCKToU2[VJQPDCUGFƄPKVG IQCNQHVJGRTQLGEVKUVQFGXGNQRCFXCPEGFVQQNU GNGOGPVTGUGCTEJEQFG #/HG +PEWTTGPVTGUGCTEJVJGUG HQTVJGF[PCOKECPCN[UKUQHNCTIGUECNGOQFGNUQH OGVJQFUCTGGZVGPFGFVQRCTCOGVTKEU[UVGOUVQDGWUGF VWTDKPGEQORQPGPVU%WTTGPVN[VJGTGUGCTEJHQEWUGUQP HQTQRVKOK\CVKQPCPFTGCNVKOGEQPVTQNCRRNKECVKQPU VJGCRRNKECVKQPQH('6+OGVJQFUVQKPETGCUGVJGRCTCNNGN /QUVENCUUKECNOQFGNQTFGTTGFWEVKQPOGVJQFUVCMGGZENW- UECNCDKNKV[QHVWTDKPGOQFGNUCPFCPGZRGTKOGPVCN UKXGN[OCUUCPFUVKHHPGUURTQRGTVKGUQHF[PCOKECNU[UVGOU CRRTQCEJHQTF[PCOKEKFGPVKƄECVKQPQHDNCFGVQDNCFG KPVQCEEQWPVDWVPGINGEVFCORKPIGHHGEVU6JGTGD[QPN[ KPVGTHCEGU TGCNXCNWGFWPFCORGFXKDTCVKQPOQFGUCTGEQPUKFGTGF *QYGXGTKHFCORKPIUKIPKƄECPVN[KPƅWGPEGUVJGF[PCOKE Projects DGJCXKQTQHVJGU[UVGOVJGCRRTQZKOCVKQPSWCNKV[OKIJV ■ 8CT[KPIOCPKHQNFUCPFJ[RGTTGFWEVKQPHQTIGQOGVTK- DGRQQT6JGTGHQTGYGOQFKH[ENCUUKECNOQFCNQTFGT ECNN[PQPNKPGCTUVTWEVWTGU KPVGTPCN TGFWEVKQPOGVJQFUD[WUKPIEQORNGZFCORGFXKDTCVKQP ■ /QFGNQTFGTTGFWEVKQPQHRCTCOGVTKEPQPNKPGCTOGEJCP- OQFGUVQQDVCKPIQQFCRRTQZKOCVKQPUQHFCORGF KECNU[UVGOUHQTKPƅWGPEKPIXKDTCVKQPU &() U[UVGOU ■ 5WDUVTWEVWTKPIHQTPQPNKPGCTEQORQPGPVU KPVGTPCN #PQVJGTEQORGVGPEGQHVJGEJCKTKUVJG(KPKVG'NGOGPV ■ &QOCKPFGEQORQUKVKQPVGEJPKSWGUHQTF[PCOKE 6GCTKPICPF+PVGTEQPPGEVKPI ('6+ OGVJQFYJKEJKUC RTQDNGOU KPVGTPCN ENCUUQHRCTCNNGNKVGTCVKXGUQNXGTUHQTUVTWEVWTCNF[PCOKEU ■ &QOCKPFGEQORQUKVKQPOGVJQFUHQTNCTIGƅGZKDNG 6JGTGUGCTEJHQEWUGUQPNKPGCTCPFPQPNKPGCTF[PCOKEU OWNVKDQF[U[UVGOU KPVGTPCN CPFVJGCRRNKECVKQPVQNCTIGƅGZKDNGOWNVKDQF[U[UVGOU ■ 'NCUVQJ[FTQF[PCOKENWDTKECVGFEQPVCEVUKPOWNVKDQF[ *GTGKPVJGTGE[ENKPIQHICVJGTGFKPHQTOCVKQPFWTKPIVJG F[PCOKECNU[UVGOU KPVGTPCN UQNWVKQPRTQEGUUKUETWEKCNFWGVQVJGHCEVVJCVVJGUCOGQT ■ #GTQF[PCOKEPQKUGRTGFKEVKQPQHVTGCFGFVKTGUWUKPIC UKOKNCTU[UVGOUCTGUQNXGFTGRGCVGFN[ J[DTKFCGTQCEQWUVKEOGVJQFQNQI[ 0CVKQPCN5EKGPEG 6JGEJCKTKUCNUQRCTVKEKRCVKPIKPC'WTQRGCPVTCKPKPIPGV- (QWPFCVKQP.WZGODWTI YQTMECNNGF':2'46+5'YJKEJKUUJQTVHQTn'ZRGTKOGPVU ■ &[PCOKEUCPCN[UKUQHNCTIGUECNGOQFGNUQHVWTDKPG CPF*KIJRGTHQTOCPEG%QORWVKPIHQT6WTDKPG/GEJCPKECN EQORQPGPVU ':2'46+5' +PVGITKV[CPF5VTWEVWTCN&[PCOKEUKP'WTQRGo6JGOCKP

222 Applied Mechanics

Experimental Dynamics

&[PCOKEVGUVKPIKUTGIWNCTN[RGTHQTOGFKPQWTNCDVQ XCNKFCVGOQFGNUCPFVGUVEQPUVTWEVKQPU+PCFFKVKQP GZRGTKOGPVCNF[PCOKEVGEJPKSWGUCTGRCTVQHQWTTGUGCTEJ CKOKPICVKORTQXKPIVJGSWCNKV[QHVJGKFGPVKƄECVKQPKPTGCN EQPFKVKQPU#UCPGZCORNGCUGNHVTCEMKPINCUGT&QRRNGT XKDTQOGVGTU[UVGOKUWPFGTFGXGNQROGPVVQRGTHQTO KPQRGTCVKQPOQPKVQTKPICPFPGYNCUGTOGCUWTGOGPVVGEJ- PKSWGUCTGVGUVGFHQTVJGEJCTCEVGTK\CVKQPQHDKQOCVGTKCN 6JGTGUGCTEJQPGZRGTKOGPVCNUWDUVTWEVWTKPIFGCNUYKVJ URGEKƄECUUGODN[VGEJPKSWGUYJKEJECPDGWUGFVQDWKNF WRHWNNOQFGNUDCUGFQPVJGOGCUWTGFF[PCOKEUQHTGCN EQORQPGPVU6JGOGVJQFUQHF[PCOKEUWDUVTWEVWTKPICPF VTCPUHGTRCVJCPCN[UKURTQXKFGCRTQOKUKPIEQODKPCVKQP HQTVJGFGXGNQROGPVQHQRVKOCNN[VWPGFUVTWEVWTCNCPF XKDTQCEQWUVKECNU[UVGOUWUKPIDQVJOGCUWTGFCPFOQF- GNGFEQORQPGPVU%WTTGPVTGUGCTEJKPXQNXGUDGVVGTOQFGNU HQTVJGKPVGTHCEGF[PCOKEUDGVYGGPRCTVUCPFPWOGTKECN FGUKIPQRVKOK\CVKQPHQTNQYGTQXGTCNNUQWPFVTCPUOKUUKQP 5RGEKCNVGUVTKIHQTOCIPGVKEDGCTKPIUVQOGCUWTGHQTEGUKPCNNUKZFQHU 5WDUVTWEVWTKPIOGVJQFUCTGCNUQWUGFKPUQECNNGFTGCN VKOGJ[DTKFVGUVKPI6JKUURGEKCNJCTFYCTGKPVJGNQQR CPQVJGTTGUGCTEJKPVGTGUVQHVJGEJCKT6QCEEQWPVHQTCIKPI VGEJPKSWGPWOGTKECNN[UKOWNCVGUUVTWEVWTCNEQORQPGPVUHQT GHHGEVUKPEQOOQPTCKNFKGUGNKPLGEVQTUVJCVECPCRRGCT YJKEJOQFGNUCTGCXCKNCDNGCPFGZEJCPIGUKPTGCNVKOG QXGTVJGNKHGVKOGQHCPGPIKPGOQFGNDCUGFKFGPVKƄECVKQP HQTEGUCPFFKURNCEGOGPVUQPVJGKPVGTHCEGUYKVJCTGCN CPFEQPVTQNOGVJQFUJCXGDGGPFGXGNQRGFKPEQQRGTCVKQP JCTFYCTGEQORQPGPVKPVJGNCD(WTVJGTOQTGFKHHGTGPV YKVJVJG%JCKTQH+PVGTPCN%QODWUVKQP'PIKPGU0WOGTKECN PWOGTKECNCPFGZRGTKOGPVCNOGVJQFUCTGKPXGUVKICVGFQP CPFGZRGTKOGPVCNTGUWNVUUJQYVJGITGCVRQVGPVKCNKP CYKPFVWTDKPGKPCPGZRGTKOGPVCNF[PCOKEUNCD/QFCN KORTQXKPINQPIVGTOGPIKPGGHƄEKGPE[CPFEQPVTQNNKPI CPCN[UKUVGEJPKSWGUCTGCRRNKGFVQKORTQXGUWDUVTWEVWTKPI GZJCWUVGOKUUKQPU$GUKFGUVJGEJCKTGZRNQTGUPGY CPFOQFGNQTFGTTGFWEVKQPVGEJPKSWGU monitoring approaches for rotating machinery using 6JGTGUGCTEJƄGNFQHTQVQTF[PCOKEUKPENWFGUVGEJPKSWGU CEEGNGTQOGVGTUDWKNVQHOKETQGNGEVTQOGEJCPKECNU[UVGOU VQEJCTCEVGTK\GVJGTQVQTF[PCOKEUCUYGNNCUVJGF[PCOKE /'/5 KPCUGPUQTPGVYQTMHQTHCWNVRTGFKEVKQP6JGTGD[ DGJCXKQTQHUGCNUCPFDGCTKPIU4GFWEGFEQORQPGPV EQODKPCVKQPUQHUKIPCNCPFOQFGNDCUGFCNIQTKVJOU OQFGNUCTGUGVWRCPFXCNKFCVGFQPUGXGTCNVGUVTKIUKPVJG CTGKORNGOGPVGFQPUGPUQTPQFGUCPFXGTKƄGFQPTGCN GZRGTKOGPVCNF[PCOKEUNCD+PVJKUYC[KPƅWGPEGUUWEJCU OCEJKPGU UGCNKPUVCDKNKVKGUCPFDGCTKPIGHHGEVUQPTQVQTU[UVGOUECP DGFGVGTOKPGF(WTVJGTOQTGCEVKXGOCIPGVKEDGCTKPIUCTG Projects KPXGUVKICVGFYKVJCHQEWUQPVJGOQFGNKPICPFGZRGTKOGP- ■ 4GCNVKOGUWDUVTWEVWTKPIHQTEQORNGZU[UVGOU KPVGTPCN VCNXCNKFCVKQPQHVJGPQPNKPGCTOCIPGVKEDGJCXKQT ■ 5WDUVTWEVWTKPIOGVJQFQNQI[HQTVTCPUHGTRCVJCPCN[UKU /QFGNDCUGFOQPKVQTKPIHCWNVFGVGEVKQPCPFEQPVTQNKU $/9 ■ 4QVQTF[PCOKEUHQTVWTDQRWORUKPURCEGRTQRWNUKQP U[UVGOU $C[5V/9/'6 ■ 4QVQTF[PCOKEUYKVJCEVKXGOCIPGVKEDGCTKPIU KPVGTPCN ■ /QFGNKPIQHEQOOQPTCKNKPLGEVQTUHQTHCWNVUFGVGEVKQP CPFEQPVTQN &() ■ +PVGTHCEGF[PCOKEUKFGPVKƄECVKQPKPDNCFGFFKUMU ':2'46+5' ■ /QFGNTGFWEVKQPCPFGZRGTKOGPVCNUWDUVTWEVWTKPI +TC- PKCP/KPKUVT[QH4GUGCTEJ'FWECVKQPCPF6GEJPQNQI[ *[FTQIGNUCORNG OO ■ +PQRGTCVKQPCNOGCUWTGOGPVQPCYKPFVWTDKPGVGUV ZOOZOO ƄZGFQP DGPEJ %JKPGUG5EJQNCTUJKR%QWPEKN CRKG\QUVCEMFWTKPIC NCUGT&QRRNGTXKDTQOGVT[ ■ /GEJCPKECNOQPKVQTKPIYKVJ/'/5UGPUQTPGVYQTM OGCUWTGOGPV 5KGOGPU

223 Applied Mechanics

Robotics and Mechatronics

6JGEJCKTJCUCNQPIVTCFKVKQPKPFGUKIPKPIEQPUVTWEVKPI CPFEQPVTQNNKPITQDQVUHQTPQXGNCRRNKECVKQPU$CUGFQPVJG GZRGTVKUGKPCWVQPQOQWUNGIIGFTQDQVUVJGKPUVKVWVGJCU FGXGNQRGFCJKIJRGTHQTOCPEGJWOCPQKFTQDQV .1.# KP TGEGPV[GCTU #WVQPQOQWUPCXKICVKQPQHOQDKNGTQDQVUKPENWVVGTGF GPXKTQPOGPVUKUCFKHƄEWNVVCUM'URGEKCNN[KHDKRGFTQDQVU CTGEQPUKFGTGFHQTYJKEJEQPVKPWQWUJKIJNGXGNRCVJU 2TQVQV[RGQHCPGYƅGZKDNGCPF OWUVDGRNCPPGFCNQPIUKFGFKUETGVGHQQVUVGRNQECVKQPUKP NQYEQUVVCEVKNGUGPUQTFGUKIPYJKEJ CNNQYUVJGOGCUWTGOGPVQHGZVGTPCN VJGNQYGTNGXGNRNCPPKPIUVCIG0GYCNIQTKVJOUJCXGDGGP RTGUUWTGCPFKVUFKUVTKDWVKQPQPVJG FGXGNQRGFVQCNNQYVJGTQDQVVQPCXKICVGCWVQPQOQWUN[ UGPUQTCTGC VJTQWIJRTGXKQWUN[WPMPQYPGPXKTQPOGPVU6JGCDKNKV[VQ UVGRQXGTUOCNNQDUVCENGUYJKNGCXQKFKPIDKIQDUVCENGU 6JGJWOCPQKF.1.#UVGRRKPIHTQOCPWPFGVGEVGFRNCVHQTOQHEO UJQYUVJGUWRGTKQTKV[QHVJKUCRRTQCEJ JGKIJV$CUGFQPPGYN[FGXGNQRGFHQTEGEQPVTQNUEJGOGUVJGTQDQVKU PQYCDNGVQFGCNYKVJUWEJNCVGEQPVCEVUEGPCTKQU 6QCXQKFTQDQVQDUVCENGEQNNKUKQPUKPCF[PCOKEGPXK- TQPOGPVTGCNVKOGRGTEGRVKQPOGVJQFUHQTFGVGEVKPI QPCPQDLGEV6JKUNQYEQUVFGUKIPKUDCUGFQPCRKG\Q RQUUKDNGQDUVCENGUCTGKPXGUVKICVGF*GTGKPVJGHQEWUNKGU TGUKUVKXGRQN[OGT QPNQECVKPIQDLGEVUCPFCRRTQZKOCVKPIVJGOD[IGQOGVTKE +PCFFKVKQPVQVJGFGXGNQROGPVQHJWOCPQKFTQDQVUVJG RTKOKVKXGUUQECNNGF5YGRV5RJGTG8QNWOGU 558 YJKEJ TGUGCTEJITQWRCNUQKPXGUVKICVGUOGVJQFUHQTOQVKQP CNNQYGHƄEKGPVFKUVCPEGECNEWNCVKQPUVQOGGVVJGTGCNVKOG EWGKPIYJKEJOCKPN[VCTIGVUFTKXKPIUKOWNCVQTUKPVJG TGSWKTGOGPVU CWVQOQVKXGKPFWUVT[&WGVQVJGJKIJTGSWKTGOGPVUQPVJG (WTVJGTOQTGPGYVGEJPKSWGUHQTRNCPPKPICPFEQPVTQNNKPI UKOWNCVQToUF[PCOKEURCTCNNGNTQDQVUCTGWUGFYJQUGURG- TQDQVNQEQOQVKQPKPVJGOWNVKEQPVCEVUGVVKPIKGWUKPIVJG EKCNMKPGOCVKEUOWUVDGEQPUKFGTGF6JGTGUGCTEJHQEWUGU CTOUQHCJWOCPQKFTQDQVCTGKPXGUVKICVGF#UKFGHTQO QPVJGRGTEGKXGFF[PCOKECNOQVKQPHTQOVJGFTKXGToU TGFWEGFOQFGNUCRRTQZKOCVKPIVJGF[PCOKEUQHVJGTQDQV RGTURGEVKXG+PTGEGPV[GCTUVJGOGEJCPKECNUVTWEVWTGQH HQTTGCNVKOGEQPVTQNXCTKQWUOGVJQFUHQTRGTEGKXKPIVJG FTKXKPIUKOWNCVQTUJCUDGGPDGEQOKPIOQTGEQORNGZVJWU GPXKTQPOGPVCPFGZVTCEVKPICRRTQRTKCVGUWRRQTVCTGCUCTG CINQDCNQRVKOK\CVKQPUEJGOGYCUFGXGNQRGFVQFKUVTKDWVG FGXGNQRGF VJGTGFWPFCPVFGITGGUQHHTGGFQOQHVJGOQVKQPU[UVGO 6QGPCDNGTQDQVUVQUGPUGVJGKTGPXKTQPOGPVCPFGXCNWCVG 9GCNUQEQQRGTCVGYKVJVJG&GRCTVOGPVQH1TVJQRGFKEU EQPVCEVRTQRGTVKGUCƅGZKDNGVCEVKNGUGPUQTFGUKIPJCU CPF5RQTVU1TVJQRGFKEUVQKPXGUVKICVGVJGCRRNKECVKQPQH DGGPFGXGNQRGFCVVJGEJCKT+PEQPVTCUVVQEQPXGPVKQPCN TQDQVKEOCPKRWNCVQTUVQKPXGUVKICVGVJGTCPIGQHOQXGOGPV HQTEGUGPUQTUVCEVKNGUGPUQTUCNNQYVJGOGCUWTGOGPVQH QHJWOCPLQKPVU9GKPXGUVKICVGEQORNKCPVOQVKQPEQPVTQN VJGEQPVCEVIGQOGVT[CPFPQVQPN[VJGTGUWNVCPVHQTEGU VQGZRNQTGVJGOQVKQPURCEGYKVJQWVQXGTUVTGUUKPIVJG VGUVGFLQKPV

Projects ■ 4GCNVKOGRNCPPKPIHQTƅGZKDNGCPFTQDWUVYCNMKPIQHC JWOCPQKFTQDQV &() ■ )CKVEQPVTQNQHCJWOCPQKFTQDQVKPWPGXGPVGTTCKP &##& ■ /WNVKEQPVCEVRNCPPKPICPFEQPVTQNQHDKRGFYCNMKPI TQDQVU KPVGTPCN ■ 6CEVKNGHGGFDCEMCPFHQTEGEQPVTQNQHDKRGFYCNMKPI TQDQVU KPVGTPCN ■ *KIJRTGEKUKQPEQPVTQNQHƅGZKDNGTQDQVU[UVGOU KPVGTPCN ■ /QFGNRTGFKEVKXGCPFƄNVGTDCUGFEQPVTQNUVTCVGIKGUHQT OQVKQPEWGKPICNIQTKVJOU $/9 ■ +FGPVKƄECVKQPCPFEQPVTQNKPTQDQVFTKXGPLQKPVDKQ- OGEJCPKEU &GRCTVOGPVQH1TVJQRGFKEUCPF5RQTVU 6JGJWOCPQKFTQDQV.1.# 1TVJQRGFKEU

224 Applied Mechanics

External Ph.D. Candidates Selected Publications 2017 &KRN+PI/CTVKP/ØPUVGT $/9 ■ 4WV\OQUGT,$4KZGP&,#NGCPCPF 5CUEJC5EJYCT\/5E *5/ØPEJGP GHƄEKGPVUPCRUJQVIGPGTCVKQPVGEJPKSWG 4QOCKP2GPPGE/5E )QQF[GCT HQTVJG*[RGT4GFWEVKQPQHPQPNKPGCT 5COWGN-TØIGN/5E 5KGOGPU UVTWEVWTCNF[PCOKEU  %QORWVGT /GVJQFUKP#RRNKGF/GEJCPKEUCPF Research Focus 'PIKPGGTKPIRR ■ /QFGNKPICPFUKOWNCVKQPQHF[PCOKECN ■ -TKPPGT#5EJKPFNGT64KZGP&, Prof. dr. ir. systems 6KOGKPVGITCVKQPQHOGEJCPKECNU[UVGOU Daniel Rixen ■ 8KDTCVKQPCPCN[UKUCPFTQVQTF[PCOKEU YKVJGNCUVQJ[FTQF[PCOKENWDTKECVGF ■ /GEJCVTQPKEUCPFTQDQVKEU LQKPVUWUKPI3WCUK0GYVQPOGVJQF Contact ■ 'ZRGTKOGPVCNF[PCOKEU CPFRTQLGEVKQPHQTOWNCVKQPU   YYYCOOOYVWOFG +PVGTPCVKQPCN,QWTPCNHQT0WOGTKECN TKZGP"VWOFG Competence /GVJQFUKP'PIKPGGTKPI   2JQPG  ■ (KPKVGGNGOGPVOQFGNKPIKPF[PCOKEU RR| ■ /QFGNTGFWEVKQPCPFUWDUVTWEVWTKPI ■ )ÅTCFKP/4KZGP&+ORWNUGDCUGF Management ■ 6KOGKPVGITCVKQPCPFUQNXGTU UWDUVTWEVWTKPIKPCƅQCVKPIHTCOGVQ 2TQHFTKT&CPKGN4KZGP/5E1TFKPCTKWU ■ /WNVKRJ[UKECNOQFGNKPI UKOWNCVGJKIJHTGSWGPE[F[PCOKEUKP 2&&T+PIJCDKN6JQOCU6JØOOGN ■ 6TCLGEVQT[RNCPPKPICPFEQPVTQNQH ƅGZKDNGOWNVKDQF[F[PCOKEU/WNVKDQF[ Director robots 5[UVGO&[PCOKEU ■ $KRGFTQDQVU ■ *KNFGDTCPFV#%-NKUEJCV/ Retired Professors ■ /QFCNKFGPVKƄECVKQP 9CJTOCPP&9KVVOCPP45[IWNNC 2TQH&T+PI(TKGFTKEJ2HGKHHGT (5GKYCNF24KZGP&$WUEJOCPP 2TQH&T+PI*GKP\7NDTKEJ Infrastructure 64GCN6KOG2CVJ2NCPPKPIKP ■ /GEJCPKECNCPFGNGEVTQPKEYQTMUJQR 7PMPQYP'PXKTQPOGPVUHQT$KRGFCN External Lecturer ■ 8KDTCVKQPCPFF[PCOKEVGUVNCD 4QDQVU+'''4QDQVKEUCPF#WVQOCVKQP &T+PI4QDGTV*WDGT ■ 4QDQVKENCD .GVVGTU   ■ &[PCOKEUVGCEJKPINCD ■ 9CIPGT%-TKPPGT#6JØOOGN6 Administrative Staff 4KZGP&(WNNF[PCOKEDCNNDGCTKPI /CPWGNC/ØNNGT2JKNKRR Courses OQFGNYKVJGNCUVKEQWVGTTKPIHQTJKIJ &CPKGNC2TKNNGT ■ 6GEJPKECN/GEJCPKEU 5VCVKEU'NCUVKEKV[ URGGFCRRNKECVKQPU  .WDTKECPVU CPF&[PCOKEU   Technical Staff ■ 6GEJPKECN/GEJCPKEUHQT'NGEVTKECN 5KOQP)GTGT 'PIKPGGTKPI )GQTI-ÒPKI ■ /CEJKPG&[PCOKEU )GQTI/C[T ■ 5KOWNCVKQPQH/GEJCVTQPKE5[UVGOU ■ 6GEJPKECN&[PCOKEU Research Scientists ■ &[PCOKEUQH/GEJCPKECN5[UVGOU &KRN+PI#PFTGCU$CTVN ■ 4QDQV&[PCOKEU 6QDKCU$GTPKPIGT/5E ■ /WNVKDQF[&[PCOKEU &KRN+PI%QPUVCPVKPXQP&GKONKPI ■ 5VTWEVWTCN&[PCOKEU &KRN/CVJ'XC/CTKC&GYGU ■ 'ZRGTKOGPVCN8KDTCVKQP#PCN[UKU (GNKZ'NNGPUQJP/5E ■ 5GOKPCTUKP#RRNKGF/GEJCPKEU /CZ)KNNG/5E ■ /GEJCPKECN8KDTCVKQP.CD (CDKCP)TWDGT/5E ■ 8KDTCVKQP/GCUWTGOGPV.CD /KEJCGN*ÀW»NGT/5E ■ 4QDQV&[PCOKEU.CD &KRN+PI#TPG%JTKUVQRJ*KNFGDTCPFV ■ 5VTWEVWTCN&[PCOKEU.CD 1NKXGT*QHOCPP/5E )WKNJGTOG,GPQXGPEKQ/5E -CTCOQQ\/QTVG\C/5E 5VGXGP-NCCUUGP/5E &KRN+PI#PFTGCU-TKPPGT &KRN+PI/KEJCGN.GKUVPGT &QPI.K/5E ,QJCPPGU/CKGTJQHGT/5E %JTKUVKCP/G[GT/5E &KRN+PI,QJCPPGU4WV\OQUGT 2JKNKRR5GKYCNF/5E 0QTC5QRJKG5VCWHGPDGTI/5E (GNKZ5[IWNNC/5E %JTKUVKCP9CIPGT/5E &KRN+PI4QDGTV9KVVOCPP &CPKGN9CJTOCPP/5E

225 Thermodynamics

6GEJPQNQI[FTKXGPVJGTOQƅWKFF[PCOKEUTGUGCTEJ

■1WTTGUGCTEJIWKFGNKPGKUVJGRTQRQUKVKQPVJCVUEKGPVKƄETGUGCTEJKPCPGPIKPGGTKPIUEJQQNUJQWNF be focused on problems with high technological relevance. A key to realizing our mission is the close cooperation with industry in general and in particular with partners who – developing their top-class global products at the leading edge of technology – have encountered barriers that might be overcome by fundamental research.

Our partner industries are optimizing their technologies addressed by our work on detonation and on two phase towards a lower carbon footprint, integration with renew- ƅQYU(KPCNN[HWTVJGTTGUGCTEJKUFGXQVGFVQVJGITCPF able power sources and environmental compatibility. Their challenge of providing clean water for the world. TGUGCTEJPGGFUCTGTGƅGEVGFKPQWTVJTGGTGUGCTEJENWUVGTU The appreciation of our technologically oriented research 6JGKPETGCUGQHHWGNGHƄEKGPE[CPFQRGTCVKQPCNƅGZKDKNKV[ CRRTQCEJKPVJGVGEJPKECNEQOOWPKV[KUTGƅGEVGFD[VYQ of gas turbines and large reciprocating engines at low ASME Gas Turbine Awards for the best publication of the pollutant emissions requires fundamental research on year on gas turbines and numerous best paper awards pollutant formation and emission, reliability, combustion that our research group has received during the past two instabilities and multi-phase phenomena. Safety issues decades from several organizations. in nuclear power plants and in the process industries are

%QODWUVKQP'OKUUKQPUCPF4GNKCDKNKV[

 $QWPFCT[.C[GT(NCUJDCEMKP2TGOKZGF%QODWUVKQP (WTVJGTOQTGKVYCUUJQYPVJCVVJGGZKUVGPEGQHCXGTCIG QH*KIJN[4GCEVKXG(WGNU boundary layer separation is not a distinct criterion for the QEEWTTGPEGQHEQPƄPGFDQWPFCT[NC[GTƅCUJDCEM+PUVGCF ƅCUJDCEMKUVTKIIGTGFKHNQECNƅQYUGRCTCVKQP\QPGUCVVJG ƅCOGDWNIGUCTGNCTIGGPQWIJVQNQECNN[RTQOQVGƅCOG propagation.

 1RGTCVKQPCN(NGZKDKNKV[QH)CU6WTDKPG2QYGT2NCPVU

Motivation and Objectives %QPƄPGFƅCOGHTQPVCVƅCUJDCEM TGF YKVJNQECNƅQYUGRCTCVKQP\QPGU DNWG To balance the increasing share of volatile power from TGPGYCDNGRQYGTUQWTEGUJKIJN[ƅGZKDNGEQPXGPVKQPCN Motivation and Objectives power plants are needed. Gas turbine power plants +HOQFGTPICUVWTDKPGUCTGQRGTCVGFQPJKIJN[TGCEVKXG have the potential to quickly adjust to changing power HWGNUUWEJCUJ[FTQIGPƅCOGƅCUJDCEMKPUKFGVJG demand but their operating range is limited by emission burner’s wall boundary layer is a major issue which limits stable and safe operation. A detailed understanding of the underlying physical mechanism as well as tools to predict VJGƅCUJDCEMNKOKVUCTGQHITGCVKPVGTGUVKPVJGFGUKIPQH gas turbine burners.

#RRTQCEJVQ5QNWVKQP $QWPFCT[NC[GTƅCUJDCEMKUPWOGTKECNN[KPXGUVKICVGFYKVJ NCTIGGFF[UKOWNCVKQPU%QODWUVKQPKUOQFGNGFYKVJƄPKVG rate chemistry including detailed diffusion modelling. This improves the insight into the mechanisms leading to ƅCUJDCEM

-G[4GUWNVU The numerical model can reproduce the boundary layer ƅCUJDCEMNKOKVUQHƅCOGUEQPƄPGFKPCFWEV#NNTGNGXCPV physical effects are thus accounted for by the chosen modelling approach. OH*-chemiliminescence of the swirl stabilized jet burner with syngas injection

226 Thermodynamics

constraints. Towards very low loads, i.e. high turn-down a sudden strong increase of CO and UHC emissions occurs YJGTGCUJKIJ01ZGOKUUKQPUNKOKVVJGJKIJRQYGTGPFQH the range.

.QY.QCF1RGTCVKQPQH+PNKPG5[PICU)GPGTCVKQP 6QGZVGPFVJGVWTPFQYPVJGHWGNECPDGEQPXGTVGFVQU[P- gas with a higher reactivity than natural gas. Theoretical system analysis shows the feasibility and potential of the Shadowgraphy image of lean RTQEGUU'ZRGTKOGPVCNKPXGUVKICVKQPUQHVJGEQODKPCVKQPQH XQN J[FTQIGPCKTƅCOG shortly after ignition a fuel pre-processor which produces syngas with a hydro- gen content of 30%, and two different generic gas turbine VKQPUYGTGHQEWUGFQPVJGGXCNWCVKQPQHOKETQUEQRKEƅCOG combustors prove the technical feasibility. The lean limit front curvature and showed a strong accelerating effect QHRTGOKZGFEQODWUVKQPKPVGTOUQHƅCOGVGORGTCVWTG that must be incorporated in future models. for the two combustion concepts could be produced by #FFKVKQPCNN[VJGGZKUVKPIGZRGTKOGPVCNKPHTCUVTWEVWTGQH 150-200K below the limit for natural gas. This corresponds VJG)TC8GPVGZRNQUKQPEJCPPGNKUGZVGPFGFCNNQYKPI to a decrease of 15-20% thermal power without violating the investigation of homogenous and inhomogeneous

CO emission limits. H2%1CKTOKZVWTGFKUVTKDWVKQPU6JGGZVGPUKQPQHVJG GZKUVKPIPWOGTKECN%(&HTCOGYQTMKP1RGP(1#/CKOU /QFGNKPIQH%1'OKUUKQPUHQT)CU6WTDKPG for large-scale detonation simulations with a wider fuel %QODWUVQTU1RGTCVKPICV2CTV.QCF%QPFKVKQPU ƅGZKDKNKV[CPFVJGRQUUKDKNKV[QHHWTVJGTKPVTQFWEVKQPQHQVJGT

Load decrease in gas turbines is limited by a sharp rise HWGNU$[CRRN[KPIVJGGZKUVKPIPWOGTKECN*2-air framework QH%1GOKUUKQPUCUVJGƅCOGVGORGTCVWTGFGETGCUGU to smooth pipe accident scenarios of the chemicals and chemistry gets inhibited. The objective of this project EQORCP[$#5(#)KVYCUUJQYPVJCVVJGNCTIGUECNG KUC%(&DCUGFOQFGNYJKEJECPRTGFKEV%1KPEQO- %(&HTCOGYQTMECPDGCFQRVGFHQTVJGKPVGTGUVUQHVJG bustion systems operating at part-load conditions. The chemical industry as well. model supports the development of combustion systems HWNƄNNKPIHWVWTGGOKUUKQPUNGIKUNCVKQP5QHCTVJGOQFGNKU  +PVGTPCN%QODWUVKQP'PIKPGU HQTOWNCVGFCPFKORNGOGPVGF(WTVJGTOQTGYGEQPFWEVGF GZRGTKOGPVCNOGCUWTGOGPVUCVCVOQURJGTKEEQPFKVKQPU Motivation and Objectives HQTXCNKFCVKQP+PVJGHQNNQYKPIXCNKFCVKQPWUKPITGCNGPIKPG Since dual-fuel combustion of natural gas with diesel data will assess the performance at realistic conditions. pilot ignition is a promising approach to address future emission standards this topic is the subject of several  'ZRNQUKQP4GUGCTEJ.GCP*[FTQIGP#KT'ZRNQUKQPU EWTTGPVUVWFKGUCVVJG6JGTOQF[PCOKEU+PUVKVWVG%JCTCE- Severe accidents in nuclear power plants can be accom- VGTK\CVKQPCPFQRVKOK\CVKQPQHRKNQVKIPKVKQPKPVJGRTGOKZGF panied by the production of large amounts of hydrogen PCVWTCNICUCKTEJCTIGECPNGCFVQCPKPETGCUGKPGHƄEKGPE[

CPFECTDQPOQPQZKFG6JGHQTOCVKQPQHCƅCOOCDNG Another investigation tackles the formation of NO2 under OKZVWTGENQWFKUJKIJN[RTQDCDNGDGECWUGQHVJGYKFGKIPK- VJGUGEQPFKVKQPUCVQZKERQNNWVCPVVJCVKUKPETGCUKPIN[ VKQPNKOKVUQHVJGHWGNCKTOKZVWTGU6JGTGUGCTEJHQEWUGUQP emitted at certain loads. The third ongoing project aims VJGJC\CTFQWUFGƅCITCVKQPVQFGVQPCVKQPVTCPUKVKQP &&6  to reduce fuel slip caused by quenching effects in the which creates high pressure loads on the containing JQOQIGPQWUN[OKZGFEJCTIGD[EQPVTQNNKPIVJGOKZVWTG UVTWEVWTGCPFQPVJGKORQTVCPVGCTN[UVCIGQHƅCOGCEEGN- formation with high pressure direct injection of natural gas. GTCVKQPCUYGNN+PVJGGCTN[UVCIGQHƅCOGRTQRCICVKQP GPNCTIGOGPVQHVJGƅCOGUWTHCEGCTGCKUVJGOCKPFTKXGT 'ZRGTKOGPVCN+PXGUVKICVKQPU HQTƅCOGCEEGNGTCVKQP+PNGCPJ[FTQIGPCKTOKZVWTGU The ignition and combustion processes in homogene- ƅCOGHTQPVYTKPMNKPIECWUGFD[ƅCOGHTQPVKPUVCDKNKVKGU QWUEJCTIGOGVJCPGCKTOKZVWTGUYGTGKPXGUVKICVGFKPC KUCOCLQTECWUGQHƅCOGGPNCTIGOGPV*GPEGVJGUG dynamically chargeable combustion cell under engine-like effects need to be included in models for time averaged EQPFKVKQPU+VEQWNFDGUJQYPVJCVKIPKVKQPRTQDCDKNKV[CPF reaction source term. Temporally high resolved optical KPVGPUKV[CTGUVTQPIN[KPƅWGPEGFD[VJGCOQWPVQHRKNQV OGCUWTGOGPVVGEJPKSWGU 1*2.+(CPFUJCFQYITCRJ[  fuel, pilot injection pressure, air-fuel ratio and the number CTGGORNQ[GFVQGXCNWCVGVJGƅCOGHTQPVDGJCXKQTKPVJG of injection holes. The investigations have revealed that in KPKVKCNRJCUGQHƅCOGRTQRCICVKQP6JKUFCVCKUWUGFHQTVJG most cases the pilot fuel suffers from too high dilution due FGXGNQROGPVCPFVJGXCNKFCVKQPQHVJGOQFGN+PXGUVKIC- to its small quantity and long ignition delays. This results in

227 Thermodynamics

a small number of ignited sprays and consequently leads to 0WOGTKECN+PXGUVKICVKQPU NQPIGTEQODWUVKQPFWTCVKQPU(WTVJGTOQTGVJGGZRGTKOGPVU The effect of fuel substitution on the ignition probability EQPƄTOVJCVVJGPCVWTCNICUQHVJGDCEMITQWPFOKZVWTG of the resulting fuel blend was studied using detailed KPƅWGPEGUVJGCWVQKIPKVKQPQHVJGFKGUGNRKNQVQKN reaction mechanisms. An auto-ignition model capable QHJCPFNKPIOKZVWTGUQHVYQHWGNV[RGUYKVJUKIPKƄECPVN[ different reactivity was developed and successfully imple- OGPVGFKPCEQOOGTEKCN%(&UQHVYCTGRCEMCIG9KVJ these tools ignition and heat release in dual-fuel diesel engines are investigated for the two cases of homogene- ous charge and high pressure direct injection of gaseous HWGN&GVCKNGFMKPGVKEUUKOWNCVKQPUKPJQOQIGPQWUTGCEVQTU revealed the thermodynamic conditions responsible for

VJGUKIPKƄECPV01012 conversion observed in these

engines. High emissions of NO2 were shown to be caused 5JCFQYITCRJKOCIGQHFKGUGNRKNQVKPLGEVKQPCPFƅCOGNWOKPGUEGPEGQH by small amounts of unburned hydrocarbons which origi- combustion PCVGHTQOƅCOGSWGPEJKPIKPVJGNGCPOGVJCPGCKTEJCTIG YJKEJTGCEVKPIYKVJ01FWTKPIVJGGZRCPUKQPUVTQMGCPFKP The investigation of natural gas high pressure direct injec- VJGGZJCWUVU[UVGO tion combustion with diesel spray piloting was performed on a rapid compression machine. The variation of spatial 4GNCVGF2TQLGEVU and temporal overlap of the pilot spray and gas jet shows ■ 1RVKOK\CVKQPQH&KGUGN2KNQV+IPKVKQPKP&WCN(WGN how the ignition behavior is governed by the interaction 'PIKPGUYKVJ*KIJ/GCP'HHGEVKXG2TGUUWTGU DGVYGGPVJGVYQLGVU+PDQVJGZRGTKOGPVUJKIJURGGF ■ +PXGUVKICVKQPQH&KTGEV+PLGEVKQP&WCN(WGN%QODWUVKQP KOCIKPIQHƅCOGNWOKPGUEGPEGCPFQHUJCFQYITCRJ[YGTG YKVJ(NGZKDNG(WGN%QODKPCVKQPU applied. ■ 0WOGTKECN5KOWNCVKQPQH01VQ01%QPXGTUKQPKP&WCN (WGN'PIKPG

%QODWUVKQP+PUVCDKNKVKGUCPF0QKUG

 *KIJ(TGSWGPE[6TCPUXGTUCN6JGTOQCEQWUVKEU VJGEQODWUVKQPEJCODGT2QVGPVKCNEQPUGSWGPEGUTCPIG from hardware damage, increased pollutant production to Motivation and Objectives system failure. Avoiding these instabilities requires a thor- High-frequency thermoacoustic instabilities in gas turbine ough understanding of the physical mechanisms, for the combustion chambers result from constructive interfer- development of prediction models and mitigation tools. ences between combustion heat release and acoustic Research activities in recent years were focused on swirl oscillations. They physically manifest themselves as stabilized combustion systems and allowed a deep insight high-amplitude, self-sustained pressure pulsations in to be gained into the high-frequency thermoacoustic

Two-stage, reheat combustor experiment for the investigation of high-frequency thermoacoustic instabilities

228 Thermodynamics

HGGFDCEMOGEJCPKUOUDQVJGZRGTKOGPVCNN[CPFPWOGTK-  #PPWNCT%QODWUVQT&CORKPI cally. To further develop a comprehensive understanding QHRJ[UKECNƅCOGTGURQPUGOGEJCPKUOUVQJKIJHTGSWGPE[ Motivation and Objectives RTGUUWTGRWNUCVKQPUVJGHQEWUKUGZVGPFGFVQYCTFUTGJGCV A major concern in modern industrial gas turbines is the combustion systems, which represent a highly relevant occurrence of combustion instabilities. Annular com- technology for modern gas turbine systems for electrical bustors burning under lean conditions are susceptible power generation. to self-sustained azimuthal oscillations. A widely used countermeasure is the use of passive damping devices Methods and Approaches VQUWRRTGUUJKIJCORNKVWFGRTGUUWTGRWNUCVKQPU'HƄEKGPV #UVCVGQHVJGCTVVGUVTKIHQTKPXGUVKICVKQPQHTGJGCVƅCOG dissipation of acoustic energy by such resonators and F[PCOKEUJCUDGGPFGUKIPGFEQOOKUUKQPGFCPFGZRGTK- hence the disruption of the thermoacoustic feedback OGPVUQPVJGTGJGCVƅCOGTGURQPUGYGTGEQPFWEVGF6JG cycle, requires appropriate dimensioning and an effective GZRGTKOGPVHGCVWTGUCURGEKCNFGUKIPVJCVRTQOQVGUVJG placement strategy especially in the case of annular ƄTUVVTCPUXGTUGCEQWUVKETGUQPCPVOQFGYJKNGUKOWNVCPG- combustors. ously allowing the establishment of a characteristic reheat ƅCOGYKVJCTGCUFQOKPCPVN[UVCDKNK\GFD[CWVQKIPKVKQP processes. The institute’s acoustic prediction tools, know- how and methodologies were employed in an iterative FGUKIPRTQEGUUVQKORNGOGPVCPGZRGTKOGPVVJCVCNNQYU Instantaneous for both in-depth academic studies by applying respective pressure distribution in the annular CEQWUVKECPFƅCOGFKCIPQUVKEOGCUWTGOGPVVGEJPKSWGU combustor test rig YJKNUVTGRTQFWEKPIEJCTCEVGTKUVKEƅCOGHGCVWTGUCVNCD with two damper impedances applied UECNG6JKUGZRGTKOGPVKUVJGDCUKUQHHWVWTGKPXGUVKICVKQPU to gain insight into distributed source terms that capture VJGWPFGTN[KPIRJ[UKEUQHJKIJHTGSWGPE[TGJGCVƅCOG 'ZRGTKOGPVCN#RRTQCEJ response. &KHHGTGPVFCORGTEQPƄIWTCVKQPUYKVJTGURGEVVQVJG number of dampers, their spatial distribution and the amount of purge air are investigated and compared to the baseline case without dampers. To assess the stability quantitatively three methods for damping rate computa- VKQPHTQOF[PCOKERTGUUWTGFCVCJCXGDGGPFGXGNQRGF Normalized acoustic pressure distribution within the two-stage combustion 6JGƄTUVOGVJQFKUDCUGFQPVJGCPCN[UKUQHVJGFGEC[ rig from frequency domain simulations of the pulsating pressures after sudden shut-down of UKTGPURTQXKFKPIUKPINGHTGSWGPE[CEQWUVKEGZEKVCVKQP6JG -G[4GUWNVU UGEQPFOGVJQFGORNQ[UUQECNNGF.QTGPV\KCPƄVVKPIVQ 6JGPQXGNTGJGCVEQODWUVQTGZRGTKOGPVTGRTGUGPVUTGCN- the pressure spectra resulting from turbulent combustion KUVKETGJGCVƅCOGHGCVWTGUCUHQWPFKPKPFWUVTKCNU[UVGOU noise and the third method consists of the analysis of the CPFCNNQYUHQTCPGZVGPUKXGUEQRGQHKPXGUVKICVKQPU6JG autocorrelation of the acoustic pressures. URGEKƄEEQODWUVQTFGUKIPQHVJGTKIJCUDGGPQRVKOK\GF UKOWNCVKPIKVUVJGTOQOGEJCPKECNCPFƅWKFF[PCOKEEJCT- 0WOGTKECN#RRTQCEJ acteristics. The acoustic design, sought to predominantly The measured damping rates serve as a validation data- GZEKVGVJGƄTUVVTCPUXGTUGOQFGKUFGXGNQRGFD[OGCPU base for a numerical methodology based on the linearized of analytic approaches together with computational Euler equations to predict the stability margin of the rig CGTQCEQWUVKEUKPVJGHTGSWGPE[FQOCKP+PCFFKVKQPVQ quantitatively in a wide operating range, and to assess this, a priori linear stability assessments are carried out VJGKPƅWGPEGQHFKHHGTGPVFCORGTEQPƄIWTCVKQPUCPF VQOCZKOK\GVJGƅCOGCEQWUVKEUEQPUVTWEVKXGHGGFDCEM fuel-stagings on the thermoacoustic stability to deduce This rig design was successfully commissioned and is basic guidelines for the application of passive damping now used to conduct investigations to establish insights concepts in annular combustors. KPVQVJGRJ[UKEUQHTGJGCVƅCOGF[PCOKEUCPFVQRTQXKFG validation data for the development of analytical and 4GNCVGF2TQLGEVU numerical prediction models for thermoacoustic stability +PCUKOKNCTRTQLGEVVJGCRRNKECVKQPQHVJGFCORKPI assessment tools as well. devices in a can-combustor is investigated in high frequency regime. To avoid high-frequency vibrations,

229 Thermodynamics

destruction of the engine and thus mission failure. The prediction of these instabilities and the assessment of counter measures is the objective of this project, to support the reliable design of thermo-acoustically stable rocket engines.

Methods and Approaches Numerical simulations are carried out in the frequency domain. Eigensolutions of linearized Euler equations are computed, describing modes and frequencies of the +PUVCPVCPGQWURTGUUWTGFKUVTKDWVKQPKPCUKPINGFCORGTEQPƄIWTCVKQP acoustic oscillations in the combustor. Absorbers are %(&.05'OGVJQF accounted for by impedance boundary conditions and a dome can be coupled to the chamber via a transfer the increase in the acoustic damping of the combustion OCVTKZ5QWTEGVGTOUKPVJGGPGTI[GSWCVKQPCEEQWPVHQT chamber is of central importance. This requires precise ƅCOGHGGFDCEM'ZRGTKOGPVCNN[UVWFKGUCTGECTTKGFQWVQP modeling tools which are not yet state of the art. There- CEQNFƅQYTQEMGVGPIKPGEQPƄIWTCVKQP fore, the purpose of this project is to develop a hybrid method for the damping calculation of can combustion EJCODGTUWUGFKPVJGJKIJGHƄEKGPE[OCEJKPGU6JKU KPENWFGUCEQODKPCVKQPQHPQPNKPGCTCPFNKPGCTƄGNF methods with network methods and the aim of creating CJ[DTKFRTQEGUUVJCVKUCUGHƄEKGPVCURQUUKDNG+PVJKU EQPVGZVVYQOGVJQFUCTGKPVTQFWEGF6JGƄTUVCRRTQCEJ KUVJG%(&.05'OGVJQFYJGTGVJGOQFGNKPIVCUMKU Normalized pressure amplitudes of the split modes occurring upon to calculate the acoustic processes in the combustion application of an absorber ring; from: Kings et al. EJCODGT DCUMGVCPFVTCPUKVKQP DCUGFQPNKPGCTK\GF 0CXKGT5VQMGUGSWCVKQPU .05' +PVJGQVJGTCRRTQCEJ -G[4GUWNVU RGTVWTDGFPQPNKPGCTPQPEQPUGTXCVKXG'WNGT 2'00'  (QTVJGUVCDKNKV[RTGFKEVKQPUKPTQEMGVEQODWUVQTUCPCN[UKU equations will be implemented for computational aero JCUDGGPGZVGPFGFVQFKHHGTGPVRTQRGNNCPVEQODKPCVKQPU CEQWUVKE %## UKOWNCVKQPU+PIGPGTCNVJGJ[DTKF The modes in a hydrogen and a methane fueled engine CRRTQCEJUGRCTCVKPIVJGECNEWNCVKQPQHOGCPƅQYƄGNF YKVJQWVƅCOGHGGFDCEMJCXGDGGPEQORCTGFYKVJGCEJ and perturbation in time domain will help to identify the other. Computational and qualitative differences in the

acoustic behavior of combustion chambers and associ- EWVQPDGJCXKQTJCXGDGGPQDUGTXGF+PEQPVTCUVVQ*2,

ated damping elements at comparatively low cost. for CH4 higher modes can be cut on in the front chamber part, before lower modes are cut on at the rear end.  %QODWUVKQP+PUVCDKNKVKGUKP4QEMGV'PIKPGU (WTVJGTPWOGTKECNCPFGZRGTKOGPVCNUVWFKGUJCXGDGGP EQPVKPWGFGZCOKPKPIVJGOQFKƄECVKQPQHEJCODGTCEQWU- Motivation and Objectives tics by the application of an absorber ring. The mode split High frequency combustion instabilities arise from the observed previously has been studied with respect to the KPVGTCEVKQPQHƄGNFƅWEVWCVKQPUFWGVQVJGEQODWUVQT CDUQTDGTFGUKIPCPFCUKIPKƄECPVKPƅWGPEGQPVJGOQFG acoustics with the heat release from the combustion. shape as well as eigenfrequencies has been found. Consequences of unstable operation can reach up to

6TCPURQTV2JGPQOGPC

 $GJCXKQTQHVJG8QKF(TCEVKQPKP5WDEQQNGF ETKVKECNXCNWGQHVJGJGCVƅWZ %*( ƄNODQKNKPIECPQEEWT (NQY$QKNKPI%NQUGVQ%TKVKECN*GCV(NWZ This boiling crisis and the departure from nucleate boiling must be avoided under all circumstances. Motivation and Objectives +PPWENGCTGPIKPGGTKPIVJGJGCVVTCPUHGTKPDQVJTGCEVQT #RRTQCEJVQ5QNWVKQP core and steam generator are of great interest regarding 6JGGZRGTKOGPVCNYQTMEQPFWEVGFCV67/KUCKOGFCV the safe operation of a nuclear power plant. Beyond a RTQXKFKPIFGVCKNGFGZRGTKOGPVCNFCVCCDQWV%*(EQPFK-

230 Thermodynamics

research on the recovery of potable water from saline water has therefore undergone a paradigm shift from a product-centered activity to a comprehensive interdiscipli- PCT[ƄGNF &QWDNGƄDGTRTQDGKPUGTVGF KPVQCVYQRJCUGƅQY #RRTQCEJVQ5QNWVKQP Mainly two desalination techniques are currently investi- VKQPUHQTXCNKFCVKQPQH%(&DCUGFETKVKECNJGCVƅWZOQF- ICVGFCVVJG+PUVKVWVGTGXGTUGQUOQUKU 41 CPFXCEWWO eling. Special interest is placed on gathering data about OGODTCPGFKUVKNNCVKQP 8/& 6JGVJGTOCNFTKXGPRTQEGUU VJGOQTRJQNQI[QHVJGVYQRJCUGƅQYENQUGVQ%*(KPVJG QH8/&ECPQRGTCVGCVUCNKPKVKGUVJCVIQDG[QPFVJGNKOKVU immediate vicinity of the heated wall. Measurements are of RO, which has to overcome the osmotic pressure of carried out using a variety of measurement techniques, saline solutions. This is a necessary feature especially ranging from conventional thermocouples and pressure in brine treatment of desalination plants or waste water UGPUQTUVQJKIJURGGFXKFGQOGVT[CPFQRVKECNOKETQƄDGT VTGCVOGPVWRVQVJGUQECNNGF\GTQNKSWKFFKUEJCTIG <.&  RTQDGU6JGNCVVGTUJQYPKPVJGƄIWTGTGRTGUGPVKPIC FQWDNGƄDGTRTQDGRTQXKFGCYC[QHOGCUWTKPIVJGNQECN -G[4GUWNVU void fraction, bubble velocity and bubble diameters inside 5KOKNCTVQJGCVGZEJCPIGTUKPVJG41RTQEGUUVJG CƅQYEJCPPGN build-up of a concentration boundary layer decreases the RGTHQTOCPEGQHVJGU[UVGO'ZRGTKOGPVCNCPFPWOGTKECN UVWFKGUQPRWNUCVKNGƅQYUUJQYGFVJCVVJGYCVGTƅWZECP DGUKIPKƄECPVN[KPETGCUGFFWGVQVJGFKUVQTVKQPQHVJG boundary layer, depending on amplitude and frequency. (WTVJGTOQTGQRVKECNUVWFKGUQHRWNUCVKPIƅQYUKPEJCPPGNU including eddy promoters were performed to identify the OCKPƅWKFF[PCOKERJGPQOGPC&WTKPIVJGGZRGTKOGPVCN investigations, a measurement technique was developed VQOGCUWTGJKIJN[F[PCOKEXQNWOGƅQYTCVGUKPJ[FTCWNKE systems.

.GHVCZKU%QORCTKUQPQHGZRGTKOGPVCNYKVJUKOWNCVGFDQKNKPIEWTXG 4KIJVCZKU8QKFHTCEVKQPCVVJGYCNN FCUJGFNKPGGZRGTKOGPVCNTGUWNVCV%*(

-G[4GUWNVU +VYCUHQWPFVJCVKPNGVUWDEQQNKPIKUVJGOCKPKPƅWGPEG parameter on void fraction. An analysis of the dynamic behavior of the void along the entire boiling curve up to HWNN[FGXGNQRGFƄNODQKNKPITGXGCNGFCUWFFGPRGCMKP 5MGVEJQHVJGQRVKOK\GF8/&U[UVGOFGUKIP XQKFHTCEVKQPCVVJGYCNNWRQPTGCEJKPIETKVKECNJGCVƅWZKP EQPLWPEVKQPYKVJCUKIPKƄECPVKPETGCUGKPDWDDNGXGNQEKV[ %QPEGTPKPI8/&FWTKPIVJGNCUV[GCTUVJGKPUVKVWVGJCU ENQUGVQVJGYCNN6JGGZRGTKOGPVCNFCVCJCXGDGGPWUGF built up a research infrastructure to investigate the tech- VQFGXGNQRCECNKDTCVKQPRTQEGFWTGQHVJGENCUUKECN%(& nology from multi-effect industrial systems down to heat DQKNKPIOQFGNCUUJQYPKPVJGƄIWTGDGNQY and mass transfer phenomena in the membrane channels with respect to scaling behavior and membrane wetting. 6TCPURQTV2JGPQOGPCKP&GUCNKPCVKQP Continuing the work of the last years a new model of a OWNVKGHHGEV8/&U[UVGOJCUDGGPUWEEGUUHWNN[EQO- Motivation and Objectives pleted. This tool developed can be used to optimize plant 9CVGTRTQEGUUKPICPFKVUTGNCVGFRQYGTEQPUWORVKQP FGUKIPQHOWNVKGHHGEV8/&U[UVGOUCPFFGETGCUGVJG within the constraints of an ecologically sustainable use of energy consumption with respect to high concentrated globally essential resources has become one of the major saline solutions and possible scaling effects. EJCNNGPIGUQHVJGUVEGPVWT[&WTKPIVJGNCUVFGECFG

231 Thermodynamics

 5QNCT%QQNKPID[%QWRNKPIQH28 KUUNKIJVN[NQYGTVJCPVJG%12QHVJGUETQNNEQORTGUUQT and Compression Chillers 6JGUGRTQOKUKPIƄTUVTGUWNVUNGCFVQHWTVJGTKPXGUVKICVKQPU comparing the dynamic operation of the two compressor Motivation and Objectives types. Thermal conditioning of residential buildings plays a major role in the energy consumption of countries in a temperate  'PGTI['HƄEKGPV*GCV5QWTEG/CPCIGOGPV&WTKPI climate as well as in the hot and humid climate of coun- VJG+PKVKCN*GCVWR2GTKQFQH8GJKENG%CDKP tries in the Gulf region. The market share of HVAC devices powered by renewable energy is low for both regions. This Motivation and Objectives KUUWGKUCFFTGUUGFKPVJG28%QQNRTQLGEVQHVJG+PUVKVWVG Even in current, combustion-engine powered vehicles, of Thermodynamics at TUM and the Hamad Bin Khalifa cabin-heating in winter conditions is mainly provided by 7PKXGTUKV[ *$-7 KP&QJC3CVCTUVCTVGFKP/CTEJ the heat rejection of the drivetrain. Consequently, develop- OGPVIQCNUVQCEJKGXGJKIJGTGHHGEVKXGGHƄEKGPE[CPFNQYGT fuel consumption entail decreasing waste heat production. As a result, in particular diesel engine-powered vehicles JCXGVQFGCNYKVJKPUWHƄEKGPVJGCVUWRRN[VQVJGXGJKENG cabin under low ambient temperatures.

#RRTQCEJVQ5QNWVKQP 2TGUGPVKPXGUVKICVKQPUCTGHQEWUGFQPVJGKPƅWGPEGQH different engine operation modes of a state-of-the-art CWVQOQVKXGUKZE[NKPFGTFKGUGNGPIKPGQPKVUGPGTI[ balance and its emissions especially under low-load con- FKVKQPU2TKOCTKN[VJGRCTCOGVGTUCHHGEVKPIVJGEQODWUVKQP process and the intake system are investigated. Addition- CNN[NQCFRQKPVUJKHVKPIFWGVQGNGEVTKECNNQCFUKUGZCOKPGF #UCPGXCNWCVKQPETKVGTKQPCPGYMKPFQHGHƄEKGPE[HCEVQT is introduced.

%QORTGUUQTUGEVKQPQHVJGVGUVTKIYKVJUYCUJRNCVGEQORTGUUQT NGHV CPF -G[4GUWNVU UETQNNEQORTGUUQT TKIJV %CDKPJGCVKPIJCUCETWEKCNKPƅWGPEGQPVJGVJGTOCNCPF emission behavior of the engine. Therefore, the amount #RRTQCEJVQ5QNWVKQP of heat or enthalpy transferred to the environment must %QORTGUUKQPEJKNNGTU %% FKTGEVN[EQWRNGFYKVJRJQVQ DGTGFWEGFUKIPKƄECPVN[6JKUECPDGCEJKGXGFOQUV XQNVCKE 28 U[UVGOU 28%% JCXGICKPGFKPETGCUGF effectively by increasing the EGR rate and the charge CVVGPVKQPOCKPN[FWGVQVJGFGETGCUKPIEQUVUQH28 CKTVGORGTCVWTG+PFKTGEVEJCTIGCKTEQQNKPIU[UVGOUHQT systems and the low investment costs of conventional GZCORNGCTGCFXCPVCIGQWUHQTDQVJOGCUWTGU compression chillers, which makes them more and more economically feasible. However, one of the main chal-  .QY&KOGPUKQPCN/QFGNNKPIQH(NQYCPF/KZKPIKP NGPIGUKP28%%KUVJGKTWPUVGCF[QRGTCVKQPCPFPGGFHQT #WVQOQVKXG*8#%7PKVU7UKPI2TQRGT1TVJQIQPCN NQYRCTVNQCFECRCDKNKV[WPFGTƅWEVWCVKPIUQNCTKTTCFKCVKQP &GEQORQUKVKQP Therefore, a swash-plate compressor is integrated into a CC for residential buildings and tested under desert and Motivation and Objectives temperate climate boundary conditions. 2CUUGPIGTEQOHQTVJCUDGEQOGCOCLQTCURGEVKPOQFGTP vehicle air conditioning concepts. Therefore, the tem- -G[4GUWNVU peratures at the outlets of the HVAC units are controlled +PCƄTUVUVGRGZRGTKOGPVCNEQORCTKUQPUDGVYGGP and measured using temperature sensors. These sensors swash plate compressor and scroll compressor, that is provide the most important value for the automatic climate EQOOQPN[WUGFKP*8#%CRRNKECVKQPUYGTGGZGEWVGF EQPVTQN #%% 6QRTGFKEVVJGVGORGTCVWTGUCVVJGQWVNGVU WPFGTUVGCF[UVCVGEQPFKVKQPU+VEQWNFDGUJQYPVJCV CPQXGNRTQRGTQTVJQIQPCNFGEQORQUKVKQP 21& DCUGF the part load capability of the swash-plate compressor approach is investigated to avoid costly sensors and is substantially lower than for the scroll compressor. The enable model-based control of the HVAC unit. EQGHƄEKGPVQHRGTHQTOCPEGQHVJGUYCUJRNCVGEQORTGUUQT

232 Thermodynamics

#RRTQCEJVQ5QNWVKQP -G[4GUWNVU 6JG21&OGVJQFKUYKFGN[WUGFVQGZVTCEVFQOKPCPV The approach was applied and evaluated on a real HVAC ƅQYHGCVWTGUHTQOURCVKQVGORQTCNƅQYQDUGTXCVKQPU$[ WPKVQHCURQTVWVKNKV[XGJKENG#ƅWKFTGUKUVCPEGPGVYQTM WUKPIQPN[VJGOQUVFQOKPCPVHGCVWTGUQTUQECNNGF21& YCUGUVCDNKUJGFVQECNEWNCVGVJGXQNWOGƅQYTCVGUCVVJG OQFGUCNQYFKOGPUKQPCNOQFGNQHVJGƅQYƄGNFECPDG QWVNGVU$[EQODKPKPIVJGƅWKFTGUKUVCPEGPGVYQTMYKVJVJG HQTOWNCVGF+PVJKUYQTMVJG21&KUCRRNKGFVQVJGOKZKPI 21&CRRTQCEJVJGQWVNGVVGORGTCVWTGUECPDGEQORWVGF RTQEGUUKPVJG*8#%WPKVVQƄPFCEQTTGNCVKQPDGVYGGP As a major outcome it could be shown that the accuracy KPRWVCPFQWVRWVRCTCOGVGTUKPVGTOUQHXQNWOGƅQY of the model is comparable to the measurement uncer- TCVGUCPFGPVJCNR[ƅQYTCVGUTGURGEVKXGN[$[EQWRNKPI VCKPV[QHVJGUGPUQTU - (WTVJGTOQTGVJGCRRNKECVKQP VJG21&OQFGNYKVJVTCFKVKQPCNOQFGNKPIVGEJPKSWGUC of the model for model-based control was demonstrated. low dimensional description of the HVAC unit is obtained.

#YCTFUCPF*QPQTU

)QNFGP6GCEJKPI#YCTF #5/'&GFKECVGF5GTXKEG#YCTF 0QTDGTV*GWDNGKPYQPVJG&GRCTVOGPVQH/GEJCPKECN #V6WTDQ'ZRQKP%JCTNQVVG%JTKUVQRJ*KTUEJ Engineering Golden Teaching Award in the category TGEGKXGFVJG#5/'&GFKECVGF5GTXKEG#YCTFYJKEJ n$CEJGNQT'ZGTEKUGUoQPDGJCNHQHVJGFGRCTVOGPVoU honors unusual dedicated voluntary service to the ASME students as a recognition for his commitment and per- marked by outstanding performance, demonstrated HQTOCPEGKPVGCEJKPI6JGTOQF[PCOKEU+ effective leadership, prolonged and committed service, devotion, enthusiasm and faithfulness. The award is 9#66/CUVGToU6JGUKU#YCTF presented to selected individuals who have served the 6JG5EKGPVKƄE9QTMKPI)TQWR6GEJPKECN6JGTOQF[PCOKEU ASME for at least ten years. 9#66 CYCTFGF5KOQP6CTVUEJCRTK\GHQTJKUGZEGNNGPV Master thesis ‘Aufbau eines optischen Schatten-Mess- )225+PPQXCVKQP#YCTF U[UVGOUWPF&WTEJHØJTWPIXQP8GTDTGPPWPIUWPVGTUWEJ- Thomas Sattelmayer has been selected as the recipient of ungen’, which was supervised by Markus Grochowina. VJG)NQDCN2QYGT2TQRWNUKQP5QEKGV[ )225 +PPQ- 6JGCYCTFYCURTGUGPVGFVQJKOKPVJGHQTOQHCEGTVKƄ- vation Award. This annual award is given in recognition of ECVGCVVJGNCUV6JGTOQF[PCOKEU%QNNQSWKWOKP&TGUFGP outstanding technical and professional contributions to 2CTVQHVJGRTK\GYCURCTVKEKRCVKQPCVVJGEQNNQSWKWO the gas turbine industry. YJGTGJGRTGUGPVGFJKUGZEGNNGPVYQTMVQVJG)GTOCP Thermodynamics Community. 0GY*QPQTCT[2TQHGUUQTCV the Chair of Thermodynamics #5/'6WTDQ'ZRQ$GUV6GEJPKECN2CRGT#YCTF &T+PI#NGZCPFGT-QNDYCUCRRQKPVGF*QPQTCT[2TQHGU- #V6WTDQ'ZRQ5VGHCP$CWGT$CNDKPC*CORGNCPF UQTCVVJG6GEJPKECN7PKXGTUKV[QH/WPKEJ*GKU&KTGEVQT 6JQOCU5CVVGNOC[GTTGEGKXGFVJG$GUV2CRGT#YCTFQH of the Engineering Center Northern Europe of the Thermal VJG#5/'+)6+/KETQVWTDKPGU6WTDQEJCTIGTU5OCNN 'WTQRG%GPVGTQH&'051%QTRQTCVKQP-CTK[C,CRCP 6WTDQOCEJKPGT[ /656 %QOOKVVGGHQTVJGKTRCRGT Since winter term 03/04 he has been teaching the Master n1RGTCDKNKV[.KOKVUQH6WDWNCT+PLGEVQTUYKVJ8QTVGZ)GPGT- course ‘Automotive Air Conditioning/Refrigeration Tech- CVQTUHQTC*[FTQIGP(WGNGF4GEWRGTCVGF-Y%NCUU PQNQI[oCPFVJGEQTTGURQPFKPIGZGTEKUGU+PCFFKVKQPVQJKU Gas Turbine’. VGCEJKPICEVKXKVKGU&T-QNDJCUUWRRQTVGFTGUGCTEJCVVJG TUM in many ways in the past. #5/'6WTDQ'ZRQ$GUV6GEJPKECN2CRGT#YCTF #V6WTDQ'ZRQ8GTC*QHGTKEJVGT%JTKUVQRJ*KTUEJCPF 6JQOCU5CVVGNOC[GTTGEGKXGFVJG$GUV2CRGT#YCTFQH VJG#5/'+)6+%QODWUVKQP(WGNUCPF'OKUUKQPU %('  %QOOKVVGGHQTVJGKTRCRGTn2TGFKEVKQPQH%QPƄPGF (NCOG(NCUJDCEM.KOKVU7UKPI$QWPFCT[.C[GT5GRCTCVKQP Theory’.

233 Thermodynamics

Technical Staff %QWTUGU ,QUGH&QTTGT ■ 6JGTOQF[PCOKEU+CPF++ Gerhard Giel ■ Combustion ,GPU*ØOOGT ■ &GUCNKPCVKQP Ogulcan Kocer ■ Energy Optimization of Buildings ,QGN4KGIGT ■ Solar Engineering Thomas Schleussner ■ Automotive Air Conditioning 2TQH&T+PI Bernhard Strobl ■ 6JGTOQ(NWKFF[PCOKEU.CD Thomas %NCWU9KOOGT ■ Combustion Technology Lab Sattelmayer ■ Solar Technology Lab 4GUGCTEJ(QEWU ■ &CVC#ESWKUKVKQP%QPVTQNU.CD Contact ■ Combustion emission and reliability www.td.mw.tum.de ■ Combustion instabilities and noise 5GNGEVGF2WDNKECVKQPU [email protected] ■ Transport phenomena ■ $GTIGT(/*WOOGN6*GTVYGEM 2JQPG  /-CWHOCPP,5EJWGTOCPU$ Competence 5CVVGNOC[GT6*KIJ(TGSWGPE[ Management ■ 'ZRGTKOGPVCNCPFVJGQTGVKECNUVWF[ Thermoacoustic Modulation Mecha- 2TQH&T+PI6JQOCU5CVVGNOC[GT of combustion and thermo-acoustics nisms in Swirl-Stabilized Gas Turbine 1TFKPCTKWU stability analysis of combustion %QODWUVQTU2CTV1PG'ZRGTKOGPVCN 2TQHGO&T+PI&T+PI'J systems +PXGUVKICVKQPQH.QECN(NCOG4GURQPUG (TCP\/C[KPIGT 'OGTKVWU ■ 'ZRGTKOGPVCNCPFVJGQTGVKECNUVWF[QH ,'PI)CU6WTDKPGU2QYGT 2TQHK4&T+PI&T+PIJCDKN low-emission constant pressure and ■ *CUUNDGTIGT,-CV\[2$QGEM. ,QJCPPGU5VTCWD 'OGTKVWU constant volume combustion 5CVVGNOC[GT6%QORWVCVKQPCN(NWKF ■ 5KOWNCVKQPQHƅQYJGCVVTCPUHGTCPF &[PCOKEU5KOWNCVKQPQH&GƅCITCVKQP Senior Scientists combustion VQ&GVQPCVKQP6TCPUKVKQPKPC(WNN5ECNG &T+PI%JTKUVQRJ*KTUEJ ■ 'ZRGTKOGPVCNCPFVJGQTGVKECNUVWF[QH -QPXQK6[RG2TGUUWTK\GF9CVGT4GCEVQT &T+PI/CTMWU5RKPPNGT VYQRJCUGƅQYCPFDQKNKPI ,QWTPCNQH0WENGCT'PIKPGGTKPICPF 4CFKCVKQP5EKGPEG   .GEVWTGT +PHTCUVTWEVWTG ■ *QHGTKEJVGT8*KTUEJ%5CVVGNOC[GT &T+PI#NGZCPFGT-QND ■ Mechanical workshop, electronics 6#PCN[VKE2TGFKEVKQPQH7PEQPƄPGF workshop $QWPFCT[.C[GT(NCUJDCEM.KOKVU Administrative Staff ■ Combustion/combustion instability KP2TGOKZGF*[FTQIGP#KT(NCOGU Helga Bassett TGUGCTEJVGUVEGNNUHQTGZRGTKOGPVU Combustion Theory and Modelling 21 &KRN+PI (* 5KITKF5EJWN\4GKEJYCNF from lab to engine scale, 40bar laminar   ƅCOGTKICVOQURJGTKEUKPINGDWTPGT ■ 2TÀDUV#-KGHGT(-TQK»#5RKPPNGT 4GUGCTEJ5EKGPVKUVU TKIUM9CPPWNCTEQODWUVQT /5CVVGNOC[GT6+PƅWGPEGQH Ehsan Arabian, M.Sc. M9*2TKIDCTM9YCVGT dynamic operation of reverse osmosis Christoph Barfuß, M.Sc. EJCPPGNHQTƅWKFF[PCOKEUCPFOKZKPI U[UVGOUQPƅWKFF[PCOKEUCPFOCUU (TGFGTKM$GTIGT/5E UVWFKGUOOTCRKFEQORTGUUKQP VTCPUHGTD[KPXGUVKICVKQPQH&URCEGT Moritz Bruder, M.Sc. machines, dynamical constant volume ƄNNGFEJCPPGNU&GUCNKPCVKQPCPF9CVGT #NGZCPFGT%JGOPKV\/5E combustion cell, detonation channel 6TGCVOGPV &KRN+PI2CWN%JTKUV ■ 6YQRJCUGƅQYTGUGCTEJDQKNKPINQQR ■ 7VUEJKEM/5CVVGNOC[GT6(NCOG *CPPGU&KGV\/5E water-air two-phase loop, test rigs for *QNFKPIKPVJG2TGOKZKPI

234 Sport Equipment and Materials

Sustainable support for sports and health through technology

■67/oUDTQCFMPQYNGFIGHTQOXGT[FKHHGTGPVUEKGPVKƄEFKUEKRNKPGUJGNRUWUVQTGCNK\GQWTEJQUGP JQNKUVKECRRTQCEJVQDGVVGTWPFGTUVCPFVJGKPVGTCEVKQPDGVYGGPCVJNGVGGSWKROGPVCPFGPXKTQPOGPV +PYGGZVGPFGFQWTKPVGTPCNPGVYQTMUVCTVKPICENQUGEQNNCDQTCVKQPYKVJVJG%JCKTQH/KETQ 6GEJPQNQI[CPF/GFKECN&GXKEG6GEJPQNQI[ /K/GF QH2TQHGUUQT.ØVJ

From our 2017 activities four highlights are worth ■ +PVGPUKƄECVKQPQHQWTEQNNCDQTCVKQPYKVJ4GWVNKPIGP7PK- mentioning: XGTUKV[QPVJGƄGNFVGEJPKECNICTOGPVCPFYGCTCDNGU ■ Development and realization of a new test bench to %QOOQPUVWFGPVRTQLGEVCV'PXKTQPOGPVCN4GUGCTEJ SWCPVKH[UMKDQQVƅGZKDKNKV[ 5VCVKQPn5EJPGGHGTPGTJCWUo

Towards Better Performance with Optimized Sport Equipment

/QWPVCKPDKMGFQYPJKNNQPC YKFGN[ UVCPFCTFK\GFVTCEMYKVJVYQFKHHGTGPVUWURGPUKQPUGVVKPIU RJQVQ.CTU5EJCTN

Improving the performance in both top-level and leisure- #PGZEGNNGPVGZCORNGQHQWTGHHQTVUVQYCTFUQRVKOK\GF VKOGURQTVUKUQPGOQVKXCVKQPQHQWTYQTM6JGHQEWUKU performance of sport equipment is demonstrated in a on optimizing the energy transfer between athlete and study which has been performed by one of our Master GSWKROGPVCPFQPTGFWEKPIVJGKPJGTGPVGPGTI[NQUU1P UVWFGPVU 2CDNQ9GDGT 6JGIQCNYCUVQEJCTCE- the equipment level we try to achieve this by: terize different suspension settings of mountain bikes ■ DGVVGTYGKIJVVQUVKHHPGUUTCVKQ KGDKE[ENGHTCOG  CPFVQCPUYGTVJGSWGUVKQPKHVJGUGJCXGCPKPƅWGPEGQP ■ WUKPIGPGTI[UVQTCIGCPFTGVWTPGHHGEVU VJGRGTEGKXGFUWDLGEVKXGTKFKPIGZRGTKGPEGQHCFXCPEGF ■ optimized heat- and moisture management of sport DKMGTU7UKPICURGEKCNUWURGPUKQPVWPKPIU[UVGO ICTOGPVU KGPGYKPƄNNUHQTFQYPLCEMGVU  (ShockWiz™) the performance of four identical enduro ■ KORTQXGFƄVVKPIVQVJGKPFKXKFWCN KGIQNHUJCHV  mountain bikes were tuned differently thus achieving

235 Sport Equipment and Materials

Through a holistic activation of hand- and arm muscles we want to achieve an equal activation of essential core mus- ENGITQWRUCPFVJGTGHQTGKORTQXGCVJNGVKERGTHQTOCPEG 9GCKOVQFGXGNQRCPKPFKXKFWCNK\GFGZQUMGNGVQPINQXG VJCVCEVKXCVGUVJGCHQTGOGPVKQPGFOWUENGU A high level of manufacturing quality for these gloves KURQUUKDNGVJTQWIJQWTEQNNCDQTCVKQPRCTVPGTVJG%JCKT of Micro Technology and Medical Device Technology /K/GF QH2TQHGUUQT.ØVJ5VCVGQHVJGCTVCFFKVKXGOCPW HCEVWTKPIVGEJPKSWGUYKNNDGWUGFVQETGCVGVJGUGINQXGU 7UKPIQWTGZRGTVKUGKPUEKGPVKƄEOGVJQFQNQI[YGYKNN XCNKFCVGVJGKTGHƄECE[KPRGTHQTOCPEGFWTKPICUWDUGSWGPV XCNKFCVKQPUVWF[ &CVCNQIIGTCPFNKPGCTFKURNCEGOGPVOGCUWTGOGPVCVTGCTUWURGPUKQP RJQVQ.CTU5EJCTN

TGURQPUGEJCTCEVGTKUVKEUUWEJCUnCIITGUUKXGonGHƄEKGPVo nDCNCPEGFoCPFnRNC[HWNo All test bikes and their suspensions were equipped with sensors – standardized measurements on a test bench EQPƄTOGFRJ[UKECNN[OGCUWTCDNGURTGCFUQHVJGHQWT UGVWRU6QCPUYGTVJGCDQXGSWGUVKQPQPVJGTGNCVKQPUJKR between objective and subjective parameters a blind VGUVYCURGTHQTOGF6JGUGNGEVGFVGPUWDLGEVUsCNNYKVJ CRRTQZKOCVGN[VJGUCOGDQF[YGKIJVsJCFVQTCVGVJG performance of the bikes under widely standardized ƄGNFEQPFKVKQPUCPFCNYC[UCICKPUVVJGUCOGTGHGTGPEG DKMG8CTKCPEGCPCN[UGUEQPƄTOUKIPKƄECPVFKHHGTGPEGUKP RGTEGRVKQPCPFGXCNWCVKQPVJWURCXKPIVJGYC[HQTHWTVJGT TGUGCTEJQPOGEJCVTQPKEUWURGPUKQPU[UVGOU

Improved Fitting Through Customized Sport Equipment #IQQFEQTGUVCDKNKV[JCUCJKIJKORCEVKPFKHHGTGPVƄGNFUQH RJ[UKECNCEVKXKV[NKMGTGJCDKNKVCVKQPRGTHQTOCPEGKORTQXOGPV CPFKPLWT[RTGXGPVKQP'URGEKCNN[FWTKPIHCUVFKUVCNUGIOGPV OQXGOGPVUCPFKPKVKCVKQPQHHQTEGFGXGNQROGPVJKIJCEVKXK V[CPFJGPEGUVCDKNKV[QHVJGEQTGOWUENGUKUGUUGPVKCN

(KTUVUVGRUVQYCTFUCPKPFKXKFWCNGZQUMGNGVQPINQXGYJKEJCKOUVQCEVKXCVG URGEKƄEOWUENGITQWRUVQGPJCPEKPIEQTGUVCDKNKV[

Future Aspects Like the idea of ‘individualized medicine’ assistive devices GIQTVJGUGU UJQWNFCNUQDGCFLWUVCDNGVQCPKPFKXKFWCNoU CPVJTQRQOGVT[9JKNGQTVJGUGUCPFRTQUVJGUGUOCPWHCE- turers already consider different segment circumferences CPFNGPIVJUVJG[UVKNNPGINGEVKPFKXKFWCNFKHHGTGPEGUYKVJ respect to the joint’s trajectory of its instantaneous centers QHTQVCVKQPNGCFKPIVQWPGXGPRTGUUWTGFKUVTKDWVKQPQHVJG QTVJGUKUCPFEQPUGSWGPVN[VQJKIJNQCFUQPUQHVVKUUWGU Through high-precision measurement of human surface %WUVQODWKNVFCVCNQIIGTVQOGCUWTGE[ENKPIURGGFFKURNCEGOGPVUCPF CPFLQKPVRTQRGTVKGUCPFCFFKVKXGOCPWHCEVWTKPIYGCKO XGNQEKVKGUCVVJGUWURGPUKQPUVJTGGCZKUCEEGNGTCVKQPUCPIWNCTFKURNCEG HQTCTGCNEWUVQOK\CVKQPHQTGXGT[QPGKPVJGPGCTHWVWTG ments and velocities

236 Sport Equipment and Materials

Understanding the Interaction between Athlete, Equipment and Environment

2U[EJQRJ[UKEUJCURGTXCUKXGCPFUKIPKƄECPVRTCEVKECN CRRNKECVKQPUKPFKHHGTGPVƄGNFUUWEJCUPGWTQUEKGPEG TQDQVKEUDWVCNUQHQTURQTVUGPIKPGGTKPI6JGOGCPKPI for sports engineering becomes clear if we look at the HCEVQTn FKU EQOHQTVo6JKUXCTKCDNGKUEQPUKFGTGFCUQPG of the important criteria for athletes selecting and tuning VJGKTURQTVGSWKROGPV+VOC[CNUQJCXGCPKORCEVQP URQTVKPLWTKGUCPFRGTHQTOCPEG1PGTGNCVGFSWGUVKQPKU whether there is a relationship between objective bio- 2NCPVCTRTGUUWTGOGCUWTGFYKVJKPUQNGU OGEJCPKECNRCTCOGVGTU KGRNCPVCTRTGUUWTGFKUVTKDWVKQP QTLQKPVCPINGU CPFVJGRGTEGKXGFTCVKPIUQHVJGCVJNGVGU RGTHGEVDQWPFCT[EQPFKVKQPUVQKPXGUVKICVGVJKUSWGUVKQP 4WPPKPICPFGURGEKCNN[QPXCTKQWUV[RGQHVGTTCKPQHHGTU Systematically different types and levels of perturbations CTGKORQUGFVQTWPPGTU KGCFFKVKQPCNYGKIJVKPVJGDQQVU  CPFVJGKTRGTEGRVKQPUQHRGTVWTDCVKQPUCTGICVJGTGF Simultaneously objective variables such as center of RTGUUWTGXGTVKECNHQTEGLQKPVMKPGOCVKEUCPF'/)CTG OGCUWTGF(KTUVQDUGTXCVKQPUKPFKECVGVJCVVJGCVJNGVG seems to maintain his/her running pattern even if major GSWKROGPVOQFKƄECVKQPUJCXGDGGPOCFG

4CVJGTPQPGTIQPQOKEFCVCEQNNGEVKQPKPVJGƄGNF 2GTHQTOCPEGVGUVUYKVJUWDLGEVKXGTCVKPIUQHFKUEQOHQTVQHFKHHGTGPVVTKCN TWPPKPIUJQGU

Health, Wellness and More Fun Through Technical Support

Sports and physical activity are often considered as nVJGRTGXGPVKXGOGFKEKPGPQVVCMGPo%NGCTN[VJKURWVU emphasis on the so-called self-management of health since people are individually responsible for their physi- ECNCEVKXKV[CPFYGNNDGKPI6QFC[VJGCFXCPEGOGPV QHUGPUKPIVGEJPQNQIKGUGODGFFGFU[UVGOUYKTGNGUU EQOOWPKECVKQPPCPQVGEJPQNQIKGUCPFOKPKCVWTK\CVKQP potentially makes it possible to develop smart systems for OQPKVQTKPICEVKXKVKGUCPFXKVCNRCTCOGVGTU+PVJGNCUVHGY [GCTUCOWNVKVWFGQHYGCTCDNGFGXKEGUUWEJCUCEVKXKV[ VTCEMGTUUOCTVYCVEJGUQTKPGTVKCUGPUQTUJCXGEQOGVQ VJGOCTMGV6JG[CUUKUVCUCXKTVWCNEQCEJOQPKVQTRJ[UKQ (KVPGUU6TCEMGT)#4/+0 /WNVKURQTVYCVEJ)#4/+0 NQIKECNRCTCOGVGTUQTGXGPUGTXGCUCHGGFDCEMU[UVGO XKXQUOCTVŠ*4 (QTGTWPPGTŠ:6 6JGHWVWTGQHYGCTCDNGFGXKEGUYKVJUGPUQTUENQUGQPQT GXGPKPVJGDQF[UGGOUVQDGDTKIJV

237 Sport Equipment and Materials

Sports engineering not only takes care of developing VJQUGU[UVGOUQTKORTQXKPIVJGKTCEEWTCE[CPFWUCDKNKV[+V KUCNUQKPEJCTIGVQXCNKFCVGVJGOCICKPUVIQNFUVCPFCTFU 4GICTFKPIVJGUGKUUWGUYGCTGEWTTGPVN[HQEWUKPIQPVJG XCNKFCVKQPQHUQOGEWTTGPVUVCVGYGCTCDNGFGXKEGUGI OWNVKURQTVYCVEJGU )#4/+0(QTGTWPPGTŠ:62QNCT 8 CPFƄVPGUUVTCEMGTU )#4/+0XKXQUOCTVŠ*4 61/61/6QWEJ(KVDKV%JCTIG9KVJKPIU2WNUG1Z 6JG CKOQHVJKUGZVGPUKXGUVWF[KUVQFGVGTOKPGVJGCEEWTCE[ QHGUVKOCVKQPQHEGTVCKPRJ[UKQNQIKECNRCTCOGVGTU6JGUG RCTCOGVGTUKPENWFGJGCTVTCVGGPGTI[EQPUWORVKQPVJG body fat percentage as well as the cardiorespiratory ƄVPGUUNGXGN$CUGFQPVJGTGUWNVUVJGGUVKOCVKQPQHRJ[U- iological parameters of future wearable devices shall be KORTQXGF+PCFFKVKQPVQVJCVYGCTGCNUQYQTMKPIQPVJG development of new non-invasive measurement systems OQPKVQTKPIJ[FTCVKQPUVCVWUCPFINWEQUGEQPEGPVTCVKQP (KVPGUU6TCEMGT9KVJKPIU2WNUG1Z

More Safety with Improved Protection Gear

+PCNRKPGUMKKPIMPGGKPLWTKGUTGOCKPCOCLQTUCHGV[KUUWG We also work on the integration of sensors to register the Systematic analysis of injury situations and human anato- NGXGNQHVJGOCLQTNGIOWUENGUoCEVKXKV[ my suggest that mechatronic ski bindings may provide a UQNWVKQP6JGMG[CURGEVQHOGEJCVTQPKEUMKDKPFKPIUKU VJGTGNGCUGCNIQTKVJO6YQQHVJGPGGFGFRCTCOGVGTUQH that algorithm are the knee angle and the muscle activity QHVJGNGIYJKNGUMKKPI$QVJRCTCOGVGTUJGNRVQKFGPVKH[ ETKVKECNUKVWCVKQPUYJKEJOKIJVNGCFVQCPKPETGCUGFTKUM QHCMPGGKPLWT[6JGCNIQTKVJOYQWNFTGCEVD[CEEQTFKPIN[ CFLWUVKPIVJGTGNGCUGUGVVKPIUQHVJGUMKDKPFKPI$GUKFGU VJGTGUGCTEJVQGUVCDNKUJVJGCNIQTKVJO U YGCNUQJCXGVQ develop functional close-to-body measurement systems being able to provide real time data on knee kinematics CPFOWUENGUVCVGQHVJGUMKGT+PEQNNCDQTCVKQPYKVJ7PKXGT- UKV[QH#RRNKGF5EKGPEGU4GWVNKPIGPYGJCXGFGXGNQRGFC prototype of skiing underpants which are able to measure VJGMPGGCPING

5MKWPFGTYGCTYKVJVGZVKNGKPVGITCVGFUGPUQTUVQOGCUWTGMPGGƅGZKQPCPING

238 Sport Equipment and Materials

Research Focus Publications 2017 ■ Improved performance of sport ■ -GUJXCTK$5GPPGT8-TCHV& equipment #NGXTCU5  %QORCTCVKXG5VWF[ ■ Safety and protection gear to avoid of Shoe-Surface Interaction in Trail overloads 4WPPKPIs5WDLGEVKXGCPFQDLGEVKXG ■ Thermo-physiology in sport garment 'XCNWCVKQP+P2TQEGGFKPIUQHVJG design VJ+PVGTPCVKQPCN%QPHGTGPEGQP ■ Footwear – sport surface interaction $KQOGEJCPKEUKP5RQTVU +5$5  Prof. Dr.-Ing. ■ Electric and muscle-powered 8QNWOG+UUWGU Veit Senner lightweight vehicles ■ -GUJXCTK$/KVVGTPCEJV,5GPPGT 8  %QORGVKVKXGUVWF[QHUVWF Contact Competence EJCTCEVGTKUVKEUQPVJGRGPGVTCDKNKV[ YYYURIOVWOFG ■ Muscular-skeletal models and (QQVYGCT5EKGPEG UWR2TQEGGF UGPPGT"VWOFG simulation KPIUQHVJG6JKTVGGPVJ(QQVYGCT$KQ 2JQPG  ■ &OQVKQPCPCN[UKU QRVKECNKPGTVKC OGEJCPKEU5[ORQUKWO RR| DGPS) JVVRUFQKQTI Management ■ Electromyography (EMG) and  2TQH&T+PI8GKV5GPPGT&KTGEVQT spirometry ■ 5EJYKTV\#/GUU(&GOGVTKQW ■ /GCUWTGOGPVQHGZVGTPCNNQCFUCPF ;5GPPGT8 'FU   +PPQ Administrative Staff plantar pressure XCVKQP6GEJPQNQIKGKO5RQTV Simona Chiritescu-Kretsch ■ Development of physical models (foot FXU*QEJUEJWNVCI/ØPEJGP CPFCPMNGMPGGNQYGTNGI 5GRVGODGT5EJTKHVGPFGT&GWV Research Scientists UEJGP8GTGKPKIWPIHØT5RQTVYKUUGP #NLQUEJC*GTOCPP/5E Infrastructure UEJCHV8QN*CODWTI(GNFJCWU $CJCFQT-GUJXCTK/5E ■ Mobile skin- and core-temperature 8GTNCI)OD*%Q-)4GVTKGXGFHTQO &KRN-HOVGEJP7PKX2JKNKRR-QRR measurement YYYFXUFG 6CPLC.GTEJN/5E ■ Multi-body simulation software ■ 5WRGL/5GPPGT8  5RGEKCN 5VGHCPKG2CUUNGT/5E SIMPACKŠ Design of Ski Plates May Im prove &KRN+PI-KNKCP4CWPGT ■ Mobile EMG and spirometry 5MKKPI5CHGV[+P+5EJGT4)TGGPYCNF &CPKGNC5EJTCPPGT/5E ■ 8KFGQDCUGFOQVKQPCPCN[UKU 02GVTQPG 'FU 5PQY5RQTVU 5KOK|/QVKQP 6TCWOCCPF5CHGV[%QPHGTGPEG2TQ ■ Leg surrogate with loading device ceed ings of the Inter national Society ■ Instrumented bicycle HQT5MKKPI5CHGV[ UV8QNWOG ■ CZKUHCVKIWGVGUVKPIFGXKEGHQTDKE[ENG RR| 5RTKPIGT+PVGTPCVKQPCN frames 2WDNKUJKPIJVVRUFQKQTI ■ 5MKDQQVƅGZKDKNKV[VGUVTKIUKOWNCVKPI A real ground reaction forces ■ 5WRGL/5GPPGT82GVTQPG0 *QNODGTI*%  4GFWEKPIVJG Courses risks for traumatic and overuse injury ■ $CUKE5MKNNUQH5EKGPEG COQPIEQORGVKVKXGCNRKPGUMKGTU ■ #RRNKGF$KQOGEJCPKEU $TKVKUJ,QWTPCNQH5RQTVU/GFKEKPG ■ Sports Technology   sJVVRUFQKQTI ■ %#&$CUKEU DLURQTVU ■ Practical Ergonomics ■ &KIKVCN*WOCP/QFGNKPI ■ #FXCPEGF$KQOGEJCPKEU ■ Sports Engineering ■ +PVGTFKUEKRNKPCT[4GUGCTEJ2TQLGEV

239 Energy Systems

Power generation and solid fuel conversion

■ The focus of the Institute for Energy Systems in 2017 was to investigate future power generation systems and solid fuel conversion processes.

Our research can be divided into four areas: power plant Key competences regarding modeling and simulation are technology, renewable energy, modeling and simulation, %(&UKOWNCVKQPUQHEQODWUVKQPCPFICUKƄECVKQPRTQ- as well as measurement technology. We cooperate with cesses, entire process simulations, burner design, form research institutions and industrial companies on a optimization of blade and seal geometry, as well as the number of national and international research projects. simulation of deposition and slagging tendencies. 6JGGZRGTVKUGQHVJGKPUVKVWVGKUCNUQTGƅGEVGFKPVJGNCTIG Furthermore, a Siemens GuD Simulator (SPPA-T3000) is number of operated test rigs and applied measurement hosted at the Institute for Energy Systems, which makes technologies. The mechanical workshop, electronics lab it possible to simulate various power plant processes, and and chemical lab are also essential parts for the experi- to test the control system of power plants. mental operability at our institute.

Renewable Energy

The use of biomass for electricity and heat production has moved increasingly into focus. In the biomass work group, the goal is to investigate and solve problems and limita- tions that arise in the thermal use of biomass. Key aspects are the reduction of emissions and unburned materials, trace elements like sulfur and chlorine compounds, as well as alkalis and particles. Together with Suncoal Industries GmbH, focusing on the process of hydrothermal carbon- ization (HTC), the conversion of biochar in an entrained ƅQYICUKƄGTKUKPXGUVKICVGF#RTQEGFWTGHQTVJGVTGCVOGPV and methanation of the product gas from a biomass ICUKƄGTKUFGXGNQRGFCUYGNN6JGRTQEGUUGFICUJCUVQ meet the criteria for integration into the natural gas grid. SNG test rig Furthermore, within the framework of the SYNSOFC pro- ject, the use of solid oxide fuel cells (SOFCs) in combina- Projects VKQPYKVJCDKQOCUUICUKƄGTHQTIGPGTCVKPIGNGEVTKEKV[HTQO ■ $KQHƄEKGPE[s*KIJN[GHƄEKGPVDKQOCUU%*2RNCPVUD[ biomass is investigated. The goal is to develop SOFCs handling ash-related problems that show a high tolerance against biogenic contaminants. ■ (.7*-'s'PVTCKPGFƅQYICUKƄECVKQPYKVJDKQEJCT 6JGPGY'7RTQLGEV$KQHƄEKGPE[CKOUCOQPIQVJGTVJKPIU ■ FNR – Thermal use of biomass in high-temperature CVVJGFGXGNQROGPVQHPGZVIGPGTCVKQPDKQOCUUƄTGF processes %*2RNCPVUCPKPETGCUGKPGHƄEKGPE[CVGNGXCVGFUVGCO ■ SYNSOFC – Solid oxide fuel cells ■ temperatures and the reduction of emissions – i.e. CO2, SNG – Decentralized production of synthetic natural

particulates, CO, NOx and SO2. gas from biomass

Power Plant Technology

With a stronger presence of renewable energy sources in CPFVYQGPVTCKPGFƅQYTGCEVQTU6JGQZ[HWGNEQODWUVKQP VJGRQYGTITKFEQODKPGFE[ENGUCPFEQCNƄTGFVJGTOCN of coal is one of the three main research routes for the

power plants are subject to more frequent, steep faster and FGXGNQROGPVQHEQCNƄTGFRQYGTRNCPVUYKVJ%12 cap- larger load changes. The evaporator as a component in ture and storage (CCS) systems. The aim is to develop thermal power plants and its dynamic behavior is of great and demonstrate combustion and boiling systems on KPVGTGUVHQTƅGZKDNGRQYGTRNCPVU6QKPXGUVKICVGVJGGXCR- a commercial scale. Coal power plants based on IGCC oration process under dynamic conditions, an evaporation VGEJPQNQI[ KPVGITCVGFICUKƄECVKQPEQODKPGFE[ENG OCKPN[ test rig was put into operation at the institute in 2017. WUGGPVTCKPGFƅQYICUKƄGTUCPFQHHGTVJGCFXCPVCIGQH Further test rigs include an oxyfuel combustion chamber JKIJGHƄEKGPE[CPFCPQRRQTVWPKV[HQTGHHGEVKXG%%5

240 Energy Systems

The primary objective of the work at the institute is to lay the necessary foundations for the long-term development QHHWVWTGJKIJN[GHƄEKGPVJKIJVGORGTCVWTGICUKƄECVKQP processes with integrated hot gas cleaning and optional CCS for IGCC power plants and processes for the develop- ment of synthetic fuels. Further projects, like the EU project OnCord, which is coordinated by the institute, investigate the use of coal and its inorganic constituents as a protec- tive agent to prevent the formation of alkali metal chlorides at both laboratory/test rig and industrial scale.

Projects ■ Energy Valley Bavaria – High pressure evaporation facility ■ OnCord – Online corrosion monitoring for combined combustion of coal and chlorine-rich biomasses ■ *QV8G)CUs*KIJVGORGTCVWTGICUKƄECVKQPCPFICU RWTKƄECVKQP ■ KorrMind – Development of a corrosion reduction concept ■ COOREFLEX-turbo – Performance and characteristics of modern dynamic sealing concepts High pressure evaporation test rig

Modeling and Simulation

Modeling and simulation of solid fuel conversion play an important role in several projects, e.g. HotVeGas and 50)%QORWVCVKQPCNƅWKFF[PCOKE %(& UKOWNCVKQPUCTG applied in order to gain a more detailed understanding of UGXGTCNEQODWUVKQPCPFICUKƄECVKQPRTQEGUUGU(WTVJGT- more, entire process simulations aim at evaluating the complete power plant system and possible synergies. As VJGƅGZKDKNKV[QHRQYGTRNCPVUIGVUKPVQVJGHQEWUQHVJG QRGTCVQTUsKPCFFKVKQPVQGHƄEKGPE[CPFGEQPQO[sVJG interaction of power plant processes during dynamic operation is investigated by means of dynamic simulations %(&UKOWNCVKQPsƅWKFKUGFDGF of power plants. An improved process understanding helps to develop better operating strategies and optimized Projects RQYGTRNCPVEQPƄIWTCVKQPU6YQFKHHGTGPVRQYGTRNCPV ■ CleanTechCampus types are investigated: combined cycle power plants ■ Energy Valley Bavaria – Dynamic simulation of power CPFEQCNƄTGFRQYGTRNCPVU6JGWUGQHJGCVCVNQY plants temperatures, like waste heat and geothermal heat, with ■ ICER – Low grade waste heat recovery for enhanced organic Rankine cycles (ORC) or the Misselhorn cycle is GPGTI[GHƄEKGPE[ also a focus of research and is examined at the institute ■ Misselhorn cycle – Waste heat utilization at low by means of process simulations and experiments. Since temperatures 2016 several projects regarding process simulation have ■ Bavarian Geothermal Alliance started: The CleanTechCampus Project, for example, aims ■ GRAME – Deep-geothermal plants in the Southern to improve the CHP plant on site. The Bavarian Geother- German Molasse Basin OCN#NNKCPEGHQEWUGUQPGHƄEKGPE[GPJCPEKPIFGUKIPUQH ■ TcET – Thermochemical energy storage unit for power 14%UKPEQODKPCVKQPYKVJUWKVCDNGYQTMKPIƅWKFUCPF plants and industrial heat RQUUKDKNKVKGUQHƅGZKDNGJGCVFGEQWRNKPI

241 Energy Systems

Technical Staff Selected Publications 2017 Christoph Berkel ■ '[GTGT59KGNCPF%5EJKHƅGEJPGT Peter Bramberger C.; Spliethoff, H.: Hydrothermale Albert Daschner Geo thermie in Deutschland – Potential Andrea Hartung zur Stromerzeugung. Geothermische Jürgen Knösch Energie 87 (2), 2017, 26-27 Michael Knecht ■ Kleinhans, U.; Wieland, C.; Babat, S.; Prof. Dr.-Ing. Vera Kragl Scheffknecht, G.; Spliethoff, H.: Ash Hartmut Robert Riss particle sticking and rebound behavior: Spliethoff Margarethe Schwindl A mechanistic explanation and Leonid Shkolnikov modeling approach. Proceedings of Contact the Combustion Institute 36 (2), 2017, www.es.mw.tum.de Research Focus 2341–2350 [email protected] ■ Power plant technology ■ Kremling, M.; Briesemeister, L.; Phone +49.89.289.16270 ■ Renewable energies Gaderer, M.; Fendt, S.; Spliethoff, ■ Modeling and simulation H.: Oxygen-Blown Entrained Flow Management ■ Measurement technology )CUKƄECVKQPQH$KQOCUU+ORCEVQH(WGN Prof. Dr.-Ing. Hartmut Spliethoff, Director Parameters and Oxygen Stoichiometric Dr.-Ing. Stephan Gleis Competence Ratio. Energy & Fuels, 2017 Dr.-Ing. Christoph Wieland ■ %QODWUVKQPCPFICUKƄECVKQPQHUQNKF ■ Ostermeier, P.; Vandersickel, A.; Gleis, Dr.-Ing. Annelies Vandersickel ■ Steam cycles and waste heat utilization S.; Spliethoff, H.: Three dimensional Dipl.-Ing. Sebastian Fendt ■ Operation of pilot- and lab-scale test OWNVKƅWKFOQFGNKPIQH)GNFCTV$ facilities DWDDNKPIƅWKFK\GFDGFYKVJEQORNGZ Administrative Staff ■ Process simulations and CFD inlet geometries. Powder Technology Brigitte Demmel simulations 312, 2017, 89-102 Xiaolu Pei ■ Laser measurement technologies ■ Ulbrich, M.; Preßl, D.; Fendt, S.; Martina Rath ■ Fuel and gas analysis Gaderer; M.; Spliethoff, H.: Impact Heike Winter of HTC reaction conditions on the

Infrastructure hydrochar properties and CO2ICUKƄ Research Scientists ■ Fuel laboratory and thermobalances cation properties of spent grains. Fuel Michael Angerer, M.Sc. ■ Mechanical workshop and electronics Processing Technology 167, 2017, Dipl.-Ing. Moritz Becker laboratory 663-669 Fabian Dawo, M.Sc. ■ Experimental facilities and test rigs (in Dipl.-Ing. Stefan DeYoung RCTVKEWNCTEQODWUVKQPCPFICUKƄECVKQP Sebastian Eyerer, M.Sc. reactors) Felix Fischer, M.Sc. Michael Geis, M.Sc. Courses Andreas Geißler, M.Sc. ■ Basic Course in Reaction Moritz Gleinser, M.Sc. Thermodynamics Dipl.-Ing. Clemens Griebel ■ Chemical Reactors Tobias Gschnaidtner, M.Sc. ■ Energy and Economy Barbara Gumpert, M.Sc. ■ Energy from Biomass and Residuals Stefan Härzschel, M.Sc. ■ Power and Natural Gas: Grids and Lynn Hansen, M.Sc. Regulation Julia Hentschel, M.Sc. ■ Energy Systems I Stephan Herrmann, M.Sc. ■ Electricity and Heat Storages Matthäus Irl, M.Sc. ■ Numerical Methods for Energy Systems Dipl.-Ing. Sebastian Jell ■ Process Technology and Ecology in Philipp Johne, M.Sc. Modern Power Plants Florian Kerscher, M.Sc. ■ Renewable Energy Technology I/II Dipl.-Ing. Andreas Kohlhepp ■ Solarthermal Power Plants Tobias Netter, M.Sc. ■ Steam Turbines Richard Nowak Delgado, M.Sc. ■ Sustainable Energy Systems Peter Ostermeier, M.Sc. ■ Thermal Power Plants (M.Sc. Power Roberto Pili, M.Sc. Engineering) Dipl.-Ing. Gerrit Schatte ■ Thermodynamics in Energy Conversion Robert Schwarz, M.Sc. (M.Sc. Power Engineering) Dipl.-Ing. Benedikt Schweiger Miriam Sepke-Vogt, M.Sc. Wolf Gereon Wedel, M.Sc. Christian Wolf, M.Sc. Manuel Würth, M.Sc.

242 Machine Elements

Calculation, simulation and experimental analysis of gears, synchronizers, clutches and rolling element bearings

■ The Institute of Machine Elements (FZG) focuses on the development of methods and tools for TGNKCDNGFGVGTOKPCVKQPQHHCVKIWGNKHGGHƄEKGPE[HTKEVKQPCPFXKDTCVKQPEJCTCEVGTKUVKEUQHIGCTUCPF transmission elements.

The Institute of Machine Elements, also known as ‘Gear to design and calculation examples within the lecture-re- Research Centre’ (FZG), is an internationally renowned lated exercises. A very important aspect of this is that the research centre for gears and transmissions. The primary students learn to communicate in the ‘engineer’s language’ focus of research activities at FZG is the development of – with sketches and drawings. Practical relevance and methods and tools for reliable determination of fatigue topicality are also an important criteria for lectures with spe- NKHGGHƄEKGPE[CPFXKDTCVKQPEJCTCEVGTKUVKEUQHIGCTUCPF cial subjects. Last but not least, this is ensured by lectures transmission elements. FZG has state-of-the-art facilities given by executives from industry. for the examination and testing of different machine Research on the load-carrying capacity of gear drives is elements – such as gears, synchronizers, clutches and one of the main research areas of the institute. Further rolling element bearings. important aspects of research in automotive applications The research projects of FZG range from theory-oriented have evolved, such as synchromesh systems, multidisc fundamental research to application-related work. The clutches and rolling element bearings. The consideration RTQLGEVUCTGƄPCPEGFCPFUWRRQTVGFD[FKHHGTGPVQTICP- QHHCVKIWGNKHGGHƄEKGPE[HTKEVKQPCPFXKDTCVKQPDGJCXKQTQH isations. A large number of these projects are initiated, gears and transmission elements is in the foreground of ƄPCPEGFCPFUWRGTXKUGFD[VJG(QTUEJWPIUXGTGKPKIWPI research activity at FZG. Antriebstechnik e.V. (FVA), usually together with the A large number of the research topics deals with the Arbeitsgemeinschaft industrieller Forschungsvereinigun- load-carrying capacity of the components cylindrical, gen (AiF). Other important research partners include the bevel, hypoid and worm gears, as well as multidisc Deutsche Forschungsgemeinschaft (DFG), the federal clutches, synchronizers and rolling element bearings. The ministry for economic affairs and energy (BMWi), the results of many research projects at FZG are gained from Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas theoretical and experimental investigations carried out und Kohle e.V. (DGMK), the FVV or the Stahlforschung. In simultaneously. These validated methods are often pro- addition, many application-oriented projects are requested grammed as application software and thereby comfortably and commissioned directly by industry. accessible for pratical application. For the development of Our education lecture series and exercises in machine ele- a method, simulation models for the load case are usually ments represent the basic training of mechanical engineer- developed and validated by extensive tests with samples. ing. In the lectures, students learn to select machines and The following selected projects give an exemplary insight machine elements properly, to design them and to calculate into the research activities of FZG. their properties. This knowledge is then applied practically

Innovative High-Speed Powertrain Concept HQT*KIJN['HƄEKGPV'NGEVTKE8GJKENGU

Due to its high power density and lightweight design, high-speed powertrain concepts are increasingly used in GNGEVTKƄGFXGJKENGU$GECWUGQHVJGJKIJKPRWVURGGFUPGY FGUKIPEJCNNGPIGUCTKUGKPVGTOUQHGHƄEKGPE[NWDTKECVKQP load capacity and NVH behavior, which were investigated in the BMWi joint research project ‘Speed2E’. Within this project, a new powertrain layout based on two identical electrical machines and one joint gearbox was developed and investigated. In order to determine the power requirements of the electromechanical powertrain, a reference vehicle of the %|UGIOGPVYJKEJKPENWFGUEQORCEVENCUUXGJKENGUHQT UWDWTDCPWUGYCUFGƄPGF$CUGFQPVJKUTGHGTGPEGC compact powertrain based on a front-wheel drive was designed resulting in a maximum vehicle velocity of up Design of sub-transmissions I and II

243 Machine Elements

2QYGTVTCKPNC[QWVQH5RGGF'CPFTGUWNVKPIFGUKIPEJCNNGPIGU

VQ|MRJ6YQKFGPVKECNRGTOCPGPVOCIPGVU[PEJTQPQWU +V|CNUQGPCDNGUUGCONGUUUJKHVKPIWUKPIFQIENWVEJGU OCEJKPGUFTKXGVJGCZNGIGCTYKVJWRVQTRO with an optimized electric synchronization. This requires The electric motors operate with separate optimized CPQRGTCVKQPCNUVTCVGI[YJKEJKPƅWGPEGUVJGUJKHVKPIQH AC/DC converters, which are supplied by a direct current sub-transmission II and therefore the power distribution voltage source. Hence, the car’s battery system was not between both electric motors and sub-transmissions. part of this project. The whole powertrain was installed and tested at FZG. The powertrain’s gearbox consists of two separate Within the scope of the experimental investigations, both sub-transmissions, which are mechanically connected GHƄEKGPE[CUYGNNCU08*RGTHQTOCPEGYCUQRVKOK\GF+P XKCCEQOOQPƄPCNFTKXG5WDVTCPUOKUUKQP+EQPUKUVUQH order to reduce load dependent power losses, a low- CVYQUVCIGE[NKPFTKECNIGCTFTKXGYKVJCIGCTTCVKQQH loss test gear set was developed and tested, showing a TGCEJKPIVJGFGUKTGFXGJKENGXGNQEKV[QHMRJCVVJG UKIPKƄECPVKPETGCUGKPGHƄEKGPE[$[CFLWUVKPIVJGQRGT- maximum speed of the electric machine. To investigate ation strategy, the overall energy consumption within a the impact of the extremely high input speeds on acoustic given driving cycle decreased even more. Using another DGJCXKQTCPFGHƄEKGPE[FKHHGTGPVV[RGUQHIGCTUYGTG test gear set enabled investigations beyond the gear’s CRRNKGFVQVJGJKIJURGGFUVCIGQHUWDVTCPUOKUUKQP|+ resonance frequency and showed huge potential for high- Sub-transmission II consists of three stages and features speed applications. two speeds: a high run-up gear ratio of 32 and an over- In the follow-up BMWi joint research project ‘Speed4E’, FTKXGIGCTTCVKQQHHQTJKIJGHƄEKGPE[CVJKIJXGJKENG VJGKPRWVURGGFYKNNDGKPETGCUGFCDQXGTROCPF velocity. a newly developed powertrain will be installed in a car. 6JGƅGZKDNGFKUVTKDWVKQPQHRQYGTUWRRN[VQDQVJUWD Hence, the vehicle integration of the high-speed power- transmissions is used to provide operating strategies train will be an important part of the follow-up project , with reduced energy consumption or noise emissions. UVCTVKPIKP

244 Machine Elements

1RVKOK\GF.WDTKECVKQPCPF'PGTI['HƄEKGPE[QH)GCTGF2QYGT6TCPUOKUUKQPU

6JGFGXGNQROGPVQHGPGTI[CPFTGUQWTEGGHƄEKGPVIGCTGF Load-dependent gear losses are caused by friction transmissions has become a major concern in industry. DGVYGGPNQCFGFIGCTƅCPMUKPTGNCVKXGOQVKQP+VUTGFWE- This is mainly driven by environmental requirements tion by use of DLC (diamond-like carbon) coatings is and resource scarcity. Geared power transmissions CFFTGUUGFKPVJG+)(RTQLGEV0 (8#++ 6JG require lubrication in order to reduce friction in loaded potential of DLC coatings to improve load capacity and to rolling elements and to dissipate frictional heat. Several reduce friction is well known. However, the thermophys- research projects at FZG address the lubrication and ical mechanisms of friction reduction in elastohydrody- GPGTI[GHƄEKGPE[QHIGCTGFRQYGTVTCPUOKUUKQPU$GUKFGU namically lubricated (EHL) gear contacts with separated experimental investigations, focus is put on the physical surfaces is largely unexplored. Experimental investigations understanding of mechanisms by support of numerical CVVJGOQFGNCPFIGCTVGUVTKIUUJQYUKIPKƄECPVTGFWEVKQP modelling. QHHTKEVKQPCPFNQCFFGRGPFGPVIGCTNQUUD[WRVQ #UVJGNWDTKECVKQPQHIGCTGFVTCPUOKUUKQPUKUFKHƄEWNV Thermal EHL simulations indicate that this is mainly due to predict at the design stage, the DFG project STA to the low thermal inertia of DLC resulting in a thermal KPEQQRGTCVKQPYKVJ2TQH#FCOUHTQO#'4 insulation and low effective viscosity in EHL gear contacts. 67/CKOUCVFGXGNQRKPIGHƄEKGPV%(& EQORWVCVKQPCNƅWKF F[PCOKEU UKOWNCVKQPOQFGNUVQRTGFKEVVJGQKNƅQYCPF no-load gear losses. Various operating conditions includ- KPIMKPGOCVKEIGQOGVTKECNCPFQKNURGEKƄERCTCOGVGTU are investigated. Consequent validation is performed at a no-load power loss test rig by measuring the loss torque CPFVJGQKNƅQYYKVJCJKIJURGGFECOGTC6JGTGUWNVU EQPVTKDWVGVQCPQRVKOK\GFNWDTKECVKQPCPFGHƄEKGPVFGUKIP of geared transmissions. On the one hand, lubrication has VQDGUWHƄEKGPVVQCXQKFCP[FCOCIGVQOCEJKPGGNGOGPVU On the other hand, the lubricant volume has to be as small as possible to reduce the no-load power loss, which is due to hydraulic losses and ventilation.

The potential of pure and reinforced thermoplastic gears for application in geared power transmissions is inves- VKICVGFKPVJG+)(RTQLGEV0 (8#+ 6JGTOQ plastic EHL contacts are completely different to steel EHL contacts and not well understood. Investigations are performed experimentally at model and gear test rigs as well as theoretically by means of thermal EHL simulations. 6JGƄIWTGCDQXGKNNWUVTCVGUGZGORNCTKN[VJGFGHQTOCVKQP and temperature distribution of a hybrid EHL contact of UVGGNCPFRQN[COKFG 2# 6JGJKIJUWTHCEGEQP- formity leads to low hydrodynamic pressure compared to steel contacts for the same load applied and thus very low friction. The low thermal inertia of thermoplastic material affects the local contact temperature and its tribological performance. The appropriate usage of optimized thermo- plastic gears in geared power transmissions can push its NKOKVUQHGPGTI[CPFTGUQWTEGGHƄEKGPE[

245 Machine Elements

%CNEWNCVKQPQH.QCF&KUVTKDWVKQPKP%QORNGZ)GCT5[UVGOU

Planetary gear sets are widely used in industry and auto- motive applications. Compared to a basic cylindrical gear pair, they offer high transmission ratios and high power densities due to load sharing across several planet gears. They usually consist of a central sun gear, several plan- etary gears (orbiting round the sun as well as rotating on their own axes) and an outer ring gear. The planet gears’ axes are mounted on a planetary carrier, which forms the third coaxial shaft, in addition to the sun gear’s shaft and ring gear’s shaft. When in need for even higher transmission ratios, more than one planetary gear set can be arranged sequentially, as was done in the gearbox shown below. Load-induced deformations and manufacturing or CUUGODN[TGNCVGFGTTQTUKPƅWGPEGNQECNRGCMUQHVJGVQQVJ load and the load deviation in the meshes of planetary gear sets. In modern transmission systems, deformations of transmission elements and associated displacement of gear wheels in tooth contact can be compensated by OQFKƄECVKQPQHVJGVQQVJIGQOGVT[ 6JGFGUKIPQHƅCPMOQFKƄECVKQPUKPRNCPGVCT[IGCT systems is based on the reliable and accurate calculation of the three-dimensional positons of the central shafts and the load sharing behavior between the planets. Practical OGVJQFUWUGFRTGXKQWUN[QHVGPPGINGEVVJGUGKPƅWGPEGU and assumed equal load distribution between the planets CPFEGPVTCNUJCHVUKPPQPFGƅGEVGFRQUKVKQPU With the FZG’s simulation approaches, load distribution, load sharing behavior between planets and deformation in arbitrarily coupled planetary gear sets can be calculated CPFVQQVJƅCPMOQFKƄECVKQPUECPDGFGUKIPGF The 3D graphics show the nominal and the deformed (exaggerated) state of an example multi-stage planetary IGCTUGVHTQOYJKEJIGCTƅCPMNQCFFKUVTKDWVKQPUECPDG calculated. 7UKPIVJKUGNCUVKEFGHQTOCVKQPCPCN[UKUVJGKPƅWGPEGQH different carrier angular positions on the momentary load distribution of each gear mesh is determined, as shown in the diagram above (showing mesh load over tooth width for several carrier positions). This deformation and load distribution information can UGTXGCUCDCUGHQTƅCPMOKETQIGQOGVT[OQFKƄECVKQP FGUKIP#RRN[KPIVJGUGOKETQIGQOGVT[OQFKƄECVKQPUKP the manufacturing process allows for a favorable load dis- tribution during operation. With this at hand, an optimized load carrying capacity or noise excitation behavior can for example be achieved.

246 Machine Elements

Research Scientists Research Focus Sabrina Bansemir, M.Sc. ■ Experimental examinations and Holger Cermak, M.Sc. simulations of gear systems and Dipl.-Ing. Rui Dai components Alexander Drechsel, M.Sc. ■ .QCFECTT[KPIECRCEKV[GHƄEKGPE[CPF Martin Ebner, M.Sc. NVH of cylindrical, bevel, hypoid and Dipl.-Ing. Christian Engelhardt worm gears Andreas Fingerle, M.Sc. ■ Durability and friction behavior of Prof. Dr.-Ing. Daniel Fuchs, M.Sc multidisc clutches and synchronizers Karsten Stahl Joshua Götz, M.Sc. Daniel Grötsch, M.Sc. Competence Contact Dipl.-Ing. Christian Güntner ■ Calculation, simulation and www.fzg.mw.tum.de Michael Hofer, M.Sc. experimental analysis of load-carrying [email protected] Chistopher Illenberger M.Sc. ECRCEKV[GHƄEKGPE[CPF08*QHIGCTU 2JQPG  Dominik Kratzer, M.Sc. ■ Standardization: DIN/ISO/CEC Christoph Leonhardt, M.Sc. ■ FVA/VDI/DGMK Management Hua Liu, M.Sc. ■ Failure analysis, seminars, training Prof. Dr.-Ing. Karsten Stahl, Director Enzo Maier M.Sc. sessions Dipl.-Ing. Eva-Maria Mautner Emeritus Marco Mileti, M.Sc. Infrastructure Prof. i. R. Dr.-Ing. Bernd-Robert Höhn Daniel Müller, M.Sc. ■ 6GUVHCEKNKV[ VGUVTKIU Philipp Norgauer, M.Sc. ■ Measuring laboratory )WGUV.GEVWTGTU Constantin Paschold, M.Sc. ■ Materials laboratory Prof. Dr.-Ing. Manfred Hirt Tobias Paucker, M.Sc. ■ Lubricants laboratory Dr.-Ing. Burkhard Pinnekamp, Renk AG Josef Pellkofer, M.Sc. ■ Electro/electronic laboratory Dr.-Ing. Joachim Thomas, Dipl.-Ing. Tobias Reimann ■ Workshop ZG Hypoid GmbH Philipp Roth, M.Sc. ■ )GCTITKPFKPIOCEJKPG.)) Martin Sedlmair, M.Sc. Department Leaders Dipl.-Ing. Benedikt Siewerin Courses Dr.-Ing. Daniel Kadach Felix Siglmüller, M.Sc. ■ Machine Elements I + II Dr.-Ing. Thomas Lohner André Sitzmann, M.Sc. ■ Drive-Systems Technology for Vehicles Dr.-Ing. Michael Otto Korbinian Stadler, M.Sc. ■ Planetary Gearboxes &T+PI*GTOCPP2ƅCWO Ulrich Stockinger, M.Sc. ■ High-performance Gears for Marine Dr.-Ing. Thomas Tobie Maximilian Trübswetter, M.Sc. Drives, Wind Energy Plants and Dipl.-Ing. Thanak Utakapan Industrial Applications Senior Engineers (retired) Christian Weber, M.Sc. ■ Design of Gearboxes with Cylindrical Dr.-Ing. Klaus Michaelis Karl Jakob Winkler, M.Sc. Gears Dr.-Ing. Peter Oster Mustafa Yilmaz, M.Sc. ■ Bevel and Hypoid Gears for Vehicle Marvin Zander, M.Sc. Drive Systems 6GCO.GCFGTU Andreas Ziegltrum, M.Sc. ■ Special Section Machine Elements – Dipl.-Ing. Andreas Dobler Rolling Pairing Dipl.-Ing. Patrick Fischer 9QTMUJQRCPF6GUVKPI/CPCIGOGPV ■ Synchromesh Systems and Multidisc Dipl.-Ing. Maximilian Fromberger Dipl.-Ing. Rui Dai Clutches Dipl.-Ing. Michael Hein Reiner Duschek Dipl.-Ing. Thomas Jurkschat Dipl.-Ing. Johannes König 9QTMUJQRCPF6GUVKPI5VCHH Dipl.-Ing. Katharina Völkel Richard Brandoni Uwe Weinberger, M.Sc. Franz Hofmann Robert Kiermeier Administrative Staff Harald Mayr Andrea Baur /CTMWU2ƅØINGT Kornelia Güth Heiko Preuß Sigrid Mayr Thomas Rath Robert Rauschmayer Christian Weber Klaus Winkler Marco Breidinger Ingeborg Brodschelm Wilma Leykamm Helmut Kammerer Ralf Kiepfer Christopher Neufeld Josef Pöllner

247 Machine Elements

Selected Publications 2017: ■ Hasl, C., Liu, H., Oster, P., Tobie, T., Stahl, K.: Method for calculating the tooth root stress of plastic spur gears meshing with steel gears under EQPUKFGTCVKQPQHFGƅGEVKQPKPFWEGF load sharing. Mechanism and Machine 6JGQT[RR  ■ Schultheiß, H.; Tobie, T.; Stahl, K.: The effect of selected operating parameters, material pairing, and gear size on the wear behavior of grease lubricated small module gears. Journal QH6TKDQNQI[*GHV  ■ 5VQEMKPIGT72ƅCWO*5VCJN -

248 Automation and Information Systems

'PIKPGGTKPICPFQRGTCVKQPQHKPVGNNKIGPVTGEQPƄIWTCDNGFKUVTKDWVGFE[DGTRJ[UKECNRTQFWEVKQPU[UVGOU

■6JGKPETGCUKPIFGOCPFVQRTQFWEGEWUVQOGTURGEKƄEKPFKXKFWCNRTQFWEVUKPUJQTVGTKPPQXCVKQP E[ENGUYKVJKPVJGOCEJKPGCPFRNCPVOCPWHCEVWTKPIFQOCKPTGSWKTG%[DGT2J[UKECN2TQFWEVKQP5[UVGOU %225 YKVJJKIJGT1XGTCNN'SWKROGPV'HHGEVKXGPGUU 1'' 6JGOCKPTGUGCTEJIQCNUQHVJG#+5CTG OGVJQFUPQVCVKQPUCNIQTKVJOUCPFCTEJKVGEVWTGUVQKPETGCUG1''4GUGCTEJCTGCUCTG/QFGN$CUGF 'PIKPGGTKPIUGNH:%225JWOCPOCEJKPGKPVGTCEVKQPCPFCPCN[UKUCPFCIITGICVKQPQHDKIFCVC

+PUVKVWVGQH#WVQOCVKQPCPF+PHQTOCVKQP5[UVGOUs/CKPTGUGCTEJƄGNFU

To increase the overall equipment effectiveness of ontologies are introduced to address the challenges in machines, agents and learning approaches have been and CWVQOCVKQPKPTGCNYQTNFUEGPCTKQUQHVGPVQIGVJGTYKVJ are being developed to improve the operation of CPPS. partners from industry. +PVJGƄGNFQHOQFGNDCUGFGPIKPGGTKPIKPEQPUKUVGPEKGU management across disciplines and along the life cycle were investigated to enable a seamless integration of VJGFCVCVJTQWIJVJGGPIKPGGTKPIYQTMƅQY+PVJGƄGNF QHJWOCPOCEJKPGKPVGTCEVKQPUQNWVKQPUHQTKPHQTOCVKQP aggregation and representation for the human were devel oped including speech recognition and Augmented Reality (AR) to support the individual operator according to his/ her skills and requirements. The aggregation and analysis of big data to gain smart data from big data enables predictive maintenance and process/product optimization. Embedded Systems and its software in the mechatronic industry (products and automated production systems) are getting more and more important. The AIS adapts methods and approaches from the computer science FQOCKPYKVJVJGPGGFUQHVJGOCEJKPGCPFRNCPVOCP ufacturing domain. Therefore, approaches like technical /GVJQFUCRRNKGFCVVJG+PUVKVWVGQH#WVQOCVKQPCPF+PHQTOCVKQP5[UVGOU debt, product lines, family mining and neuronal nets or

249 Automation and Information Systems

5GNH:%[DGT2J[UKECN2TQFWEVKQP5[UVGOU

Methods to establish and improve VJGFGUKIPQHUGNHZ GIUGNHQTICP K\KPIUGNHNGCTPKPICPFUGNHCFCRVKPI  automation software in automated production systems were evaluated e.g. in intralogistics. Research in the domain of intralogistics was focused on reducing the effort for new development CPFGZVGPUKQPQHGZKUVKPI/CVGTKCN(NQY 5[UVGOU /(5U )GPGTCNN[VJGJCTFYCTG modules, which are combined to form a /(5CTGTGWUGFHTGSWGPVN[ CPGZCORNG for such a hardware module is a roller EQPXG[QT 6JGRTQLGEVC%QO# $(5 Project) transferred this reuse into the EQPVTQNUQHVYCTGQH/(5UCPFKPVTQFWEGF COQFWNCTOQFGNDCUGFFGXGNQROGPV procedure for intralogistics systems. Based on a meta model, which allows the formal description of the frequently reused hardware modules, the program &GOQPUVTCVQTUCVVJG#+5HTQOFKUETGVGGXGPVVQDCVEJRTQEGUUGU mable logic controller (PLC) control code for these modules is generated automatically. The gener a state control according to the OMAC State Machine ated code was successfully used to control the industry Standard. This approach enables a plant to independently UK\GUGNH:OCVGTKCNƅQYFGOQPUVTCVQT(WTVJGTOQTGVJG react to a failure and take measures to attempt to resolve OQFGNDCUGFFGUETKRVKQPKUWUGFVQCWVQOCVKECNN[CPCN[\G an occurring error state before the plant operator has to and adapt the interfaces of hardware modules to imple intervene. ment a backward compatibility of newer modules with an GZKUVKPI/(56QKPETGCUGVJGƅGZKDKNKV[QH/(5UCPFCNNQY 2TQLGEVU an easy adaption of the system layout to requirements ■ &()2TQLGEVs+PETGCUGFƅGZKDKNKV[KPJGVGTQIQPQWU CTKUKPIFWTKPIVJGQRGTCVKQPRJCUGQHC/(5VJGRTQLGEV OCVGTKCNƅQYU[UVGOUDCUGFQPKPVGNNKIGPVUQHVYCTGKP K5K-QP &()2TQLGEV KPVTQFWEGFCFGEGPVTCNK\GFCIGPV UGNHEQPƄIWTKPIOQFWNGU DCUGFEQPVTQNCRRTQCEJHQT/(5U6JGTGHQTGCP/(5KU ■ &()2TQLGEVs/QFGN&TKXGP'XQNWVKQP/CPCIGOGPVHQT divided into hardware modules, which are each equipped Microscopic Changes in Automation Systems with a PLC and represented by a module agent. The ■ &()2TQLGEVs5GNH/CKPVGPCPEGQH/GEJCVTQPKE WUGQHCOWNVKCIGPVU[UVGOCNNQYUCFFKPIQTTGOQXKPI Modules OQFWNGUVQQTHTQOC/(5YKVJQWVVJGPGGFVQEJCPIGVJG ■ $(52TQLGEVs#WVQOCVKUEJG%QFGIGPGTKGTWPIHØT EQPVTQNRTQITCOQHVJG/(5oUQVJGTOQFWNGU#FFKVKQPCNN[ modulare Anlagen CPCRRTQCEJHQTUGNHJGCNKPIYCUKORNGOGPVGFDCUGFQP

/QFGN$CUGF&GXGNQROGPV

6QJCPFNGVJGKPETGCUKPIEQORNGZKV[QHOGEJCVTQPKEU ICVGFKPVTCOQFGNEJCPIGKORCEVUGZRNQTGFCPFOGVJQFU U[UVGOUOQFGNDCUGFCRRTQCEJGUCTGOQUVCRRTQRTK NKMGUVCPFCTFK\GFOQFGNKPVGTHCEGUFGƄPGFWUKPIOGVC CVGDWVUVKNNPGGFTGUGCTEJVQJCPFNGETQUUFKUEKRNKPCT[ OQFGNKPICPFOQFGNEQWRNKPICUYGNNCUQPVQNQIKGUHQT development. The question of interest is how different inconsistency management. A special focus is put on the FQOCKPURGEKƄEOQFGNUEQWNFDGEQPPGEVGFJQYVJG human and organization as an essential part of an inter KPHQTOCVKQPƅQYDGVYGGPOQFGNUEQWNFDGCWVQOCVGFCPF disciplinary CPPS in the Collaborative Research Center how inconsistencies between models should be managed. (CRC) 768. Different modeling languages are investigated Therefore, dependencies between models were investi and adapted for the different domains of mechatronics

250 Automation and Information Systems

systems (cf. CRC 768 Subproject A6) and corresponding ■ 4GITGUUKQP8GTKƄECVKQPKPC7UGT%GPVGTGF5QHVYCTG VQQNGPXKTQPOGPVUCTGFGXGNQRGFGZVGPFGFCPFCFCRVGF Development Process for Evolving Automated Produc (cf. CRC 768 Transfer Project T3). Model transformation tion Systems and formal methods for consistency checking (cf. CRC 768 ■ &QOCKPURCPPKPI/CKPVCKPCDKNKV['UVKOCVKQP Subproject D1) are applied. In addition, being a member of ■ Diagnosis and Resolution of Inconsistencies in Hetero the coordination board of the Priority Program (PP) 1593, geneous Models TGUGCTEJKPVJGƄGNFQHE[DGTRJ[UKECN RTQFWEVKQP U[U ■ Decision Making Support in Innovation Processes VGOUoGXQNWVKQPOCPCIGOGPVKUEQPFWEVGFVQIGVJGTYKVJ under Consideration of the Technical Disciplines )GTOCPKPUVKVWVGUKPVJGƄGNFQHUQHVYCTGGPIKPGGTKPI5RG ■ Reverse Engineering Design of Software Product Lines EKCNHQEWUKUCOQPIQVJGTURWVQPTGITGUUKQPXGTKƄECVKQP for Automation Technology (cf. PP 1593 ImproveAPS) as well as estimation of main tainability effort (cf. PP 1593 DoMain). By means of the #+(2TQLGEVU HQWPFCVKQPCNTGUGCTEJTGUWNVUKPVJGƄGNFQHOQFGNDCUGF ■ Variabilität und Versionierung bei der anforderungsbasi U[UVGOUGPIKPGGTKPI %4% CPFHQTOCNXGTKƄECVKQP GTVGP6GUVHCNNGPVYKEMNWPIWPFCWUYCJNHØTOGEJCVTQP QHXCTKCPVTKEJU[UVGOU 22 VJGHQWPFCVKQPCNDCUKU ische Systeme VQKORTQXGHQTGXGTGXQNXKPIE[DGTRJ[UKECN RTQFWEVKQP  ■ Modellsynthese aus sequenzbasierten Verhaltensan U[UVGOUoGPIKPGGTKPICPFQRGTCVKQPKUNCKF#UKFGHTQO forderungen zur modellbasierten Testfallgenerierung VJGUGTGUGCTEJRTQLGEVUQPGQH#+5oOCKPQDLGEVKXGUKUVQ rapidly apply the fundamental results for industrial settings, VDI/VDE Projects VJGTGD[EQNNCDQTCVGYKVJ)GTOCP5/'UVQKORTQXGVJG ■ #WVQOCVKEEQPƄIWTCVKQPCPFIGPGTCVKQPQHEQPVTQN GPIKPGGTKPIRTQEGUU6JGTGHQTGƄXGPQXGNCRRNKECVKQPCPF codes and visualizations for production plants in KPFWUVT[RTQLGEVUYGTGUGVWRKPVJGƄGNFQHOQFGNDCUGF process technology VGUVKPIQHXCTKCPVTKEJU[UVGOUKPFWUVTKCNEQOOWPKECVKQP ■ 6TCKPYKFGCXCKNCDKNKV[QHNQECNUGPUQTFCVC architectures and their modeling to estimate time and ■ 5RGCMGTQH)/#(CEJCWUUEJWUUn#IGPVUKP UCHGV[CURGEVUKPVTCKPUCWVQOCVGFEQPƄIWTCVKQPCPFEQFG CWVQOCVKQPo IGPGTCVKQPHQTRTQEGUUGPIKPGGTKPIU[UVGOUOQFGNDCUGF testing of safety functions, as well as semantic code anal $(52TQLGEV ysis (cf. industry project semantic code analysis), building ■ 'HƄ\KGPVG(GJNGTUWEJGHØTUKEJGTGXCTKCPVGPTGKEJGP on the successful results of the application and research /CUEJKPGPWPF#PNCIGPCWVQOCVKUKGTWPI projects that were completed recently. Industry Project 2TQLGEVU ■ 5GOCPVKE%QFGCPCN[UKUHQT+'%#RRNKECVKQPU &()2TQLGEVU and Libraries ■ Spokeswoman CRC 768 ‘Managing Cycles in Inno XCVKQP2TQEGUUGUs+PVGITCVGF&GXGNQROGPVQH2TQF WEV5GTXKEG5[UVGOU$CUGFQP6GEJPKECN2TQFWEVUo

(TQO$KI&CVCVQ5OCTV&CVC

To gain value from the enormous amount of data recorded YJKEJGPCDNGCƅGZKDNGCESWKUKVKQPQHFCVCHTQOCXCTKGV[ during engineering and operation of industrial systems, of sources within CPPS. In the phase of data preparation, an increasing part of the research conducted at AIS is AIS develops routines for the evaluation of data quality dedicated to the transformation of big data to smart data. and standardized procedures for data preparation itself. Within this scope, the chair AIS applies a variety of data Amongst others, methods based on conditional proba analysis algorithms to data gathered from manufacturing bility are developed in order to replace missing values in industry (EU project IMPROVE) and process industry (BMWi KPEQORNGVGFCVCUGVU(WTVJGTOQTGCWVQOCVKEQWVNKGTFGVGE Project SIDAP) as well as other important industries such tion methods are introduced using statistical approaches. as semiconductor manufacturing. Within these projects, Another important preprocessing step is the automatic the data acquisition, curation and preprocessing often ENCUUKƄECVKQPQHRTQEGUUFCVCKPVQQRGTCVKQPRJCUGU becomes as important as the machine learning methods. taking into account the different behavior of production (QTFCVCCIITGICVKQPCPFKPVGITCVKQPCUEJCNNGPIKPIRCTVU processes and plants during these phases. Several of data collection, architectural solutions are elaborated, OGVJQFUGIMOGCPUENWUVGTKPIQTUGNHQTICPK\KPIOCRU

251 Automation and Information Systems

OQFKƄECVKQPQHVJGYGNNMPQYPPGWTQPCNPGVU CTGGZCO applying these to a great variety of different industries. KPGFCPFCFCRVGFVQUGTXGCUENCUUKƄECVKQPOGVJQFUHQT 6JGCDQXGGZRGTKGPEGOCMGUVJGEJCKTQH#+5CTGNKCDNG operation phases. Once the preprocessing is completed, CPFGZRGTKGPEGFTGUGCTEJKPUVKVWVGCPFRCTVPGTVQVTCPU an intelligent combination of various approaches can be form industrial big data into smart data, including sensor, used to analyze data for patterns indicating upcoming actuator and alarm data. malfunctions, necessary maintenance and short comings in product quality. Machine learning methods like neuronal 2TQLGEVU nets and Markov chains as well as statistical approaches ■ '72TQLGEVs+PPQXCVKXG/QFGNNKPI#RRTQCEJGUHQT like regression are use to predict machine faults or 2TQFWEVKQP5[UVGOUVQ4CKUG8CNKFCVCDNG'HƄEKGPE[ product quality. Thereby the signals are considered in (IMPROVE) VKOGFQOCKPCUYGNNCUHTGSWGPE[FQOCKP#NNCDQXG ■ $/9K2TQLGEVs5MCNKGTDCTGU+PVGITCVKQPUMQP\GRV\WT approaches require a balanced combination of big data &CVGPCIITGICVKQPCPCN[UGCWHDGTGKVWPIXQPITQ»GP methods, process understanding and input of plant Datenmengen in der Prozessindustrie (SIDAP) URGEKCNKUVMPQYNGFIG6JG%JCKTQH#+5KUGZRGTKGPEGFKP

*WOCP/CEJKPG+PVGTCEVKQP

+PVGTFKUEKRNKPCT[VGCOYQTMKPICV VJGXKUWCNEQORWVKPINCDQTCVQT[ FKUEWUUKPIOQFGNFGRGPFGPEKGU

6JKUƄGNFQHTGUGCTEJCFFTGUUGUVJGFGUKIPCPFGXCNWCVKQP 6QUWRRQTVVJGE[ENGQTKGPVGFFGUKIPQHKPPQXCVKQP QHJWOCPOCEJKPGKPVGTHCEGU */+ HQTQRGTCVQTUCUYGNNCU processes for product service systems, the goal of sub engineering support systems. The increasing capabilities of project D2 of the CRC 768 is to develop an appropriate production systems and the availability of big data require KPVGTCEVKQPCPFXKUWCNK\CVKQPCRRTQCEJGU(QTVJKURWT intuitive user interfaces and visualization techniques. pose, a method for the interactive visualization of model New challenges for the design of industrial HMI arise from dependencies, which arise during the innovation process, VJGKPETGCUKPIFKXGTUKƄECVKQPQHVJGYQTMHQTEGFTKXGPD[ is developed. Such a visualization approach can increase the demographic change. The EU project INCLUSIVE VJGETQUUFKUEKRNKPGWPFGTUVCPFKPIQHVJGCEVQTUKPXQNXGF targets the development of automation systems that in the innovation process by linking their mental models. adapt to the capabilities of human operators. A part of (WTVJGTOQTGTGUQNXKPIKPEQPUKUVGPEKGUKPVJGOQFGN the approach are virtual training systems that allow the FGRGPFGPEKGUKUUKORNKƄGFD[VJGXKUWCNK\CVKQPQHRQUUKDNG initial training of manufacturing and changeover proce recommendations for action. FWTGUWUKPIXKTVWCNTGCNKV[VGEJPQNQIKGU7UGTRTQƄNGUVJCV describe age, education, and the mental model of the 2TQLGEVU trainees are used to adapt the training system and the ■ '72TQLGEVs5OCTVCPF#FCRVKXG+PVGTHCEGUHQT+PENW style of information presentation to the capabilities of the sive Work Environment (INCLUSIVE) user. Multimodal training systems (e.g., using haptic or ■ '72TQLGEVs+PPQXCVKXG/QFGNNKPI#RRTQCEJGUHQT URGGEJDCUGFKPVGTCEVKQP CNNQYOQTGGHHGEVKXGVTCKPKPI 2TQFWEVKQP5[UVGOUVQ4CKUG8CNKFCVCDNG'HƄEKGPE[ that can be adapted to the capabilities of elderly or (IMPROVE) FKUCDNGFWUGTU6JGUVCVGQHVJGWUGTUKUVTCEMGFKPTGCN ■ &()2TQLGEVs+PVGTCEVKXG8KUWCNK\CVKQPCPF0CXKICVKQP VKOGWUKPIGOQVKQPCNURGGEJCPCN[UKUCPFG[GVTCEMKPI in Heterogeneous Models (CRC 768, subproject D2) to detect stressful situations and errors in mental models. ■ &()2TQLGEVs4GITGUUKQP8GTKƄECVKQPKPC7UGT%GP Support during the work process is provided by multi tered Software Development Process for Evolving modal assistance systems that guide operators during Automated Production Systems (SPP 1593, project procedures using speech and visual instructions. IMPROVE APS)

252 Automation and Information Systems

6GEJPKECN5VCHH %QWTUGU %JTKUVKCP)OGKPYKGUGT ■ Basics of Modern Information Thomas Mikschl Technology 1+2 Josef Wagner ■ Industrial Automation 1+2 Johannes Werner ■ Industrial Software Engineering 1+2 ■ Development of Distributed Intelligent Apprentice Embedded Mechatronic Systems 2TQH&T+PI Jana Eggert ■ /CPWHCEVWTKPI'ZGEWVKQP5[UVGOUKP $KTIKV Producing Industries 8QIGN*GWUGT &QEVQTCN6JGUGUƄPKUJGFKP ■ Practical Course Automation Practical &T+PI6JQOCU#KEJGT Course Development of Distributed %QPVCEV Hang Li (Chinese Council scholarship) Intelligent Embedded Mechatronic www.ais.mw.tum.de Systems XQIGNJGWUGT"VWOFG 4GUGCTEJ(QEWU ■ Practical Course Industrial Software Phone: +49.89.289.16400 ■ /QFGNDCUGFGPIKPGGTKPI Engineering ■ Quality management ■ Practical Course Simulation Technology Management ■ Distributed, intelligent control systems 2TQH&T+PI$KTIKV8QIGN*GWUGT ■ 5QHVYCTGCIGPVUUGTXKEGQTKGPVGF 5GNGEVGF2WDNKECVKQPU Ordinaria architectures ■ %.GICVCPF$8QIGN*GWUGTn# ■ Machine learning %QPƄIWTCDNG2CTVKCN1TFGT2NCPPKPI Associate Lecturer ■ *WOCPEQORWVGTKPVGTCVKQP #RRTQCEJHQT(KGNF.GXGN1RGTCVKQP &T+PI*GKMQ/G[GT 5VTCVGIKGUQH2.%DCUGF+PFWUVT[ %QORGVGPEG #WVQOCVGF/CPWHCEVWTKPI5[UVGOUo Secretariat ■ %[DGTRJ[UKECNRTQFWEVKQPU[UVGOU 'PIKPGGTKPI#RRNKECVKQPUQH#TVKƄEKCN /KEJCGNC(TCPMG ■ Smart data +PVGNNKIGPEGXQNRR +TGPG)QTQU ■ Human factors 0QX| ■ Improvement of the engineering during ■ $8QIGN*GWUGT,(KUEJGT5(GNF 5GPKQT4GUGCTEJ#UUQEKCVGU the whole life cycle of products and OCPP57NGYKE\CPF54ÒUEJ &T+PI&QTQVJGC2CPVHÒTFGT production lines for hybrid processes ‘Modu larity and Architecture of &T+PI&CTKC4[CUJGPVUGXC using and adapting methods from 2.%DCUGF5QHVYCTGHQT#WVQOCVGF computer science, e.g. pattern Produc tion Systems: An analysis 4GUGCTEJ#UUQEKCVGU recognition and software engineering. KPKPFWUVTKCNEQORCPKGUo,QWTPCNQH Safa Bougouffa ■ Matching data and models along the Systems and Software (JSS), vol. 131, Benjamin Brunner NKHGE[ENGQH%25CPF%225KPFKHHGTGPV PQRR|/C[ Suhyun Cha domains ■ ,1VVQ$8QIGN*GWUGTCPF10KIIG Huan Dong (Vietnam International mann. ‘Automatic Parameter Estimation Education Development scholarship) +PHTCUVTWEVWTG&GOQPUVTCVQTU for Reusable Software Components of /KPC(CJKOKRKTGJICNKP ■ O[,QIJWTVFGOQPUVTCVQT%QORNGZ /QFWNCTCPF4GEQPƄIWTCDNG%[DGT ,WNKCPG(KUEJGT hybrid plant lab model, which operates Physical Production Systems in the (CDKCP)GOGKP with market leading automation devices &QOCKPQH&KUETGVG/CPWHCEVWTKPIo Victoria Karaseva sUGGJVVRKFCKUOYVWOFG +'''6TCPUCEVKQPUQP+PFWUVTKCN+PHQT Jakob Kinghorst ■ 48 modular production plants for OCVKEUPQRR,WP )GPPCFK[-QNVWP software engineering for embedded ■ 54GJDGTIGT.5RTGKVGT$8QIGN *WCZKC.K systems *GWUGTn#PCIGPVDCUGFCRRTQCEJHQT (TKGFGT.QEJ ■ 0GWVTCNK\CVKQPRNCPVsVGUVDGFHQTVJG dependable planning of production Luis Alberto Cruz Salazar (Universidad process engineering domain sequences in automated production Antonio Nariño scholarship) ■ 'ZVGPFGF2KEMCPF2NCEG7PKVs U[UVGOUoCVs#WVQOCVKUKGTWPIUVGEJPKM Michael Sollfrank demonstrator for safety, modes of   RR|&GE Emanuel Trunzer operation and novel communication ■ S. Cha, S. Ulewicz, A. Weigl, M. /CTKQ9GK» VGEJPQNQIKGUsUGGJVVRYYYFHI 7NDTKEJ$$GEMGTVCPF$8QIGN +TKU9GK» spp1593.de/ *GWUGTn)GPGTCVKQPQH/QPKVQTKPI Simon Ziegltrum ■ 5GNH:/CVGTKCN(NQY5[UVGOs (WPEVKQPUKP2TQFWEVKQP#WVQOCVKQP Minjie Zou FGOQPUVTCVQTHQTUGNHZECRCDKNKVKGUKP 7UKPI6GUV5RGEKƄECVKQPUoKPVJ+''' the intralogistics domain International Conference on Industrial 'ZVGTPCN2J&%CPFKFCVGU ■ 849CNNsFGOQPUVTCVQTHQTJCPFNKPI +PHQTOCVKEU +0&+0 RR Jens Otto EQORNGZKPHQTOCVKQPD[WUKPIVJG ,WN| Cyntia Vargas Martinez GZRCPFGFRQUUKDKNKVKGUQHXKUWCNK\CVKQP and interaction ■ Communication Demonstrator for CPCN[\KPIFKHHGTGPVTGCNVKOGEQOOWPK cation technologies based on Ethernet

253 Metal Forming and Casting

2TQEGUUCPFOCVGTKCNSWCNKƄECVKQPHQTOGVCNHQTOKPIDNCPMKPICPFECUVKPI

The Chair of Metal Forming and Casting (utg) focuses on the three production processes: casting, blanking and metal forming. In 2017 over 40 scientists worked at the institute on research projects which vary from fundamental research to industrial application.

Virtual production and simulation

New technologies and New technologies and New technologies and RTQEGUUGUKPVJGƄGNFQH RTQEGUUGUKPVJGƄGNFQH RTQEGUUGUKPVJGƄGNFQH casting DNCPMKPI OGVCNHQTOKPI

2TQEGUUUVCDKNKV[CPFECRCDKNKV[

Casting

The research group ‘Casting’ focuses on: solid-state joining techniques is based on a cold welding ■ Molding materials process to establish adhesive bonding. Therefore, exten- ■ Residual stress analysis and material characterization sive chemical, thermal and mechanical preparation of the ■ Tooling technology for (high pressure) die casting bonding partners and post-treatment of the compounds ■ Continuous and composite casting are required to ensure the formation of a suitable bonding. Horizontal continuous compound casting of copper mate- Copper composite materials are used in many technical rials could be an adequate alternative to this energy- and applications today. These compounds are produced resources-consuming processes. Thus, it will be possible mostly by joining of the basic materials, especially via roll to replace the chemical and mechanical preparation of bonding processes. The bonding mechanism of these the bonding surfaces and increase the output by reducing

Horizontal continuous compound casting

254 Metal Forming and Casting

cracking of higher-strength alloys, which can occur in roll Projects processes. ■ Incremental Casting – The Generative Droplet-based Furthermore, the utilization of the casting heat of the Manufacturing of Parts Using Aluminium Alloys (DFG) substrate results in conservation of energy, because no ■ Opti Alloy – Mechanical Strength Calculation Based on additional thermal pretreatment is necessary. Microstructure (BFS) Therefore, the producibility of continuous composite ■ +PUKVW5VTCKPI/GCUWTGOGPV&WTKPIVJG5QNKFKƄECVKQPQH ECUVKPIQHUGNGEVGFEQRRGTCNNQ[UPGGFUVQDGSWCNKƄGFKP Aluminium Alloys Using Fibre Bragg Gratings (DFG) this joint research project in cooperation with industrial ■ Š-GTPs/KETQUVTWEVWTGDCUGF/GVJQFHQT%CNEWNCVKPI partners. Technological Properties of Inorganic Bounded Sand First the required conditions to achieve a proper metal- Cores (DFG) lurgical bonding between the copper alloys have to be ■ 'PGTI[CPF/CVGTKCNGHƄEKGPV2TQFWEVKQPQH%QRRGT determined by means of static composite casting experi- composites Using Horizontal Continuous Casting (DBU) ments using sand moulds and permanent moulds. Based ■ Casting and Characterization of Cu-Al-bilayer Compos- on the results of the basic composite casting experiments, ites (DFG) the continuous casting process is established. Therefore, ■ (14241Žs'HƄEKGPV2TQFWEVCPF2TQEGUU&GXGNQR- the horizontal continuous casting device located at the utg OGPVD[-PQYNGFIGDCUGF5KOWNCVKQP $(5 KUOQFKƄGF0WOGTKECNUKOWNCVKQPUCTGCRRNKGFVQFGUKIP ■ In-situ Measurement of Deformation Induced Formation a composite mould system which is integrated into the of Martensite in Austempered Ductile Iron (DFG) existing continuous casting equipment. Thereby, the comprehension of the correlation between the quality of the compound and the casting conditions is gained. Furthermore, the numerical simulation of the casting process has to be validated to help industrializing the new process in the future.

$NCPMKPI

The increased demand for lightweight constructions in considered as highly unfavorable and as having a negative industrial production requires the design, manufacture, impact on a component’s feasibility. and use of application oriented components. Forming and 'HƄEKGPVOQFGNUCPFGZRGTKOGPVCNVGUVKPIGSWKROGPVHQT blanking processes have many advantages over machin- operational stability have already shown promising results KPIRTQEGUUGUNKMGQRVKOK\GFRTQFWEVKXKV[CPFCƄDGT for the potential usefulness of internal stresses. The QTKGPVCVKQPYJKEJKUCFCRVGFVQVJGURGEKƄEVCUM6JGNCVVGT control and alteration of these stresses in order to achieve results in increased mechanical characteristics and fatigue a positive impact on relevant characteristics of compo- strength of formed metal components. nents manufactured by forming or blanking processes is *QYGXGTTGUKFWCNUVTGUUGUITGCVN[KPƅWGPEGVJGRGT- the objective of the DFG priority program 2013, which is formance of components manufactured by forming or coordinated by the Chair of Metal Forming and Casting. blanking procedures. The state of residual stress is mainly Among these manufacturing processes, near-net-shape- responsible for component failure, especially under cyclic DNCPMKPIRTQEGUUGU 005$2 CTGQPGRQUUKDKNKV[VQ loads. For this reason, residual stresses are currently pro duce functional surfaces in an economic way. These

Gear manufactured by a NNSBP

255 Metal Forming and Casting

cutting processes are characterized by a high plastic ■ +PƅWGPEGQH2TQEGUUTGNCVGF#NVGTKPI&KG%NGCTCPEGQP deformation and thus induce residual stresses in the pro- Tool Wear (AiF) duced part. Up to now, residual stresses induced by metal ■ Improvement of Tool Life Through Adjustment of the Tip forming operations have not been subject to focused Clearance of Punching Dies to the Breakthrough-force investigations in the sense of a suitable use of their (AiF) tensile and compressive components to ensure targeted ■ HyBMS – Punching of Hybrid Components with a RCTVURGEKƄETGUKFWCNUVTGUURTQƄNGUGURGEKCNN[YJGPC Minimal Degree of Damage (AiF) cost and time-intensive heat treatment should be avoided. ■ Lubricant-free Forming by Affecting Thermoelectric $[CXCTKCVKQPQHVJGRTQEGUURCTCOGVGTUVJGKPƅWGPEGQP Currents (DFG) VJGHQTOCVKQPQHVJGTGUKFWCNUVTGUUUVCVGKUKFGPVKƄGFCPF ■ Manufacturing of Electromagnetic Components from used for a targeted utilization. To that end, experimental 0QPITCKP1TKGPVGF'NGEVTKECN5VGGNU &() as well as numerical experiments are performed. On the ■ Geometry and Feasibility Prediction of Sheet Metal basis of the residual stress states generated and their Parts with Embossings Made of High-strength and time-stability in the produced parts, the component Ultra-high-strength Steels (AiF) strength is derived by a residual stress model. Core of ■ Sources and Prediction of Slug Pulling (AiF) the investigation is a predictive residual stress model for ■ Characterization and Utilization of Process-induced closed cutting lines to determine process parameters for Residual Stresses for the Manufacturing of Functional RCTVURGEKƄENQCFTGSWKTGOGPVU6JKUCNNQYUCPKPETGCUGKP 5WTHCEGUD[0GCT0GV5JCRG$NCPMKPI2TQEGUUGU &() the quality as well as the lifetime of parts manufactured by ■ Thermomechanical Interaction in the Shear Cutting 005$2U Affected Zone (DFG) ■ Formability Improvement of Shear Cut Surfaces of Projects Iron-manganese ■ Reduction of Sliver During Trimming of Aluminum ■ Sheet Metal by Optimized Cutting Parameters (FOSTA Sheets (AiF) Stahlanwendung e.V.) ■ Wear Curves of Cutting Punches through Targeted ■ Focused Use of Residual Stress in Electrical Steel as Fatigue (AiF) /GCPUQH+ORTQXKPIVJG'PGTI['HƄEKGPE[ &() ■ +PƅWGPEGQH'FIG/CPWHCEVWTKPIQPVJG(CVKIWG$GJCX- ior of Different Steel Grades Under Cyclic Load (AVIF)

Metal Forming

The research group ‘Metal forming’ focuses on: Research Project Lightweight Forging ■ 3WCNKƄECVKQPQHOCVGTKCNU ■ 3WCNKƄECVKQPQHRTQEGUUGUVQQNUCPFOCEJKPGT[ Motivation The continuous pressure in the automotive industry to 6JGSWCNKƄECVKQPQHOCVGTKCNUKUCMG[VQRKEQHVJKU reduce a car’s weight forces the engineers to look for new research group. In this area, especially the determination areas to which apply lightweight design. Therefore, power of quasi-static properties as well as the investigation of train, chassis and with them the gear box, are being the strain rate and temperature sensitivity of the materials focused on. Today, gear wheels within the gear box are are focused on. The knowledge gained is the basis for solid components. the understanding of the material behavior in forming RTQEGUUGUCPFJKIJSWCNKV[ƄPKVGGNGOGPVUKOWNCVKQPU Approach The latter helps to gain deeper process insights and We investigate along the gear wheels’ whole process understanding of the forming processes. They are part of chain. Beginning with the design phase, heading over nearly every project in the metal forming group and are the VQRTQFWEVKQPRJCUGCPFGPFKPIYKVJVJGƄPCNRTQFWEV UVCTVKPIRQKPVHQTVJGSWCNKƄECVKQPQHRTQEGUUGUVQQNUCPF we look for possibilities to apply lightweight design. This machinery. As an example for our work, our part within the leads to the proposal of gear wheels in differential design research initiative ‘Lightweight Forging’ (www.massiver- ƄIWTGCPF 0WOGTKECNKPXGUVKICVKQPUQPVJGEQODK- leichtbau.de) is presented in more detail. nations of different designs, materials and manufacturing techniques detect and allow us to understand interde- pendencies. Subsequently to the numerical investigations, prototypes are manufactured for real world testing.

256 Metal Forming and Casting

At utg we manufacture wheel bodies only. We look into VJGOCPWHCEVWTKPIVGEJPKSWGUFGGRFTCYKPICPFƄPG blanking. These manufacturing techniques are already taken into account during the wheel bodies’ design phase. Manu facturing of the gear ring and joining it with the wheel body is conducted at our partner institute IWT in Bremen. Finally, there will be endurance trials at another partner institute, the FZG in Munich, to ensure the durability of the designed gear wheels.

Figure 3: Multi-component gear wheel with stapled sheet metal wheel body

Conclusion Within the research project Lightweight Forging we have developed and manufactured promising designs for light- weight gear wheels. Weight savings of 35% (189 g) with the stapled sheet metal wheel body have been achieved. The numerical investigations predict the load capacities of the new gear wheel designs and a solid gear wheel to be on the same level. This allows replacement of the solid gear wheel with one of the new designs. Figure 1: Multi-component gear wheel, consisting of gear ring (dark-grey) and wheel body (light grey) with stapled sheet metal wheel body. The single Projects UJGGVOGVCNNC[GTUCTGƄPGDNCPMGFCVutg, Munich. Gear ring and wheel body are joined immediately after the gear ring’s heat treatment at IWT, ■ 2TGXGPVKQPQH5WTHCEG&GƅGEVKQPUQH5JGGV/GVCN2CTVU Bremen. Connectors hold the sheet metal layers in place during transport. (AiF) They will be removed for the endurance trials. In mass production, the ■ sheet metal layers will be connected via stacking after cutting. Improving the Time Dependent Evaluation Method of Tests for the Determination of the Forming Limit Curve CPF&GXGNQRKPIQHC0WOGTKECN'SWKXCNGPV/QFGN #K( ■ Optimized Risk Management in Press-shops for Mini- mizing Breakdown Costs in Case of Facility Downtime (BMW AG) ■ Hole Roller Clinching of Multi-Material-Lightweight Joints (DFG) ■ Connection Optimization of Progressive Die Compo- nents (AiF) ■ Inline-Quality Control in Pressing Tools (BMW AG) ■ 5VKHHGPKPIQH%CODGTGF5JGGV/GVCN&GUKIPU0WOGTKE Figure 2: Multi-component gear wheel (sectional view) with deep drawn Bead Optimization by a Coupled Algorithm Considering wheel body. The wheel body is divided horizontally and therefore consists 0QPNKPGCT(QTOKPI.KOKVU &() of two separate parts. ■ Anisotropic Generalized Forming Limit Concept (DFG) ■ Intelligent Lightweight Design Through Multi-compo- Results nent Processes (AiF) To date we have successfully manufactured a gear wheel ■ Production-compatible Design of Deep-drawn Parts YKVJUVCRNGFUJGGVOGVCNYJGGNDQF[ ƄIWTG (KTUVFGGR (BFS) drawn wheel bodies have been produced as well. As soon ■ Process-integrated Compensation of Geometrical as gear wheels with both types of wheel bodies exist, we Deviations for Bulk Forming (IMU) will conduct static tests to investigate the force needed to ■ Suitable Representation of Sharp Character Lines for push the wheel body out of the gear ring in axial direction Large Scale Production (BMW AG) and how much torque the gear wheels can transmit. This ■ Improvement of High Strain Rate Superplasticity of will allow us to validate our numerical results. Aluminum Materials by Equal Channel Angular Pressing of Sheet Metal Products (DFG)

257 Metal Forming and Casting

Dipl.-Ing. David Jocham Courses #NGZCPFGT-KPFUOØNNGT/5E ■ Principles of Engineering Design and &KRN+PI/KEJCGN-TKPPKPIGT Production Systems Martin Landesberger, M.Sc. ■ Basics of Casting and Metal Forming Philipp Lechner, M.Sc. ■ Metal Forming Machines Daniel Maier, M.Sc. ■ Virtual Process Design for Metal Simon Maier, M.Sc. Forming and Casting Tim Mittler, M.Sc. ■ Casting and Rapid Prototyping 2TQH&T+PI (GTFKPCPF0GWOC[GT/5E ■ Manufacturing Technologies 9QNHTCO8QNM Dipl.-Math. Daniel Opritescu ■ Marketing Engineering and Purchasing Dipl.-Ing. Isabella Pätzold ■ Production Management in the Contact Dipl.-Ing. Manuel Pintore Commercial Vehicle Sector www.utg.mw.tum.de Marco Raupach, M.Eng. ■ Development of Car Body Parts [email protected] Dipl.-Ing. Peter Sachnik ■ Casting in Vehicle Construction Phone +49.89.289.13790 Dipl.-Ing. Sven Schreyer ■ Forging and Manufacturing Technology Jens Stahl, M.Sc. for Powertrain and Chassis in Auto- Management Florian Steinlehner, M.Sc. motive Technology Prof. Dr.-Ing. Wolfram Volk, Director Philipp Tröber, M.Eng. Prof. i.R. Dr.-Ing. Hartmut Hoffmann, Simon Vitzthum, M.Sc. 5GNGEVGF2WDNKECVKQPU Emeritus Dipl.-Ing. Simon Vogt ■ Sachnik, P.; Hoque, S.E.; Volk, W.: Dipl.-Ing. Annika Weinschenk $WTTHTGG%WVVKPI'FIGUD[0QVEJ *QPQTCT[2TQHGUUQTU Hannes Weiss, M.Sc. shear Cutting. Journal of Materials Prof. Dr.-Ing. Franz Breun Markus Welm, M.Sc. Processing Technology, 249, 2017 Prof. Dr.-Ing. Walter Wohnig ■ 6TÒDGT29GKUU*#-QRR6 Prof. Dr. Horst-Henning Wolf Research Focus Golle, R.; Volk, W.: On the Correlation ■ Industrial engineering between Thermoelectricity and Visiting Lecturers ■ Tool design Ad hesive Tool Wear during Blanking of Dr.-Ing. Carsten Intra ■ Engineering and planning processes Alu minum Sheets. International Journal Dr.-Ing. Hans-Willi Raedt of Machine Tools and Manufacture, Competence 118-119, 2017 #FOKPKUVTCVKXG5VCHH ■ Process chain car body sheet ■ Volk, W.; Gaber, Ch.: Investigation and Dipl.Chem. Stefanie Prauser ■ Alternative metal forming processes for Compensation of Biaxial Pre-strain Brigitte Resch small batch production and prototyping FWTKPIVJG5VCPFCTF0CMCLKOCCPF Cutting surface quality, wear, accuracy Marciniak-test Using Generalized 6GEJPKECN5VCHH ■ Tool technology Forming Limit Concept. Procedia Marco Olbrich-Baier ■ Molding materials Engineering, 207, 2017 Andreas Fuhrmann ■ Continuous casting ■ Tröber, P.; Demmel, P.; Hoffmann, H.; Tim Schönstädt ■ Residual stress analysis and material )QNNG48QNM91PVJG+PƅWGPEGQH Corinna Sutter characterization 5GGDGEM%QGHƄEKGPVUQP#FJGUKXG6QQN Wear during Sheet Metal Processing. Research Scientists +PHTCUVTWEVWTG CIRP Annals – Manufacturing Dr.-Ing. Roland Golle ■ Hydraulic press, high speed punching Technology, 66, 2017 Prof. Dr.-Ing. Matthias Golle press, triple-action blanking press ■ Cha, W.-G.; Hammer, T.; Gutknecht, Dipl.-Ing. Tim Benkert ■ 3D printer for inorganically bound core F.; Golle, R.; Tekkaya, A.E.; Volk, W.: Wan-gi Cha, M.Sc. sands Adaptive Wear Model for Shear-cutting Matthias Eder, M.Sc. ■ Measurement instrumentation Simulation with Open Cutting Line. Florian Ettemeyer, M.Sc. (residual stresses, surface, geometry, Wear, 386-387, 2017 Dipl.-Ing. Martin Feistle mechanical properties, …) Christian Gaber, M.Sc. ■ Various tools (cold and heated) Thomas Greß, M.Sc. ■ Stamping and bending machine Maximilian Gruber, M.Sc. ■ Rotational cutting line Dipl.-Ing. Benjamin Himmel ■ Casting equipment Tobias Hammer, M.Sc. ■ Craftformer Christoph Hartmann, M.Sc. ■ Core blowing machine Florian Heilmeier, M.Sc. ■ Workshop Dipl.-Ing. Maria Hiller

258 Internal Combustion Engines

Engine design and simulation, combustion technologies, and experimental evaluation

■ The focus of the Chair of Internal Combustion Engines is to extend the efforts on the reduction of engine-out emissions by enhancing combustion technology, engine after-treatment, emission meas- urement techniques, and the knowledge on fuel properties and fuel composition. Favorable emis- UKQPDGJCXKQTCJKIJGHƄEKGPE[CPFNQYEQORNGZKV[QHKPVGTPCNEQODWUVKQPGPIKPGUYKNNDGETWEKCN in the future, as alternative drive technologies emerge. Especially for long-distance or high-power applications, internal combustion engines will for a long time ensure clean and sustainable mobility and energy supply today and tomorrow.

Test bench with gasoline single cylinder engine for clean DMC/MeFo fuel

#JKIJNKIJVKPYGTGVJGƄTUVGZRGTKOGPVCNTGUWNVU GNGEVTKEKV[CURTKOCT[GPGTI[CPFVJWUHGCVWTGCECTDQP WUKPIFKOGVJ[NECTDQPCVG &/% CPFOGVJ[NHQTOCVG PGWVTCNOGCPUQHGPGTI[UVQTCIGHQTOQDKNGCRRNKECVKQPU /G(Q CUHWGNKPCURCTMKIPKVGFGPIKPG6JGUGHWGNUDWTP YJKEJTGSWKTGJKIJGPGTI[FGPUKV[#VVJGUCOGVKOGVJGKT

YKVJWNVTCNQYGOKUUKQPQHRCTVKENGUCPFCNUQTGFWEG01Z NQYGOKUUKQPQHRQNNWVCPVUTGFWEGUVJGPGEGUUCT[GHHQTVU CPFJ[FTQECTDQPGOKUUKQPUUKIPKƄECPVN[&/%CPF/G(Q QHGZJCWUVCHVGTVTGCVOGPVCPFEQPVTKDWVGUVQVJGKORTQXG CTG'HWGNUVJCVOGCPUVJG[ECPDGRTQFWEGFWUKPIITGGP OGPVQHCKTSWCNKV[

259 Internal Combustion Engines

Combustion Technologies – CFD Simulation – Emission Reduction

6JGTGFWEVKQPQHGPIKPGGOKUUKQPUCPFHWGNEQPUWORVKQP CTGFTKXGTUHQTVJGKORTQXGOGPVQHEQODWUVKQPVGEJPQN QI['PIKPGUHQTICUQNKPGFKGUGNCPFPCVWTCNICUCTG FGXGNQRGFCPFDWKNVCVVJGKPUVKVWVGCPFCTGCXCKNCDNGHQT KPFWUVTKCNQTRWDNKEHWPFGFTGUGCTEJRTQLGEVU#MG[EQO RGVGPEGHQTVJGTGCNK\CVKQPQHQWTGPIKPGEQPEGRVUKUVJG CRRNKECVKQPQHRTQHGUUKQPCN%(&UKOWNCVKQPUQHVYCTGYJKEJ KUWUGFVQRTGFKEVCPFQRVKOK\GVJGICUGZEJCPIGRJCUG KPE[NKPFGTUYKTNVWODNGQTVWTDWNGPEGCPFVJGRJCUGUQH HWGNKPLGEVKQPOKZVWTGHQTOCVKQPCPFEQODWUVKQP5KOW NCVKQPTGUWNVUCTGWUGFVQFGUKIPKORTQXGFIGQOGVTKGUQH Half cross-section through the combustion chamber at three different VJGEQODWUVKQPEJCODGTQTKPLGEVQTPQ\\NGUCPFCTGVJGP times (rows) and for four different piston shapes (columns): development of a diesel combustion system and evaluation using CFD simulation. XCNKFCVGFQPQPGQHQWTGPIKPGVGUVDGPEJGU'PIKPG QWVGOKUUKQPUCTGOGCUWTGFD[OGCPUQHWRVQFCVG(6+4 VGEJPQNQI[CPFCOQFGTPRCTVKENGEQWPVKPIU[UVGO9G Projects WUGEQORQPGPVVGUVDGPEJGUVQGXCNWCVGJ[FTCWNKEDGJCX ■ $5VO9RTQLGEVnUKOIGVJGTs-QNNCDQTCVKQPURNCVVHQTO KQTCPFURTC[RCTCOGVGTUQHHWGNKPLGEVQTU5KOWNCVKXGCPF \WTKPVGTFKU\KRNKPÀTGP5KOWNCVKQPo GZRGTKOGPVCNVQQNUCNNQYHCUVCPFGHHGEVKXGQRVKOK\CVKQP ■ 5GXGTCNRTQLGEVUHWPFGFD[KPFWUVT[RCTVPGTU QHDQVJGOKUUKQPDGJCXKQTCPFGPIKPGGHƄEKGPE[6GUV TWPUQPVJGTGUGCTEJGPIKPGUCTGRNCPPGFCPFGXCNWCVGF YKVJUVCVKUVKECNOGVJQFU FGUKIPQHGZRGTKOGPVU&1' VQ TGFWEGVKOGCPFEQUVUHQTVJGVGUVKPIRTQEGFWTG

Injection Systems – Spray Measurement – Optical Research

+PVJGRCUVFGECFGUVJGKPLGEVKQP EQPVTQNKUWPFGTFGXGNQROGPVKPEQN RTGUUWTGQHOQFGTPFKGUGNGPIKPGUJCU NCDQTCVKQPYKVJVJG+PUVKVWVGQH#RRNKGF KPETGCUGFHTQODCTWRVQDCT /GEJCPKEUYJQUGCKOKUVQOCKPVCKPCP 1WTTGUGCTEJCEVKXKVKGUKPENWFGCNNUVGRU QRVKOCNKPLGEVKQPTCVGVJTQWIJQWVVJG QHKPLGEVKQPU[UVGOFGXGNQROGPV-G[ GPVKTGNKHGVKOGQHCEQOOQPTCKNKPLGEVQT EQORGVGPEGUCTGXCTKQWUUKOWNCVKQPU UWDLGEVGFVQEQMKPIYGCTGVE(QTVJKU EQPVCKPKPI&J[FTCWNKE&OWN RWTRQUGFKHHGTGPVKPLGEVQTUKIPCNUCTG VKRJCUGƅQYCUYGNNCUURTC[UKOWNCVKQP GXCNWCVGFKPQTFGTVQFGVGTOKPGVJG (WTVJGTOQTGCVUGXGTCNVGUVDGPEJGU KPLGEVKQPTCVGD[CXCKNCDNGUKIPCNUKP J[FTCWNKECPFQRVKECNOGCUWTGOGPVUQH GPIKPGQRGTCVKQP KPLGEVQTUYKVJXCTKQWUHWGNUCTGECTTKGF QWV#EWTTGPVRTQLGEVKUHQEWUKPIQPVJG Projects J[FTCWNKEDGJCXKQTQHQTKƄEGUKPKPLGEVKQP ■ $(5RTQLGEVn/GUUWPIWPF$GTGEJ U[UVGOUVQXCNKFCVGUKOWNCVKQPTGUWNVU PWPIFGU&ØUGPFWTEJƅWUUGUo 2CTVQHVJGVCUMKUVJGFGXGNQROGPV ■ &()RTQLGEVn1RVKOKGTWPIFGU'KP QHCJ[FTCWNKEVGUVDGPEJKPENWFKPI URTKV\XGTJCNVGPUXQP&KGUGNKPLGMVQTGP OGCUWTGOGPVVGEJPKSWGUVQKPXGUVKICVG WPVGTFGO'KPƅWUUXQP#NVGTWPIUGT VJGJKIJF[PCOKEƅWKFƅQYRTQRGTVKGUKP UEJGKPWPIGPFGU+PLGMVQTUo EQODKPCVKQPYKVJECXKVCVKQPCPFVJGTOCN ■ 5GXGTCNRTQLGEVUHWPFGFD[KPFWUVT[ GHHGEVU6JGOCKPVCTIGVKUVQCPCN[\G RCTVPGTU J[FTCWNKEGNGOGPVUD[WUKPIKPPQXCVKXG OGCUWTGOGPVVGEJPKSWGUCPFICKP KPHQTOCVKQPCDQWVRJ[UKECNGHHGEVUVQ End of a gasoline injection event (from top to QRVKOK\GVJGFGUKIPQHHWVWTGKPLGEVKQP bottom): poor atomization in the end bears the risk of soot formation and injector coking. U[UVGOU(WTVJGTOQTGCPQRGPNQQR

260 Internal Combustion Engines

Friction Measurement – Tribology – Engine Mechanics

5KPINGE[NKPFGTGPIKPGGSWKRRGFYKVJINCUUYKPFQYKPVJGE[NKPFGTNKPGTGPCDNKPIKPUKVWOGCUWTGOGPVQHVJGQKNƄNOVJKEMPGUUQPVJGƄTGFGPIKPG

4GFWEKPIRKUVQPCUUGODN[HTKEVKQPKUCEGPVTCNKUUWGQH CTGOGCUWTGFFWTKPIƄTGFGPIKPGQRGTCVKQP4GEGPVN[ KORTQXKPIVJGGHƄEKGPE[QHOQFGTPKPVGTPCNEQODWUVKQP GXGPQRVKECNKPUKIJVQPVJGE[NKPFGTUWTHCEGYCURTGRCTGF GPIKPGU2KUVQPRKUVQPTKPIUNKPGTCPFNWDTKECVKPIQKN D[OGCPUQHCINCUUYKPFQYKPUKFGVJGNKPGT UGGCDQXG  HQTOCEQORNGZVTKDQNQIKECNU[UVGOQRGTCVKPIKPCƄGNFQH 6JGOGCUWTGOGPVTGUWNVUQHVJGVJTGGGPIKPGUGUVCDNKUJC EQPUVCPVN[CNVGTPCVKPIXGNQEKVKGURTGUUWTGUCPFVGORGT FGGRGTWPFGTUVCPFKPIQHVJGDGJCXKQTCPFFGRGPFGPEKGU CVWTGU6JGTGHQTGCURGEKCNTGUGCTEJGPIKPGEQPVCKPKPI KPVJGVTKDQNQIKECNU[UVGO COGCUWTGOGPVFGXKEGWUKPIVJGƅQCVKPINKPGTOGVJQF YCUFGXGNQRGFCVVJGKPUVKVWVG+VCNNQYUVJGRKUVQP Projects CUUGODN[HTKEVKQPVQDGOGCUWTGFYKVJCJKIJN[CEEWTCVG ■ (88RTQLGEVn-QNDGPTKPI²NVTCPURQTV++o TGUQNWVKQPWRVQ0WPFGTƄTGFEQPFKVKQPU6JCVGPCDNGU ■ (88RTQLGEVn-QNDGPTKPI²NVTCPURQTV)NCUNKPGTo VJGFGVGEVKQPQHQRVKOK\CVKQPRQVGPVKCND[GZRGTKOGPVCN ■ &()RTQLGEVn'PVYKEMNWPIGKPGUMQUVGPWXGTDTCWEJU CPCN[UKU#UGEQPFTGUGCTEJGPIKPGYCUDWKNVWREQP IØPUVKIGP5RNKV8GTDTGPPWPIUOQVQTU+++o VCKPKPIUGXGTCNUGPUQTUVQOGCUWTGETCPMCPINGTGUQNXGF ■ $(52TQLGEVn6TWEMs$C[GTKUEJG-QQRGTCVKQPHØT OQVKQPUQHVJGRKUVQPCPFVJGRKUVQPTKPIU(WTVJGTOQTG 6TCPURQTVGHƄ\KGP\o VJGQKNƄNOVJKEMPGUUCPFQKNVTCPURQTVCVKQPRJGPQOGPC ■ 5GXGTCNRTQLGEVUHWPFGFD[KPFWUVT[RCTVPGTU

261 Internal Combustion Engines

Natural Gas Engines – Combustion – Emissions – Simulation

KPƅWGPEGQHGPIKPGRCTCOGVGTUNKMGXCNXGVKOKPIKIPKVKQP GSWKXCNGPEGTCVKQCPFICUSWCNKV[#NVGTPCVKXGEQODWUVKQP RTQEGUUGUCTGCPQVJGTHQEWUVQQXGTEQOGVJGVTCFGQHH DGVYGGPGOKUUKQPUCPFGHƄEKGPE[5VTCVKƄGFQTFKGUGNNKMG EQODWUVKQPRTQEGUUGUCTGRTQOKUKPIVGEJPKSWGUCPF EQWNFCNNQYJKIJGUVNQCFUYKVJQWVTGUVTKEVKQPUHTQOMPQEM KPIYJKNGMGGRKPINQYGUVGOKUUKQPNGXGNUCPFJKIJGUV GHƄEKGPE[YKVJJKIJN[XQNCVKNGICUSWCNKVKGU6JGNUKPING E[NKPFGTTGUGCTEJGPIKPGHGCVWTGUCPQRVKECNN[CEEGUUKDNG EQODWUVKQPEJCODGT%QODKPGFYKVJ%(&5KOWNCVKQPUC FGGRKPUKIJVKPVQVJGEQODWUVKQPRTQEGUUKUPQYRQUUKDNG

Projects ■ (88RTQLGEVn(QTOCNFGJ[Fo Combustion in a dual-fuel engine: a homogenous mixture of air and natural ■ (88RTQLGEVn/KVVGNFTWEMDCTDGK)CUOQVQTGPo gas is ignited by a small quantity of diesel fuel. ■ $(5RTQLGEVn'HƄ\KGP\UVGKIGTWPIXQP&WCN(WGN/QVQTGP FWTEJ1RVKOKGTWPIFGT<ØPFWPIDGKGHHGMVKXGP/KVVGN 7VKNK\CVKQPQHPCVWTCNICUECPDGQPGUVGRVQEQRGYKVJ FTØEMGPØDGTDCTo HWVWTGGPGTI[FGOCPF5WTRNWUGPGTI[HTQOTGPGYCDNG ■ $/9KRTQLGEVn(NGZ&+(NGZKDNGFKTGMVGKPURTKV\GPFG UQWTEGUECPDGUVQTGFCUJ[FTQIGPQTOGVJCPG(WTVJGT /QVQTGPHØTFKG5EJKHHHCJTVo FGXGNQROGPVKUPGGFGFVQHWNƄNNHWVWTGGOKUUKQPNGIKUNCVKQP ■ $5VO9RTQLGEVn1RVKOKGTVGT8GTDTGPPWPIUOQVQTHØT YKVJJKIJGHƄEKGPE[EQODWUVKQP%WTTGPVTGUGCTEJRTQ NCPFYKTVUEJCHVNKEJG$KQICU/KPK$*-9o LGEVUHQEWUQPGOKUUKQPUQHWPDWTPGFJ[FTQECTDQPUNKMG ■ '7RTQLGEVn*'4%7.'5o OGVJCPGQTHQTOCNFGJ[FG6JGIQCNKUVQWPFGTUVCPFVJG ■ 5GXGTCNRTQLGEVUHWPFGFD[KPFWUVT[RCTVPGTU

Alternative Fuels – Emission Measurement – Energy Management

(QUUKNHWGNUCTGDGEQOKPIOQTGCPFOQTGUECTEGCPF

'WTQRGCP%12UCXKPIRQNKEKGUJCXGDGGPKPVTQFWEGFVQ ƄIJVINQDCNYCTOKPI%QODWUVKQPGPIKPGUECPTGFWEG VJGKTQWVRWVQH)*)GOKUUKQPUCPFEQPVTKDWVGVQVJG VTCPUKVKQPVQYCTFUCNVGTPCVKXGGPGTI[D[GPJCPEKPIVJG

GHƄEKGPE[QHGPGTI[EQPXGTUKQPCPFD[GZRNQKVKPI%12 PGWVTCNRTKOCT[GPGTIKGU5WUVCKPCDNGDKQHWGNUCPFU[P VJGVKEHWGNUECPTGRNCEGHQUUKNHWGNUCPFQHHGTVJGCFFKVKQPCN DGPGƄVQHENGCPEQODWUVKQP9KVJRTQOKUKPIRTQITGUU Flames of conventional gasoline (center) and low-particle fuels dimethylcar- KPVJGƄGNFQHENGCPDWTPKPIFKGUGNQPIQKPIKPVYQ bonate (right) and methyl formate (left) PGYHWGNUHQTURCTMKIPKVGFGPIKPGU n1VVQGPIKPGUo YGTG KPXGUVKICVGFCVVJG%JCKTQH+PVGTPCN%QODWUVKQP'PIKPGU QHGPVJCNR[HTQOJQVGZJCWUVICUCPFVJGRTQFWEVKQPQH &KOGVJ[NECTDQPCVG &/% CPFOGVJ[NHQTOCVG /G(Q  GNGEVTKERQYGTD[OGCPUQHCUVGCOVWTDKPG YGTGHQTVJGƄTUVVKOGVGUVGFCURWTGUWDUVCPEGUKPC TGUGCTEJGPIKPGFGNKXGTKPIUWDUVCPVKCNN[NQYGTGOKUUKQPU Projects ■ QHRCTVKENGU01ZCPFJ[FTQECTDQPUEQORCTGFVQEQPXGP $/9KRTQLGEVn:/'&KGUGNs $KQ /GVJ[NGVJGTCNU VKQPCNICUQNKPG/QFGTPOGVJQFUHQTVJGOGCUWTGOGPVQH CNVGTPCVKXG-TCHVUVQHHGKPDKXCNGPVGP&KGUGNOQVQTGPo WNVTCNQYRCTVKENGGOKUUKQPUCTGPGGFGFHQTVJKUCPFQVJGT ■ (04RTQLGEVn1/'s7OYGNVHTGWPFNKEJG&KGUGNMTCHVUVQH CFXCPEGFGPIKPGEQPEGRVU%QQRGTCVKPIENQUGN[YKVJVJG HCFFKVKXGo KPFWUVT[YGJGNRVQKORTQXGUWEJOGCUWTGOGPVVGEJ ■ $/9KRTQLGEVn6TWEM'4s4CPMKPG-TGKUNCWHHØT0WV\ PKSWGU#PQVJGTƄGNFQHQWTTGUGCTEJKUVJGWVKNK\CVKQPQH HCJT\GWIGOKVICP\JGKVNKEJGO'PGTIKGOCPCIGOGPVo VJGTOQF[PCOKENQUUGUHTQOEQQNCPVQTGZJCWUV6JGVJGT ■ $(5RTQLGEVb5WD

262 Internal Combustion Engines

Technical Staff Journal Publications 2017 &KRN+PI(TCPM$ÀT ■ *ÀTVN/)CWMGN-2ÅNGTKP& /CTVKP&CPKGN 9CEJVOGKUVGT,CEQD'1Z[OGVJ[

5KGIHTKGF)GKIGT NGPGVJGTCNURQVGP\KGNN%12PGWVTCNGT 2JKNKRR*GNN WPVKN -TCHVUVQHHHØTUCWDGTG&KGUGNOQVQTGP &KRN+PI%JTKUVKCP*ÒFN 6GKN/QVQTGPWPVGTUWEJWPIGP #NGZ.KPM/5E WPVKN /QVQTVGEJPKUEJG

'FICT6JKGNG WPVKN %12PGWVTCNG-TCHVUVQHHGHØTUCWDGTG Contact &KRN+PI7NTKEJ6GV\PGT 1VVQOQVQTGP/6<s/QVQTVGEJPKUEJG YYYNXMOYVWOFG /CTMWU9GK»

263 Computational Mechanics

Application-motivated fundamental research in computational mechanics

■ The Institute for Computational Mechanics (LNM) is committed to what can best be described as cutting -edge ‘application-motivated fundamental research’ in a broad range of research areas KPEQORWVCVKQPCNOGEJCPKEU#RRNKECVKQPUURCPCNNƄGNFUQHGPIKPGGTKPI OGEJCPKECNCGTQURCEG EKXKNEJGOKECN CPFVJGCRRNKGFUEKGPEGU

With a strong basis in both computational solid and CEVKXKVKGUCV.0/CNUQKPENWFGQRVKOK\CVKQPKPXGTUG ƅWKFF[PCOKEUVJGEWTTGPVHQEWUNKGUQPOWNVKƄGNF CPCN[UKUWPEGTVCKPV[SWCPVKƄECVKQPCUYGNNCUGZRGTKOGPVCN CPFOWNVKUECNGRTQDNGOUCUYGNNCUQPEQORWVCVKQPCN YQTM+PEQNNCDQTCVKQPYKVJNGCFKPITGUGCTEJGTUYQTNFYKFG DKQGPIKPGGTKPI+PCNNVJGUGCTGCU.0/EQXGTUVJGHWNN CUYGNNCUPCVKQPCNCPFKPVGTPCVKQPCNKPFWUVTKCNRCTVPGTU URGEVTWOHTQOCFXCPEGFOQFGNKPICPFVJGFGXGNQROGPV .0/GZRGFKVGURTQLGEVUCVVJGHTQPVNKPGQHTGUGCTEJ(QT QHPQXGNEQORWVCVKQPCNOGVJQFUVQUQRJKUVKECVGFUQHVYCTG OQTGFGVCKNUCPFWRFCVGFKPHQTOCVKQPRNGCUGFQXKUKVQWT FGXGNQROGPVCPFCRRNKECVKQPQTKGPVGFUKOWNCVKQPUQPJKIJ YGDRCIGYYYNPOOYVWOFGJQOG RGTHQTOCPEGEQORWVKPIU[UVGOU/GCPYJKNGVJGTGUGCTEJ

Computational Multiphysics – Coupled and Multiscale Problems

6JGKPVGTCEVKQPQHFKHHGTGPVRJ[UKECNRJGPQOGPCRNC[UCP GUUGPVKCNTQNGKPOQUVGPIKPGGTKPICRRNKECVKQPU6JGOQF GNKPIQHUWEJOWNVKRJ[UKEURTQDNGOUKUQPGQHQWTOCKP CTGCUQHTGUGCTEJ9GJCXGFGXGNQRGFTQDWUVCPFGHƄEKGPV OQFGNKPICRRTQCEJGUCPFEQORWVCVKQPCNOGVJQFUHQTXCT KQWUEQWRNGFRTQDNGOU6JQUGRTQDNGOENCUUGUEQORTKUG CQƅWKFUVTWEVWTGKPVGTCEVKQPGNGEVTQEJGOKECNVJGTOQ OGEJCPKECNQRVQCEQWUVKEEQWRNGFTGCEVKXGVTCPURQTV Simulation of a non-return valve with rough surfaces modeled by a RQTQƅWKFVTCPURQTVCPFVJGTOQƅWKFUVTWEVWTGEQPVCEV poroelastic layer to compute leakage rates etc. KPVGTCEVKQPRTQDNGOU #NUQVJGKPVGTRNC[QHGHHGEVUQPFKHHGTGPVUECNGURNC[UCP RTQDNGOUDQVJKP%5&CPF%(&9JKNGKPVJGƄTUVITQWR KORQTVCPVTQNGKPOCP[UEKGPVKƄECPFGPIKPGGTKPICRRNK VJGHQEWUKUQPVJGOQFGNKPIQHJGVGTQIGPGQWUOCVGTKCNU ECVKQPU6JGTGHQTGVJGTGJCUDGGPKPETGCUKPIKPVGTGUVKP KPVJGUGEQPFITQWRVJGHQEWUKUQPVWTDWNGPVƅQYUCPF OQFGNKPIUQECNNGFOWNVKUECNGRJGPQOGPCDQVJOCVJG EQORNGZƅWKFU OCVKECNN[CPFEQORWVCVKQPCNN[9GVCEMNGOWNVKUECNG

5KOWNCVKQPQHTGEQCVKPIRTQEGUUQHƄPG metal powders in metal additive manufac- VWTKPICPFUWTHCEGRTQƄNGQHCPGYN[EQCVGF powder layer

264 Computational Mechanics

Computational Solid, Structural and Fluid Dynamics

%QORWVCVKQPCNUVTWEVWTCNCPFUQNKFF[PCOKEU %5& KUQPG QHVJGENCUUKECNEQTGFKUEKRNKPGUYKVJKPVJGHCUVITQYKPI ƄGNFQHEQORWVCVKQPCNOGEJCPKEU1WTTGUGCTEJCEVKXKVKGU KPEQORWVCVKQPCNUVTWEVWTCNCPFUQNKFF[PCOKEUEQXGTC YKFGTCPIGQHOGVJQFUHTQOPQPNKPGCTUQNKF J[DTKF(' OGUJGUKUQIGQOGVTKECPCN[UKU CPFUVTWEVWTCNOQFGNU DGCOUUJGNNU CPFEQTTGURQPFKPIƄPKVGGNGOGPVVGEJPQN QI[ '#5#05($CT VQOCVGTKCNOQFGNKPI J[RGTGNCUVKE KV[XKUEQGNCUVKEKV[GNCUVQRNCUVKEKV[ CVƄPKVGUVTCKPU#PQVJGT HQEWUCTGEQORNGZOCVGTKCNRJGPQOGPCUWEJCUCPKUQV TQR[ƄDGTEQORQPGPVUFCOCIGHTCEVWTGCPFOWNVKUECNG OQFGNKPIQHJGVGTQIGPGQWUOCVGTKCNU %QORWVCVKQPCNEQPVCEVF[PCOKEUTGRTGUGPVCRCTVKEWNCTN[ EJCNNGPIKPIENCUUQHUVTWEVWTCNOGEJCPKEURTQDNGOUFWGVQ %QPVCEVUKOWNCVKQPQHCWVQOCVGFƄDGTRNCEGOGPVRTQEGUUHQTECTDQP VJGPQPUOQQVJEJCTCEVGTQHVJGWPFGTN[KPINCYUQHRJ[U composites (collaboration with LCC) KEU GIPQPRGPGVTCVKQP CPFVJGUVTQPIPQPNKPGCTKVKGU KPVTQFWEGFD[VJGEQTTGURQPFKPIIGQOGVTKECNEQPUVTCKPVU %QORWVCVKQPCNƅWKFF[PCOKEU %(& KUVJGQVJGTEQTG +PCFFKVKQPEQORNGZKPVGTHCEGRJGPQOGPC HTKEVKQP FKUEKRNKPGKPEQORWVCVKQPCNOGEJCPKEU9GCTGQPGQH CFJGUKQPGVE PGGFVQDGVCMGPKPVQCEEQWPVYKVJ VJGXGT[HGYITQWRUYQTNFYKFGVJCVFQQTKIKPCNTGUGCTEJ UQRJKUVKECVGFEQORWVCVKQPCNOQFGNU*GTGQWTTGUGCTEJ KPDQVJ%5&CPF%(&1WTHQEWUKP%(&KUQPKPEQO GORJCUK\GUVJGFGXGNQROGPVQHTQDWUVCPFGHƄEKGPV RTGUUKDNGCPFYGCMN[EQORTGUUKDNGƅQYU9GFGXGNQR EQPVCEVHQTOWNCVKQPUCPFFKUETGVK\CVKQPOGVJQFUKPVJG PQXGNFKUETGVK\CVKQPOGVJQFUHQTƅQYRTQDNGOUCUYGNNCU EQPVGZVQHƄPKVGFGHQTOCVKQPUCPFPQPOCVEJKPIOGUJGU PQXGNCRRTQCEJGUHQTVWTDWNGPVƅQYUDCUGFQPNCTIGGFF[ PQPEQPHQTOKPIKPVGTHCEGU.CVGN[VJKUOCKPHQEWUJCU UKOWNCVKQP .'5 CPFFGVCEJGFGFF[UKOWNCVKQP &'5 1WT DGGPUWEEGUUHWNN[GZVGPFGFVQYCTFUEQPVCEVYKVJYGCT %(&CRRNKECVKQPEQFGUJCXGDGGPTWPQPNCTIGUWRGTEQO EQWRNGFVJGTOQOGEJCPKECNEQPVCEVCPFDGCOVQDGCO RWVGTUYKVJOQTGVJCPEQTGU#PQVJGTHQEWUKUQP EQPVCEV(WTVJGTOQTGUVTQPIN[EQWRNGFƅWKFUVTWEVWTG OWNVKRJCUGƅQYUCPFƅQYUEQWRNGFVQQVJGTƄGNFUCUKP KPVGTCEVKQP (5+ YKVJEQPVCEVKUCPQVJGTEWTTGPVTGUGCTEJ ƅWKFUVTWEVWTGKPVGTCEVKQPGNGEVTQEJGOKUVT[QTTGCEVKXG ƄGNF VTCPURQTVRTQDNGOU

*KIJN[GHƄEKGPVRCTCNNGN TGCNVKOG UKOWNCVKQPQHVWTDWNGPVƅQYU 6C[NQT)TGGPXQTVGZRTQDNGO

265 Computational Mechanics

Computational Bioengineering and Biophysics

1WTTGUGCTEJKPVJGDKQOGFKECNGPIKPGGTKPICTGCKPENWFGU CXCTKGV[QHFKHHGTGPVƄGNFU+PCNNQHVJGOYGEQNNCDQTCVG YKVJGZRGTVUHTQOOGFKEKPGDKQNQI[QTDKQRJ[UKEU 5QOGCEVKXKVKGUCTGVJGFGXGNQROGPVQHCEQORTGJGPUKXG EQWRNGFOWNVKUECNGOQFGNQHVJGTGURKTCVQT[U[UVGOQH

#WVQOCVKEƄDGTIGPGTCVKQPHQTJWOCPCVTKCHQTRCVKGPVURGEKƄEGNGEVTQOG- EJCPKECNUKOWNCVKQPUWUKPIKOCIGTGIKUVTCVKQPVGEJPKSWGU/CRRGFƄDGTU (left) and displacement during electromechanical simulation (right).

COQFGNHQTTWRVWTGTKUMRTGFKEVKQPQHCDFQOKPCNCQTVKE CPGWT[UOUEQORTGJGPUKXGECTFKCEOQFGNKPIUKOWNCVKQP QHUWTIKECNRTQEGFWTGUQTEGNNWNCTOQFGNKPI+PTGEGPV [GCTUYGJCXGCNUQUWEEGUUHWNN[GPVGTGFVJGCTGCQHDKQ RJ[UKEUYJGTGYGJCXGFGXGNQRGFCPQXGNVJGQTGVKECNN[ UQWPFCPFJKIJN[GHƄEKGPVCRRTQCEJHQTVJG$TQYPKCP F[PCOKEUQHRQN[OGTU$CUGFQPVJKUWPKSWGCRRTQCEJ YGOGCPYJKNGCTGCDNGVQUVWF[CPFCPUYGTCPWODGTQH 6GPUKNGVGUVKPIQHCEQNNCIGPOKETQƄDTKNKPCPWOGTKECNGZRGTKOGPV5VWF[KPI QRGPSWGUVKQPUKPVJGDKQRJ[UKEUEQOOWPKV[ VJGGHHGEVQHVTKXCNGPVETQUUNKPMUJ[FTQIGPDQPFUCPFXCPFGT9CCNU interactions.

Vascular Growth and Remodeling in Aneurysms (Emmy-Noether Group headed by Dr. C. Cyron)

#PGWT[UOUCTGHQECNFKNCVCVKQPUQHDNQQFXGUUGNUVJCVQHVGP ITQYQXGT[GCTUCPFƄPCNN[TWRVWTG4WRVWTKPICPGWT[UOU CTGCOQPIVJGNGCFKPIECWUGUQHOQTVCNKV[CPFOQTDKFKV[ KPKPFWUVTKCNK\GFEQWPVTKGU9JKNGQXGTVJGNCUVFGECFGUQWT IGPGTCNWPFGTUVCPFKPIQHVJGDKQOGEJCPKEUQHCPGWT[UOU JCUCFXCPEGFUWDUVCPVKCNN[VJGHCEVQTUIQXGTPKPIVJGKT ITQYVJsCNVJQWIJVJGMG[VQFGXGNQRHWVWTGVJGTCRKGUs TGOCKPRQQTN[WPFGTUVQQF+P(GDTWCT[&T%JTKUVKCP %[TQPGUVCDNKUJGFVJG'OO[0QGVJGTITQWRHQTXCUEWNCT ITQYVJCPFTGOQFGNKPIKPCPGWT[UOUCVVJG+PUVKVWVG HQT%QORWVCVKQPCN/GEJCPKEU+VCKOUCVGZRNQTKPIVJG DKQOGEJCPKECNCPFDKQEJGOKECNOGEJCPKUOUIQXGTPKPI VJGITQYVJQHCPGWT[UOUYKVJVJGRGTURGEVKXGQHGZRNQKV KPIVJGUGHQTVJGFGXGNQROGPVQHHWVWTGVJGTCRKGUCPF EQORWVGTCKFGFFKCIPQUKU6QVJKUGPFVJG'OO[0QGVJGT $KCZKCNVGUVQHVKUUWGUCORNGHQTXCNKFCVKQPQHEQPUVTCKPGFOKZVWTGOCVGTKCN ITQWRYKNNEQODKPGCFXCPEGFOGVJQFUHTQOEQORWVC model VKQPCNOGEJCPKEUYKVJUVCVGQHVJGCTVOGFKECNKOCIKPI VGEJPQNQI[CPFOCEJKPGNGCTPKPI6JG'OO[0QGVJGT QH[QWPITGUGCTEJGTU5KPEGVJGPVJG&()JCUDGGP RTQITCOQHVJG)GTOCP4GUGCTEJ(QWPFCVKQP &() YCU UWRRQTVKPIQPN[GKIJV'OO[0QGVJGTITQWRUKPVJGCTGCQH GUVCDNKUJGFKPVQUWRRQTVITQWPFDTGCMKPIRTQLGEVU OGEJCPKEUCPFOGEJCPKECNFGUKIP

266 Computational Mechanics

Guest Scientists Selected Publications 2017 ,QTIGFG#PFC5CNC\CT/5E ■ 0CINGT#$GTVQINKQ%5VQGEM% &KRN+PI,WNKGP)KNNCTF -Q\GTMG5CPF9CNN9#/CZKOWO 2TQH$GTPJCTF5EJTGƅGT NKMGNKJQQFGUVKOCVKQPQHECTFKCEƄDGT DWPFNGQTKGPVCVKQPHTQOCTDKVTCTKN[ Research Focus URCEGFFKHHWUKQPYGKIJVGFKOCIGU ■ %QORWVCVKQPCNƅWKFF[PCOKEU /GFKECN+OCIG#PCN[UKU   ■ %QORWVCVKQPCNUQNKFCPFUVTWEVWTCN  Prof. Dr.-Ing. F[PCOKEU ■ /GKGT%9CNN9#2QRR## Wolfgang Wall ■ %QORWVCVKQPCNEQPVCEVOGEJCPKEU 7PKƄGF#RRTQCEJHQT$GCOVQ$GCO ■ /WNVKRJ[UKEUEQWRNGFRTQDNGOU %QPVCEV%QORWVGT/GVJQFUKP#RRNKGF Contact ■ /WNVKUECNGRTQDNGOU /GEJCPKEUCPF'PIKPGGTKPI YYYNPOOYVWOFG ■ 4GFWEGFFKOGPUKQPCNOQFGNKPI   UGMTGVCTKCV"NPOOYVWOFG ■ 7PEGTVCKPV[SWCPVKƄECVKQP ■ 4QVJ%,$GEJGT6(TGTKEJU+9GKNGT 2JQPG  ■ +PXGTUGRTQDNGOU 09CNN9#%QWRNKPIQH'+6YKVJ ■ 1RVKOK\CVKQP EQORWVCVKQPCNNWPIOQFGNNKPIHQT Management ■ *KIJRGTHQTOCPEGEQORWVKPI RTGFKEVKPIRCVKGPVURGEKƄEXGPVKNCVQT[ 2TQH&T+PI9QNHICPI9CNN TGURQPUGU,QWTPCNQH#RRNKGF2J[UKQ 1TFKPCTKWU  Competence NQI[   &T/CTVKP-TQPDKEJNGT ■ %QPVCEVF[PCOKEU ■ 8WQPI#64CWEJ#&9CNN9# &T+PI.GPC;QUJKJCTC ■ &KUETGVK\CVKQPOGVJQFU #$KQEJGOQ/GEJCPQ%QWRNGF ■ 'ZRGTKOGPVCN DKQ OGEJCPKEU %QORWVCVKQPCN/QFGN%QODKPKPI Administrative Staff ■ (NWKFF[PCOKEU /GODTCPG6TCPURQTVCPF2GTKEGNNWNCT 4GPCVC0CIN    ■ (NWKFUVTWEVWTGKPVGTCEVKQP 2TQVGQN[UKUKP6KUUWG/GEJCPKEU2TQE ■ +PXGTUGOGVJQFU 4Q[CN5QEKGV[#  Research Scientists ■ /CVGTKCNOQFGNKPI ■ -TCPM$(GJP09CNN9#-TQP &KRN+PI%JTKUVQRJ#IGT ■ 1RVKOK\CVKQP DKEJNGT/#JKIJQTFGTUGOKGZRNKEKV &KRN+PH4QNCPF#[FKP ■ 5QNKFF[PCOKEU FKUEQPVKPWQWU)CNGTMKPUQNXGTHQT& &KRN+PI,QPCU$KGJNGT ■ 5QNXGTU#/) KPEQORTGUUKDNGƅQYYKVJCRRNKECVKQPVQ #PPC$KT\NG/5E ■ 6JGTOQƅWKFUVTWEVWTGKPVGTCEVKQP &05CPF.'5QHVWTDWNGPVEJCPPGNƅQY 5GDCUVKCP$TCPFUVÀVGT/5E ■ 6TCPURQTVRJGPQOGPC ,QWTPCNQH%QORWVCVKQPCN2J[UKEU &KRN+PI(CDKCP$TÀW ■ 7PEGTVCKPV[SWCPVKƄECVKQP   &T+PI%JTKUVKCP%[TQP +OCP&CXQQFK-GTOCPK/5E Infrastructure ,QPCU'KEJKPIGT/5E ■ 6JTGG*2%ENWUVGTU 4WK(CPI/5E ■ $KQOGEJCPKEUNCD KPENWFKPIWPKCZKCN 2JKNKRR(CTCJ/5E CPFDKCZKCNVGUVKPIOCEJKPGU /QUVCHC(CTCLK/5E 0KMNCU(GJP/5E Courses 5GDCUVKCP(WEJU/5E ■ 'PIKPGGTKPI/GEJCPKEU+++CPF+++ %CTQNKP)GKVPGT/5E ■ 0WOGTKECN/GVJQFUHQT'PIKPGGTU &T+PI8QNMGT)TCXGOGKGT ■ 0QPNKPGCT%QPVKPWWO/GEJCPKEU /CZKOKNKCP)TKNN/5E ■ (KPKVG'NGOGPVU &KRN+PI/KEJCGN*KGTOGKGT ■ (KPKVG'NGOGPVUKP(NWKF/GEJCPKEU ,WNKC*ÒTOCPP/5E ■ 0QPNKPGCT(KPKVG'NGOGPV/GVJQFU &KRN+PI$GPLCOKP-TCPM ■ $KQOGEJCPKEUs(WPFCOGPVCNUCPF ,QJCPPGU-TGOJGNNGT/5E /QFGNKPI #PFTGC.C5RKPC/5E ■ &KUEQPVKPWQWU)CNGTMKP/GVJQFU /CTVKP2HCNNGT/5E ■ )TQYVJCPF4GOQFGNKPIKP$KQNQIKECN &T+PI#NGZCPFGT2QRR 6KUUWG &KRN+PI#PFTGCU4CWEJ ■ %QORWVCVKQPCN%QPVCEVCPF+PVGTHCEG .WMCU5EJGWEJGT/5E /GEJCPKEU %JTKUVQRJ5EJOKFV/5E ■ (KPKVG'NGOGPV.CD 5XGPLC5EJQGFGT/5E ■ %QORWVCVKQPCN$KQOGEJCPKEU.CD &T+PI$GPGFKMV5EJQVV ■ 'PIKPGGTKPI5QNWVKQPUHQT$KQOGFKECN #NGZCPFGT5GKV\/5E 2TQDNGOU &KRN+PI-CTN4QDGTV9KEJOCPP ■ 0WOGTKECN/GVJQFUHQT'PIKPGGTU.CD /CIPWU9KPVGT/5E ■ 6/#RRNGVU &KRN+PI#PF[9KTV\ ■ %QORWVCVKQPCN5QNKFCPF(NWKF &[PCOKEU /5'

267 Astronautics

4GCNVKOGVGNGTQDQVKEUKPURCEGsGZRNQTCVKQPCPFJWOCPURCEGƅKIJVsURCEGETCHVVGEJPQNQIKGUCPFPCPQUCVGNNKVGU sURCEGƅKIJVU[UVGOUGPIKPGGTKPIsJ[RGTXGNQEKV[NCDQTCVQT[

■ In 2017, the Institute of Astronautics (LRT) continued its multi-faceted research for the development of novel satellite and space exploration technologies including:

■ Spacecraft/CubeSat nano-satellite and sub-system and analysis of life support systems of habitats and development, space suits, ■ Real-time teleoperation technologies for on-orbit ser- ■ Space environment testing including high velocity vicing including novel satellite communication systems, impact physics, lunar dust abrasion/damage mitiga- applications and architectures, tions, and micrometeoroid/space debris simulation and ■ Human and robotic exploration technologies, incl. assessment. lunar regolith processing and resource extraction,

5CVGNNKVG6GEJPQNQIKGUs/18'++%WDG5CV

(KIWTG6JG/18'++%WDG5CVKPNCWPEJEQPƄIWTCVKQP NGHV CPFFGRNQ[GFEQPƄIWTCVKQP TKIJV

6JG%WDG5CVRTQITCO/18' /WPKEJ1TDKVCN8GTKƄECVKQP a platform for validating new technologies in space. The Experiment), initiated in 2006, focused on the hands-on 1.2 kg satellite will carry a self-developed attitude determi- education of students, complementing theoretical nation and control system, two radio transceivers and four classwork knowledge in state-of-the-art aerospace deployable solar panels held down by a reusable shape engineering. The program’s second CubeSat, MOVE-II, is memory mechanism. The research payload of the MOVE-II EWTTGPVN[WPFGTIQKPIƄPCNVGUVUCPFYKNNDGNCWPEJGFKPVQC satellite will characterize novel 4-junction solar cells in the 575 km sun-synchronous orbit in mid-2018. MOVE-II is an actual space environment. educational cooperation between the LRT and the student The MOVE-II project is funded by DLR (German Aero- group ‘Wissenschaftliche Arbeitsgemeinschaft für Raket- space Center – Space Administration) research grant entechnik und Raumfahrt’ (WARR) with overall more than no. FKZ 50RM1509, managed by Dipl.-Phys. Christian 130 students involved so far. MOVE-II is also intended as Nitzschke at the DLR Space Administration in Bonn.

268 Astronautics

'ZRNQTCVKQP2TQLGEVU

24152'%6 in-situ thermal processing and extraction of volatiles from lunar regolith with feasibility studies and thermal design. The involvement of LRT also includes the development of a breadboard for sample conditioning and experimental demonstration of the volatiles extraction process. With respect to future in-situ resource utilization, the chemical reduction of lunar regolith simulants with hydrogen was demonstrated, a process that can be applied to produce water on the Moon. ProSPA is led by The Open University (UK) under the Italian prime contractor Leonardo Finmec- canica S.p.A.

.78/+ The international Lunar Volatiles Mobile Instrumentation .78/+ EQPUQTVKWOQHƄXGRCTVPGTUHTQO'WTQRGCP science and space industry cooperatively design a mobile instrument to access and analyze lunar regolith Figure 2. The Russian Luna-27 lander planned for 2020 to land in the in permanently shadowed regions (PSR) on the Moon. lunar South Polar Region, including the PROSPECT drill (ProSEED) and LUVMI is funded by the European Commission as part NCDQTCVQT[ 2TQ52# CNQPIYKVJ4WUUKCPNGFUCORNGCPCN[UKUKPUVTWOGPVU [ESA/Roscosmos]. of the program Horizon 2020 ‘Leadership in Enabling and Industrial Technologies–Space’ and coordinated by The instrument package PROSPECT, developed under the Belgian company Space Applications Services. The contract to the European Space Agency (ESA) for the system consists of a mobile payload support platform (see upcoming Luna-27 mission to the lunar South Pole, Figure 3) that can support a number of instruments for the makes use of the gas analysis instrument ProSPA (PROS- analysis of the lunar pole environment. The main features PECT Sample Processing and Analysis). LRT was involved of the instrument will be the Volatiles Sampler (VS), which in the Phase A and Phase B study of this instrument is developed by LRT, and the Volatiles Analyzer (VA), and supported the development of sample ovens for the developed by The Open University. The VS is a miniature

(KIWTG#TVKUVoUXKGYQHVJG.78/+TQXGTQPVJGNWPCTUWTHCEG NGHV CPFQHVJG8QNCVKNGU5CORNGTKPUVTWOGPV TKIJV 

269 Astronautics

soil sampling instrument, inserted into the lunar regolith, tool chain for traverse planning optimizes rover trajecto- where a heating element will thermally extract volatile ries with regard to terrain properties (i.e. slopes, stay out compounds. The VA will capture the volatiles and guide zones, etc.) and runs a thermal simulation afterwards. them to a miniature mass spectrometer. TUM used this tool chain in order to study a potential In 2017 the LUVMI consortium successfully passed its landing site between craters Faustini, Shoemaker, and mid-term review by the European Commission. In the Nobile close to the lunar south pole. A lunar rover shall coming year LUVMI will see the integration of the com- drive on the surface of the Moon in the search of volatile plete rover platform and instruments, which will then be elements. The environment at the region of interest tested in simulated lunar conditions. changes with time with temperatures of the surface of the Moon ranging from 25 K up to about 300 K. Hence, 41$':s4QDQVKE'ZRNQTCVKQPKP'ZVTGOG'PXKTQPOGPVU planning of traverses becomes important in order to meet UEKGPVKƄEIQCNUYJKNUVCNUQOGGVKPIGPIKPGGTKPITGSWKTG- ments. (WTVJGTOQTG.46JGNRGFVQFGƄPGVJGVJGTOCNFGUKIPQH an instrument box, called Remote Unit (RU), which houses a seismometer, an electronic board, and a communication system. The design was developed to withstand con- ditions during several lunar day cycles (Phase A study). Additionally, TUM supports DLR in a study for an optical instrument in a 3U Cubesat form factor that can operate in the polar regions of the Moon.

5CVGNNKVGDCUGF%QQRGTCVKXG Autonomous Drones Swarm 6JG.46RCTVKEKRCVGUKPVJG&.4ƄPCPEGFRTQLGEV5-#& (Satellitengestützter Kooperativ-Autonomer Drohnen- schwarm), which is led by OHB and started in November 2016. SKAD is a Phase 0 study and investigates possible mission architectures to explore Valles Marineris on Mars Figure 4. Mechanical spur gear abrasion test setup and search for water and life on the red planet using a cluster of cooperative, autonomous vehicles. The cluster 6JGRTQLGEV41$': *# ƄPCPEGFD[VJG*GNOJQNV\ consists of a small satellite and several ground vehicles Alliance, examines challenges and synergies in robotic for example rovers, hominids, and UAVs. LRT research deep sea exploration as well as robotic space exploration. within SKAD focuses on the communication architecture LRT participates with experimental work on abrasive and the instrumentation for sample handling. effects of accelerated lunar dust particles on typical spacecraft materials and thermal aspects on robotic 8*#$s/QFGNKPICPF5KOWNCVKQP planetary operation, such as traverse planning of rovers QH.KHG5WRRQTV5[UVGOU on the lunar surface, temperature stability of samples and To fully assess the long-term operation and stability of possibilities of energy savings. LRT also provides addi- life support systems (LSS) for exploration missions, static tional thermal design support for future instruments to be CPCN[UKUOGVJQFUCTGKPUWHƄEKGPV'UVCDNKUJKPIOCUU used on the surface of the Moon. balances and selecting technologies based on average Work on lunar dust particle impacts focuses on the performance values is a fast and proven method for KFGPVKƄECVKQPCPFSWCPVKVCVKXGEJCTCEVGTK\CVKQPQHRQUUKDNG feasibility studies. Once the initial system design becomes damages to technical surfaces and in more detail on OQTGFGVCKNGFF[PCOKEUKOWNCVKQPUCTGTGSWKTGF6JG polymer spur gears. Wear of technical surfaces might be Virtual Habitat (V HAB) modelling tool, a MATLAB®-based a serious problem for long-term missions on the lunar simulation software, enables the dynamic simulation of life surface, especially because of the sharp-edged lunar support systems, the humans occupying the simulated regolith particles. Therefore, several technical surfaces habitat and the mission that is being performed, for more including aluminum alloys and polymers were investigated complex analyses. The simulation system V HAB was val- using a test setup for abrasive wear. idated in 2013 by comparing data from a virtual model of As part of the project ROBEX, LRT also developed VJG+PVGTPCVKQPCN5RCEG5VCVKQP.55YKVJCEVWCNƅKIJVFCVC advanced planetary thermal modeling tools. The current ƄTUV8*#$TGNCVGFFKUUGTVCVKQP (KXGCFFKVKQPCNFKUUGTVC-

270 Astronautics

tions were derived, each adding to V HAB’s already broad OCRUHQTURGEKƄEFCVGUCVURGEKƄENQECVKQPU spectrum of capabilities. A dynamic thermal simulation Additionally efforts to improve the dynamic plant model tool was added to capture the thermal dynamics of mov- in V-HAB to perform dynamic system analysis for existing ing objects on the lunar surface (Thermal Moon Simulator, (ISS) and planned space habitats (Deep Space Habitat, TherMoS), which can provide valuable input during the see ) in combination with plants are currently ongoing. design process of new technical systems. An enhanced Two additional ongoing dissertations cover the advance- and extended capabilities version of TherMos is used to ment of hybrid life support system models and the characterize the dynamic thermal environment for the addition of dynamic crew scheduling algorithms to the Lunar Polar Sample Return mission lead by the European human model. A dissertation regarding the simulation 5RCEG#IGPE[ '5# EJCTCEVGTK\KPIJGCVƅWZGUUQNCT of portable life support systems for space suits was lighting conditions and the availability of a direct commu- completed last year. Peer-reviewed LRT research papers nication link to Earth. TherMos data can be exported to at the annual International Conference on Environmental ESATAN TMS, the ESA-mandated commercial analysis Systems (ICES) expand already strong ties to LSS experts tool, to verify TherMoS results. The current development from NASA and industry (three papers at the ICES 2017 of the tool aims at implementing traverse optimization for conference). V HAB has a large student participation with rovers as well as astronauts. Hence, TherMoS is going to two Bachelor’s, two Master’s and four term paper theses be extended towards inclusion of cost and illumination in 2017.

4#%110s(WVWTG6GEJPQNQIKGUHQT1RGTCVKPI4QDQVUKP5RCEG

Figure 5. The RACOON NCDQTCVQT[JCTFYCTGHCEKNKV[ RTQXKFGU|FGITGGUQHHTGGFQO VQTGRTGUGPVCP[IKXGPTGNCVKXG UEGPCTKQCPFVQCNNQYGPFNGUU rotation despite mechanical limitations. The target satellite on the right, representing a generic IGQUVCVKQPCT[UCVGNNKVGCPF approaching satellite (or chaser) QPVJGNGHVJQUVKPICƅGZKDNG sensor platform.

The RACOON Laboratory features a satellite proximity In 2017, technology developments for on orbit telerobotics operations simulation environment consisting of a hard- missions focused on vision-based 3D-reconstruction and ware-in-the-loop simulator that represents position and experimental human-machine interface studies. 3D-object attitude of two spacecraft in close proximity, such as dur- reconstruction for virtual reality scenarios is already used ing for rendezvous and docking maneuvers. The lab pro- in terrestrial systems, including UAV image processing. vides realistic lighting conditions with simulated sun and The use of this technology for On-Orbit Servicing (OOS) earth and hardware sensors to simulate realistic sensor missions was investigated in feasibility and performance data for the development of new spacecraft technologies tests under realistic environmental orbital conditions. User and novel control algorithms. The real-time capabilities studies characterized an experimental Human-Space- allow the inclusion of a human operator into the control craft-interface using acoustic feedback to spacecraft loop for research in the area of human spacecraft interac- operators for enhanced environmental awareness during tion, such as studies of optimal human machine interface on orbit servicing missions. designs or operator workload evaluations.

271 Astronautics

5RCEG%QOOWPKECVKQP6GEJPQNQIKGUCPF#TEJKVGEVWTGU satellite links. The project develops and tests novel Teleoperated on-orbit servicing and space debris removal communication architectures as well as supporting rapid OKUUKQPUCMG[TGUGCTEJCTGCQH.46TGSWKTGPGCTTGCN antenna pointing technologies, and demonstrates the time transmission of multi-channel video signals and integrated system in various test scenarios in cooperation space craft sensor and control information which can YKVJVJG67/ƄTGƄIJVKPIUGTXKEGU6JG%QR-CGOGTIGPE[ exceed data rates of 20 Mbps. DLR-funded research pro- use scenario represents a synergetic satellite communi- jects developed novel high-gain antennas as low-loss cation system to the RACOON on orbit servicing architec- direct radiating array antenna systems (Lightweight Inter- ture. The UAV copter and local cameras can be controlled Satellite Antenna, LISA), both as mechanically or elec- over the Ka-band SatCom link to provide enhanced tronically (beam forming) steerable antennas in copper- situation awareness from the remote accident site to the galvanic waveguide designs (LISA projects completed in emergency services coordinators at the control center/ 2016). home base. The CopKa system must not interfere with CFRM-HF is a development of alternative manufacturing NQECNƄTUVTGURQPFGTUCPFVJGTGHQTGTGSWKTGUPQXGNEQPVTQN methods for integrated waveguide designs, based on the environments including virtual reality technologies for safe, established copper galvanic process in LISA. Thereby, partial autonomous operations from the control center. VYQQDLGEVKXGUCTGKPXGUVKICVGF%CTDQPƄDGTTGKPHQTEGF In the last recent years three exercise were successfully copper – to reduce weight and thermal expansion of ECTTKGFQWVYKVJVJGƄTGƄIJVGTDTKICFGU+PVYQGZGTEKUGU the copper parts; 2. Additive manufactured cores – to we demonstrated teleoperation of the UAV over a GEO reduce the costs and enable highly integrated waveguide satellite relay and supported the emergency coordination designs. In the last year several standard waveguide parts QHCNCTIGUECNGGZGTEKUGYKVJVJGƄTGƄIJVGTDTKICFG JCXGDGGPOCPWHCEVWTGFVQKPXGUVKICVGVJGKPƅWGPEGQH München-Land with the CopKa system. the additive manufactured core on the RF-performance. These satellite communication projects are funded by Furthermore, the deposition and embedding of carbon DLR (German Aerospace Center – Space Administration) ƄDGTUKPCEQRRGTOCVTKZYKVJCVVCEJGFƅCPIGUYCU research grants no. FKZ 50YB1113 (LISA Ka-band elec- investigated. tronic steering), FKZ 50YB1333 (LISA Ka-band mechanical CopKa is a cooperative technology development and steering), FKZ 50YB1533 (Hybrid Manufacturing CFRMHF) demonstration project of a multi-sensor-based emergency and FKZ 1523/1524 (CopKa Comm. Architectures), by services mission, using data from a UAV helicopter and BMWi/DLR Space Administration in Bonn. other imaging data sources, transmitted over Ka-band

272 Astronautics

4GUGCTEJ(QEK 5GNGEVGF2WDNKECVKQPU ■ Real-time telerobotics in space In addition to the following peer-reviewed (RACOON) and space communication journal and conference publications, more technologies (CopKa, CFRMHF, than 74 academic theses were completed LISAES, LISAMS+). in 2017 (54 bachelor/semester theses, 20 ■ Satellite Development and master theses and one Ph.D. thesis). Technologies (MOVE-II, Move-On). 2TQH2TQHJE ■ Exploration Technologies, with space ■ /.CPIGT(5EJWOOGT0#RRGN| &T&TJE life support systems (V HAB, V SUIT) 6|)TWGDNGT-,CP\GT,-KGUD[G Ulrich Walter and lunar in-situ resource exploration L. Krempel, A. Lill, D. Messmann, and utilization (ROBEX, PROSPECT, S. Rueckerl, M. Weisgerber (2017): %QPVCEV MARVIN, LUVMI, SKAD, BLTAS). n/18'++s6JG/WPKEJ1TDKVCN8GTKƄ www.lrt.mw.tum.de ca tion Experiment II’, IAA-AAS-CU- QHƄEG"NTVOYVWOFG %QORGVGPEG 17-06-05, Proceedings of the 4th IAA Phone +49.89.289.16003 ■ Systems Engineering tools for Conference on University Satellite development of complex systems Missions & CubeSat Work shop, , /CPCIGOGPV ■ End-to-end satellite communication Italy, December 2017 Prof. Prof. h.c. Dr. Dr. h.c. Ulrich Walter, ■ Dynamic simulation of life support ■ C.T. Olthoff: ‘Validation of the Virtual Director systems Spacesuit using Apollo 15 Data’, Dr.-Ing. Martin Rott, Academic Director ■ Lunar regolith handling and processing, 47th International Conference on resource extraction from lunar regolith Environmental Systems, 16-20 July 'OGTKVK ■ Thermal analysis and design for 2017, Charleston, South Carolina Prof. Dr.-Ing. Eduard Igenbergs, Emeritus satellite systems and planetary ■ Reiss, P. et al.: ‘Implications of sample exploration environments size for the thermal extraction of #FLWPEV2TQHGUUQTU.GEVWTGTU vola tiles from lunar regolith with the Dr. rer. nat. Markus Brandstätter (lecturer) +PHTCUVTWEVWTG PROSPECT instrument package’, Oberstarzt Dr. Franz Grell (lecturer) ■ Machine and electronics workshops Jour nal of Aerospace Engineering, Dr.-Ing. Detlef Koschny, ESA_ESTEC ■ Cleanroom (Class 8) 30(3), p. 4016088. doi: 10.1061/(ASCE) (lecturer) ■ Thermal-vacuum chambers AS.1943-5525.0000688, 2017 Dr.-Ing. Jürgen Letschnik (lecturer) ■ Proximity operations simulator ■ Harder, J., Dziura, M., Haberl, S.: Hon. Prof. Dr. med. Hans Pongratz ■ Groundstation (Ka-, S- and UHF/VHF ‘Future Technologies for Operating APL-Prof. Dr.-Ing. Robert Schmucker band communication) Robots in Space’, Proceedings of the ■ Mission control center 68th International Astronautical Con- #FOKPKUVTCVKXG5VCHH ■ Hypervelocity accelerators gress, Adelaide, Australia, Sep tember Petra Lochner ■ Remotely operated telepresence drone 2017 (DJI Matrice M600 Pro) ■ Guerster, M., Walter, U.: ‘Aero dynamics 6GEJPKECN5VCHH of a highly irregular body at transonic Tobias Abstreiter #UVTQPCWVKEUTGNCVGF%QWTUGU URGGFUs#PCN[UKUQH564#615ƅKIJV ■ (WPFCOGPVCNUQH5RCEGƅKIJV data’, PloS ONE 12(12): e0187798. doi. Research Scientists ■ Space System Design/Technology org/10.1371/journal.pone.0187798, CPF&QEVQTCN%CPFKFCVGU ■ Spacecraft Technology I/II/GIST 2017 Dr.-Ing. Jan Harder, DFG Postdoc ■ Spacecraft Design (summer school) Dr. Alexander Hoehn, Assoc. Professor ■ Orbit- and Flight Mechanics (adj.), Univ. of Colorado ■ Orbit Dynamics and Robotics Dr.-Ing. Claas Olthoff (grad. 06/2017) ■ *WOCP5RCEGƅKIJV Nicolas Appel, M.Sc ■ Aerospace Medicine Janos Biswás, M.Sc. ■ Systems Engineering Dipl.-Ing. Christian Bühler ■ Advanced Systems Engineering Dipl.-Ing. Martin Dziura ■ Stars and Cosmology Dipl.-Inf. Carolin Eckl (external) ■ 5RCEGƅKIJV'PXKTQPOGPVCPF Dipl.-Ing. Hendrik Enke (external) Simulation Laura Grill, M.Sc. ■ Near Earth Objects Dipl.-Ing. Matthias Killian ■ Applied Systems Engineering Lab Dipl.-Ing. Martin Langer ■ Hypervelocity Technologies Lab Dipl.-Ing. Sabine Letschnik ■ 5RCEGƅKIJV6GEJPQNQIKGU.CD Maximilian Prexl, M.Sc. ■ Systems Engineering Lab Daniel Pütz, M.Sc. ■ 5RCEGƅKIJV6JGTOCN&GUKIP.CD 5QƄC4COKTG\/5E GZVGTPCN Philipp Reiß, M.Sc. Sebastian Rückerl, M.Sc. Dipl.-Ing. Jonas Schnaitmann (external) Dipl.-Ing. Matthias Tebbe Nicolas Zunhammer, M.Sc.

273 Materials Science and Mechanics of Materials

Experimental and theoretical characterization of metallic materials

■ For many decades technological advances have been closely linked to the availability of appropriate materials. The Institute of Materials Science and Mechanics of Materials (WKM) concentrates on processing – microstructure – (mechanical) properties – relationships of load bearing metallic materials such as high strength steels, titanium, nickel, aluminum and tungsten alloys. Research is performed employing theoretical, numerical and experimental techniques with equal importance on multiple length scales. The associated State Material Testing Laboratory serves as an important interface to industry with respect to research oriented (offroutine) testing of materials.

In 2017 research activities were directed toward plasticity and failure of gas turbine sealing systems, hot isostatic pressing of aluminum alloys in combination with precip- itation hardening, the hot isostatic pressing of iron-nickel- titanium-aluminum-chromium high entropy alloys, plas- ticity of high strength sheet steels for automotive applica- tions and measurement of residual stresses. Much effort is devoted to fundamental research in thermo dynamically based modelling of additive manufacturing and crystal plasticity modelling and its application in micro electronics. Schematic drawing of distorted crystal lattice due to a random arrangement of alloying elements in a high entropy alloy (HEA). (Source: WKM)

Combined Hot Isostatic Pressing and Heat Treatment of Aluminum Cast Alloys

an oversaturated condition with magnesium and silicon atoms dissolved in the aluminum matrix. During aging at elevated temperatures precipitates are formed that lead to CUKIPKƄECPVKPETGCUGKPUVTGPIVJ&WGVQVJGXGT[NKOKVGF capability to perform rapid temperature changes, standard hot isostatic presses can hardly be used for a combined RTQEGUUEQPUKUVKPIQHFGPUKƄECVKQPJQOQIGPK\CVKQPCPF aging. With an advanced HIP technology made accessible 6GORGTCVWTGVKOGRTQƄNGHQTVJGRTGUGPVN[HQNNQYGFKPFWUVTKCNRTQFWEVKQP to WKM in a joint research project, it became possible route and the combined hot isostatic pressing process developed at WKM. VQCEJKGXGUKIPKƄECPVN[JKIJGTSWGPEJKPITCVGUKPVJG*+2 (Source: WKM) RTQEGUU/GEJCPKECNRTQRGTVKGUEJCTCEVGTK\CVKQPCV9-/ Aluminum cast alloys have multiple applications in the served to ensure that quenching rates are high enough to CWVQOQVKXGCPFCGTQPCWVKECNKPFWUVTKGU+PVJGƄGNF achieve an oversaturated solid solution, which then allows of aircraft applications, high demands on the fatigue aging to be performed directly after hot isostatic pressing. resistance lead to the necessity for a special production This opens up the possibility to shorten the time at room route that ensures high component quality. Hot isostatic temperature between solution annealing and aging. pressing (HIP) is commonly used to reduce casting Thereby, the overall process time can be reduced further RQTQUKV[QHECUVOCVGTKCNUVJGTGD[UKIPKƄECPVN[KPETGCUKPI and the material’s strength can be increased within this the material’s fatigue resistance. For the aluminum cast fully integrated process. alloy A356 (Al + 7% Si + 0.3% Mg) this is usually done in a separate process step preceding the regular heat Partner treatment, which comprises solution annealing and aging. ■ Magnus Ahlfors, M.Sc.; Quintus Technologies AB, Solution annealing followed by rapid cooling results in Quintusvägen 2, 72166 Västerås, Sweden

274 Materials Science and Mechanics of Materials

Crystal Plasticity in the Field of Microelectronics

Growing demands on performance and durability of integrated circuits require an understanding of possible failure mechanisms like crack initiation within the interlayer FKGNGEVTKE +.& CPFUWTHCEGTQWIJGPKPIQHVJGOGVCNNK\C- tion plate. One main cause for these phenomena arises from the mismatch in thermal expansion between the OCVGTKCNUKPXQNXGF EQPFWEVQTRCVJUCPFOGVCNNK\CVKQP plate are made of aluminum and the surrounding ILD of silicon oxide) leading to thermo-mechanical loads and, consequently, to various types of damage. Throughout their life, the electronic components undergo millions of load cycles, so that an experimental life cycle analysis during the development process is costly and may not be feasible. In cooperation with the Max-Planck-Institut für Eisen- forschung, a crystal plasticity material model was developed which takes into account microstructure, grain QTKGPVCVKQPITCKPUK\GCPFVJGTOCNGZRCPUKQPDGJCXKQTQH Simulation model representing a part of an integrated circuit at the end of a the metallic components involved and the temperature heating cycle. The two cross sections show a vector representation of the maximum principal stress within the ILD. (Source: WKM) dependency of the constitutive material parameters. Currently, a comprehensive review of this material model is considered as a measure to quantify the likelihood of named DAMASK is being prepared for publication. There, the occurrence of brittle failure. The texture of aluminum QPGQHVJGGZCORNGUUJQYUVJGWVKNK\CVKQPQHET[UVCNRNCU- components affects the stress level within the ILD as well VKEKV[KPVJGƄGNFQHOKETQGNGEVTQPKEU+PVJKUUVWF[VJGKPƅW- as within the conductor paths. The investigations suggest ence of the microstructure of the conductor paths on the VJCVTCPFQOK\KPIVJGRTGFQOKPCPVVGZVWTGYJKEJCTKUGU probability of crack initiation is investigated. Since brittle from the manufacturing process increases the lifetime of failure occurs within the ILD, the maximum principal stress the microelectronic component.

High Entropy Alloys

High entropy alloys (HEA) represent a new approach in tice diffusion even at high temperatures. Previous studies materials design. on HEA showed that also non-equiatomic compositions +PKVKCNN[*'#UYGTGFGƄPGFD[VJGKTGSWKCVQOKEQTPGCT form a random solid solution and reach HEA-characteristic GSWKCVQOKEEQORQUKVKQP#VNGCUVƄXGFKHHGTGPVGNGOGPVU OCVGTKCNRTQRGTVKGU&WGVQVJKUVJGUVTKEVFGƄPKVKQPQH*'# take a random arrangement in the crystal lattice. This has been relaxed and additional material compositions leads to extreme lattice distortion, which results in a great were declared as HEA. A promising research approach is resistance against plastic deformation and a sluggish lat- the production of HEA based on conventional alloys. The aim is to effectively combine outstanding properties and process technologies of existing material systems with the advantages of HEA compositions. At WKM, conventional powder alloys and elemental powders are combined with the aim of achieving HEA compositions. For this purpose, powder mixtures are encapsulated and compressed via hot isostatic pressing. /KZKPIQHOGVCNRQYFGTUVQC*'#EQPEGPVTCVKQP C &GPUKƄECVKQPQHRQY- Microstructural analysis of the solid materials produced FGTXKCGPECRUWNCVKQPCPFJQVKUQUVCVKERTGUUKPI D &GPUKƄGFOCVGTKCNYKVJ is performed via light microscopy, scanning electron diffusion zones between the original powder particles (c). (Source: WKM) microscopy as well as EDX and XRD methods. Mechanical

275 Materials Science and Mechanics of Materials

characteristics are determined by hardness and compres- diagrams (CALPHAD method) using a thermodynamic sion testing. The resulting microstructure of the material in database for HEA. Due to the sluggish diffusion reported, dependence of the composition and process parameters mechanical alloying will be necessary in addition to heat is another focus of the current investigation. Additionally, treatments to achieve a homogeneous distribution of the expected phases are predicted via calculation of phase alloying elements.

Rubbing of Seal Systems in Gas Turbines

in such seal systems are not yet completely understood. 6JGKPVGTCEVKQPUQHVJGPWOGTQWUKPƅWGPEKPIRCTCOGVGTU as well as the extreme conditions during rubbing, such as high temperatures and high rubbing velocities, complicate the investigations. In collaboration with the Karlsruhe Institute of Technology and the University of Bayreuth, WKM contributes to a better understanding of the rubbing process in labyrinth seals. It is the aim of the research project to develop suitable models and tools that allow the design of labyrinth seals of future gas turbines as well as the reliable prediction of performance and lifetime of the seals. 9-/EQPFWEVUHWNN[VJTGGFKOGPUKQPCNOWNVKUECNGƄPKVG element simulations with a microstructure-sensitive mode- ling approach featuring attributes such as crystal orien- VCVKQPITCKPUK\GCPFITCKPUK\GFKUVTKDWVKQP6JGOQFGNKU also applicable for deformations at high temperatures and high strain-rates. Various rubbing conditions are investi- 6JTGGFKOGPUKQPCNƄPKVGGNGOGPVOQFGNQHVJGRGTKQFKEJQPG[EQODWPKV ICVGFVQƄPFQWVRQUUKDNGFTKXGTUHQTETCEMHQTOCVKQPVJCV cell for simulating the rubbing process. In the detail the von Mises stress in can lead to failure of both rotor and stator. the rubbing area is shown. The structure contains roughly 300 grains with an average grain size of 72 μm and random crystallographic orientation. (Source: WKM) Project ■ Anstreifvorgänge in Turbinen – Experimentelle Untersu- #EJKGXKPIJKIJCGTQF[PCOKEGHƄEKGPE[KPICUVWTDKPGU chung und Modellierung (DFG, WE2351/14-1) requires minimal clearance between the rotating and the static components. This clearance can vary during opera- Partners tion, e.g. due to thermal expansion or dynamic loads. As ■ Universität Bayreuth, Lehrstuhl für Metallische Werk- VJKUENGCTCPEGECPPQVDGEQPVTQNNGFUWHƄEKGPVN[TWDDKPI stoffe, Ludwig-Thoma-Str. 36b, 95447 Bayreuth can occur locally, during which both the rotor and the ■ Karlsruher Institut für Technologie, Institut für Thermi- stator can be damaged critically. To ensure high reliability sche Strömungsmaschinen, Straße am Forum 6, 76131 CPFGHƄEKGPE[QHVJGGPVKTGGPIKPGUGCNU[UVGOUVJCVECP Karlsruhe tolerate even extreme rubbing are necessary. Labyrinth ■ MTU Aero Engines AG, Dachauer Str. 665, 80995 seals with special rubbing materials on the stator are able München to meet these requirements. However, rubbing processes

276 Materials Science and Mechanics of Materials

Measurement, Redistribution and Relaxations of Residual Stress

Residual stresses, typically FGTUCTGCRRNKGFVQCPCN[\G acting on different length axisymmetric residual stress scales depending on the distributions in cylindrical mechanisms they originate specimens. In most cases, an HTQOECPDGDGPGƄEKCNQT accompanying residual stress detrimental for the material and analysis via X-ray diffraction component performance. As a on the specimen’s surface is consequence of compressive promising. macroscopic stresses near the Neutron diffraction offers surface of a component, the the possibility of a spatially- accumulation of micro-cracks TGUQNXGFRJCUGURGEKƄECPF can be reduced and the life- non-destructive residual stress time of the component can be analysis up to several centi- extended. In contrast, tensile meters below the component’s macroscopic stresses can surface. In-situ neutron lead to spontaneous cracking diffraction experiments play which can reduce strength and a central role within the Characterization of the toughness. research activities of WKM Semi-automatic residual axisymmetric residual stress A redistribution of residual focusing on the evolution of stress measurement via X-ray distribution in a cylindrical diffraction (d-sin²x measure- specimen by WEDM (wire stress may result either from the intergranular and inter- ment mode, two symmetrically electrical discharge machining) the removal of portions of a phase microstrains of different positioned linear detectors, assisted dissection. During backscatter geometry) on continuous material removal workpiece during machining nickel-base superalloys the surface of a cylindrical on the inner cylindrical surface or from stress relaxation in (Inconel 718 and Haynes 282) specimen. (Source: WKM) via WEDM the strain relaxation is simultaneously recorded by the material due to diffusion during loading and unloading strain gages mounted on the processes and plays a central at room temperature and at elevated temperatures. Haynes lateral surface of the specimen. role for most experimental 282, due to its good creep strength, thermal stability and (Source: WKM) techniques applied for residual weldability, is developed for avian and land-based appli- stress analysis. Residual stress redistributions may lead cations and exhibits a low diversity of precipitates and a to undesired distortions of the whole component during UOCNNNCVVKEGOKUƄVQRGPKPIWRVJGRQUUKDKNKV[QHCPKPFGRVJ OCEJKPKPIVQKVUƄPCNUJCRGQTFWTKPIVJGEQORQPGPVoU study on the micromechanics of the anomalous yielding operating life. The macroscopic temperature-dependent GHHGEV#EQORNGOGPVCT[TKIQTQWUEJCTCEVGTK\CVKQPQHDQVJ damping behavior of the material can provide important microstructural aspects and their kinetics on different information about the governing (microscopic) diffusion length scales is accomplished by light- and electronmi- processes, as it results from energy dissipation by internal croscopy (SEM/TEM), 3D-atomprobe tomography, small friction caused by (thermally activated) migration of crystal angle neutron scattering, as well as X-ray diffraction. These lattice defects during loading/deformation. combined experimental techniques will help to identify the In this context, research activities of WKM focus on mechanisms governing the different microstrain-accumula- investigations of (residual) stress redistributions both on tion behavior of these alloys. macroscopic and microscopic scales as well as on the KFGPVKƄECVKQPQHVJGWPFGTN[KPIOKETQUEQRKEOGEJCPKUOU Project This includes the application and further development ■ Entwicklung von Typ II Eigendehnungen in Abhängig- of experimental techniques involving diffraction and keit der Mikrostruktur in Nickelbasislegierungen (DFG, mechanical methods. To investigate the diffusion pro- KR3687/3-1) cesses governing residual stress relaxation, the macro- scopic damping behavior of the materials is investigated Partners by dynamic mechanical spectroscopy using an instru- ■ Karlsruher Institut für Technologie, Institut für An ge- mented torsion pendulum and the impulse excitation wandte Materialien – Werkstoffkunde, Engelbert- method. Arnold-Str. 4, 76131 Karlsruhe Besides the semi-destructive hole drilling method, which ■ (QTUEJWPIU0GWVTQPGPSWGNNG*GKP\/CKGT.GKDPKV\ is an effective way of determining near-surface residual (FRM II), Technische Universität München, Lichtenberg- stresses, dissection/slitting methods like boring of cylin- str. 1, 85748 Garching

277 Materials Science and Mechanics of Materials

Plasticity and Failure of High-Strength Sheet Materials for Automotive Applications

The desire to produce steel sheet material with a low correctly with the aid of simpler two-dimensional mod- content of alloying elements but high strength and eling approaches, as were extensively used in the past. excellent formability has led to the development of Systematic variations in the simulations revealed which microstructure-strengthened steels. Among these are the RTQEGUUKPIKPFWEGFƄGNFSWCPVKV[KORCEVUVJGKPFKXKFWCN ferritic-martensitic dual-phase (DP) steel grades. They peculiarities of the DP steels. are produced from alloys containing mostly only iron and It could be shown, that regardless of the martensite carbon with the aid of a multi-step heat treatment. Their content, the heat treatment-induced residual stresses and microstructures consist of a soft matrix of ferrite, rein- strains are qualitatively unaltered. Primary and secondary forced with dispersed, hard grains of martensite. Due to causes for continuous yielding (a peculiar property of their multi-phase nature, DP steels can be produced with VJG&2UVGGNU EQWNFDGKFGPVKƄGF6JGUGCTGJGCVVTGCV- widely varying microstructural constitution. OGPVKPFWEGFRNCUVKEUVTCKPU ƄIWTGVQRTKIJV CPFVJG Research activities at WKM related to DP steels focus on FGXKCVQTKEEQORQPGPVQHVJGTGUKFWCNUVTGUUGU ƄIWTG the study of their heat treatment-induced microstructural bottom right). The latter causes an unsymmetrical stress- residual stresses and strains, their untypical plastic strain behavior of the material in tension and compression, deformation behavior and their damage behavior. as well as a reduced Young’s modulus in the unaged To attain an understanding of the complex mechanisms OCVGTKCNUVCVG#PQVJGTKORQTVCPVƄPFKPIQHVJKUYQTMKU which occur in DP-steel microstructures during pro- that heat treatment-induced quantities impact the mac- cessing, forming, service or damage, it is necessary to roscopic mechanical behavior of the DP steels only up to conduct systematic mechanical studies on the micro roughly 1% of macroscopic strain. and macro-levels. For this purpose, a simulation model based on micro-continuum mechanics and tessellated (i.e. Project computer generated) three-dimensional microstructures ■ Micromechanical modeling of the formability and failure was developed at WKM. of DP steels With the aid of this model, most currently the impact of the heat treatment-induced microstructural residual Partner stresses and strains on the deformation behavior of ■ XQGUVCNRKPG5VCJN)OD*XQGUVCNRKPG5VT.KP\ &2|UVGGNUYCUFGOQPUVTCVGF1HRCTVKEWNCTKORQTVCPEGKP this regard is the fact that this impact cannot be studied

Two DP-steel model microstructures (top left; martensite: shaded, ferrite: transparent), differing only in martensite RJCUGHTCEVKQPCPFVJGKTJGCVVTGCVOGPVKPFWEGFRJCUGURGEKƄETGUKFWCNUVTGUUGUCPFUVTCKPFKUVTKDWVKQPU6QRTKIJV plastic equivalent strain, the primary cause for continuous yielding; Bottom left: hydrostatic stress, the driving quantity behind micro-damage; Bottom right: von Mises stress (the deviatoric stress component), the primary cause for reduced Young’s modulus and yield-asymmetry in tension and compression. (Source: WKM)

278 Materials Science and Mechanics of Materials

Research Focus Selected Publications 2017 ■ Testing and modelling of metallic high ■ 5*CHGPUVGKP'9GTPGT,9KN\GT performance alloys (iron-, nickel-, 9|6JGKUGP59GDGT%5WPFGTMÒVVGT titanium- and aluminum-based alloys) /$CEJOCPP'KPƅWUUFGT6GORGTCVWT ■ Residual stress determination via WPFFGU8GTIØVWPIU\WUVCPFUCWH diffraction (X-rays, neutrons) and die Wärmeleitfähigkeit von Warm- Prof. Dr. mont. mechanical methods arbeitsstählen für das Presshärten. habil. Dr. ■ Microstructure-based numerical HTM – J. Heat Treatm. Mat. 72 (2017) rer. nat. h. c. modelling 81-86. DOI: 10.3139/105.110319 Ewald Werner ■ Electron and light microscopy ■ #(KNNCHGT'9GTPGT%-TGORCU\M[ ■ Mechanical testing On phase transformation induced Contact ■ High entropy alloys GHHGEVUEQPVTQNNKPIVJGKPKVKCNƅQY www.wkm.mw.tum.de ■ Crystal plasticity modelling behavior of ferritic-martensitic dual- [email protected] phase steels. Mater. Sci. Engng A Phone +49.89.289.15247 Competence 708 (2017) 556-562. DOI: 10.1016/j. ■ High resolution scanning electron msea.2017.10.005 Management microscopy ■ #(KNNCHGT'9GTPGT%-TGORCU\M[ Prof. Dr. mont. habil. Dr. rer. nat. h. c. ■ Diffraction techniques On phase transformation induced Ewald Werner, Director ■ Material testing on demand GHHGEVUEQPVTQNNKPIVJGƅQYDGJCXKQTQH 2TKX&Q\&T+PIJCDKN ferritic-martensitic dual-phase steels. %JTKUVKCP-TGORCU\M[ Infrastructure Advances in Mechanics of Materials ■ Material testing equipment and Structural Analysis – In Honor of Administrative Staff ■ Light and electron microscopes 4GKPJQNF-KGP\NGT*#NVGPDCEJ( Yvonne Jahn ■ X-ray diffractometers Jablonski, W. H. Müller, K. Naumenko, ■ Hot isostatic press P. Schneider (Hrsg.), Springer Internatio- Research Scientists ■ Dilatometers and annealing simulator nal Publishing AG, (2018) im Druck. Dr.-Ing. Alexander Fillafer ■ Electrical and mechanical workshops DOI: 10.1007/978-3-319-70563-7 Tim Fischer, M.Sc. ■ 59GN\GPDCEJ6(KUEJGT(/GKGT Stephan Hafenstein, M.Sc. Courses '9GTPGT57NCPM[\[1/WP\ Dr.-Ing. Felix Meier ■ Materials Science I & II 6GORGTCVWTGFKUVTKDWVKQPQHCUKORNKƄGF Marius Reiberg, M.Sc. ■ Engineering Materials Technology I & II rotor due to a uniform heat source. Dipl.-Ing. Gerwin Riedl ■ Engineering Mechanics for Business Continuum Mech. and Thermodyn. Johannes Seidl, M.Sc. Sciences in press. DOI: 10.1007/s00161-017- Muhammed Zubair Shahul Hameed, M.Sc. ■ Fracture Mechanics/Plasticity Theory \ Dr. mont. Zhonghua Wang ■ Tensor Calculus for Engineers ■ 6(KUEJGT59GN\GPDCEJ(/GKGT 5CTCJ9GN\GPDCEJ/5E ■ Finite Elements in Mechanics of '9GTPGT57NCPM[\[1/WP\ Jonas Woste, M.Sc. Materials Modeling the rubbing contact in ■ Electron Microscopy honeycomb seals. Continuum Mech. Technical Staff ■ Laboratory Courses on Materials and Thermodyn. in press. DOI: Wolfgang Bauer Science, Mechanics of Materials and 10.1007/s00161-017-0608-4 Alois Huber Finite Element Methods Stefan Humplmair Carola Reiff Jens Reuter, B.Sc.

279 Biochemical Engineering

Industrial biotechnology

■ Industrial biotechnology (‘white biotechnology’) makes use of microorganisms or enzymes for the KPFWUVTKCNRTQFWEVKQPQHEJGOKECNUNKMGURGEKCNCPFƄPGEJGOKECNUDWKNFKPIDNQEMUHQTCITKEWNVWTCNQT RJCTOCEGWVKECNRTQFWEVUCFFKVKXGUHQTOCPWHCEVWTKPICUYGNNCUDWNMEJGOKECNUCPFHWGNU4GPGY-

able resources and CO2CTGVJGHCXQTGFTCYOCVGTKCNUHQTKPFWUVTKCNDKQVGEJPQNQI[6JG+PUVKVWVGQH Biochemical Engineering deals with all aspects of the technical use of biochemical reactions for KPFWUVTKCNDKQVGEJPQNQI[6JGTGUGCTEJHQEWUKUQPDKQTGCEVQTUCPFDKQECVCN[UKUCUYGNNCUQP ICU  HGTOGPVCVKQPCPFKUQNCVKQPQHDKQRTQFWEVU

5RGEKCNOKETQQTICPKUOUCTGCDNGVQRTQFWEGEJGOKECNUYKVJECTDQPFKQZKFGCUUQNGECTDQPUQWTEGDWVQZ[IGP CKT KUVQZKEVQVJGO#VVJG+PUVKVWVGQH $KQEJGOKECN'PIKPGGTKPIVJGUGOKETQQTICPKUOUCTGRTGRCTGFKPCPCGTQDKE QZ[IGPHTGG YQTMDGPEJGUHQTTGCEVKQPGPIKPGGTKPIUVWFKGUKPDKQTGCEVQTU RJQVQ6QDKCU*CUG67/

Bioreactors

The effective generation of process information repre sents a major bottleneck in microbial production process devel- opment and optimization. An approach to overcome the necessity of a large number of time- and labor-consuming experiments in lab-scale bioreactors is miniaturization and parallelization of stirred-tank reactors along with automa- tion and digitalization.

Highlight A new miniaturized laser-based sensor system has been established for parallel online measurement of optical den- sities as reference for microbial cell mass concentrations in 48 individual single-use stirred-tank bioreactors which are operated in a bioreactor unit on a shoe-box scale and automated with a lab robot. Operation of a bioreactor unit with 48 parallel single-use stirred-tank Projects DKQTGCEVQTUQPCOKNNKNKVGTUECNG RJQVQ6QDKCU*CUG67/ ■ Multi-parameter analytics in parallel bioreactors

280 Biochemical Engineering

Biocatalysis

Great demands are placed on the optical purity of build- intensify whole cell biotransformations of hydrophobic, ing-blocks for the production of pharmaceuticals. Due to unstable and/or toxic substrates up to the technical scale. the high natural selectivity of biocatalysts, biocatalysis appears to be a favorable method for the purpose of chiral Highlight syntheses. Major research interests are the development The activity of an industrially important enzyme isolated of new reaction engineering methods and devices to from a cyanobacterium which catalyzes the stereo-selec- tive reduction of alkenes was improved by a factor of 6 by rational exchange of loop regions of the protein which are supposed to interact with the electron transport metabo- lite nicotinamide adenine dinucleotide (NADH).

Projects ■ Polymeric nano-compartments for biocatalytic applica- tions ■ Membrane functionalization of nanoscale enzyme membrane reactors ■ Surface functionalization of nano-scale enzyme membrane reactors ■ Cellular envelopes for multi-enzyme synthesis /QFGNQHCPGP\[OGWUGHWNHQTVJGUVGTGQUGNGEVKXGTGFWEVKQPQHCNMGPGU ■ Production of N-acetylneuraminic acid using epime- YJKEJYCUKORTQXGFD[TCVKQPCNGZEJCPIGQHNQQRTGIKQPU EQNQTGFKPTGF  rases from cyanobacteria EQR[TKIJV-NGTOWPF67/ ■ Asymmetric syntheses with optimized ene-reductases

Fermentation

Making use of microorganisms for the production of chemicals from renewable resources is the core of industrial biotechnology. Reaction engineering analyses of metaboli- cally optimized producer strains and metabolic analyses of microorganisms in production processes are necessary for GHƄEKGPVDKQRTQFWEVKQPQPCPKPFWUVTKCNUECNG

Highlight A new microbial production process was designed for VJGGHƄEKGPVRTQFWEVKQPQHWRVQI.-1.GT[VJTWNQUG (tanning agent used in cosmetics) from meso-erythritol making use of a recombinant Gluconobacter oxydans RTQXKFGFD[67//KETQDKQNQI[ 2TQH.KGDN 

Projects ■ Population heterogeneity in industrial scale biopro- cesses ■ Metabolic analyses of recombinant microorganisms from production processes ■ Production of single-stranded DNA with Escherichia coli ■ Production of terpenoid glycosides by recombinant Escherichia coli ■ Reaction engineering analysis of recombinant Glucono- 2KNQVUECNGHGTOGPVCVKQPUYGTGRGTHQTOGFCVVJG67/4GUGCTEJ%GPVGTHQT bacter oxydans +PFWUVTKCN$KQVGEJPQNQI[ RJQVQ6QDKCU*CUG67/

281 Biochemical Engineering

Gas Fermentation

Special microorganisms are able to produce chemicals with carbon dioxide as sole carbon source. Electrons may be supplied from sunlight or hydrogen gas. Bioprocess engineering is the key to make use of these energy sources for the microbial production of chemicals from carbon dioxide on an industrial scale.

Highlight New open thin-layer cascade photo-bioreactors made of pond liner were designed and operated up to pilot scale for the evaluation of new microalgae production pro- cesses at physically simulated dynamic climate conditions YKVJTGURGEVVQNKIJV .'& VGORGTCVWTGCPFCKTJWOKFKV[ (e.g. Mediterranean summer in Spain) in the TUM Algae 6GEJ%GPVGTNQECVGFCVVJG.WFYKI$ÒNMQY%CORWUKP 0GYQRGPVJKPNC[GTECUECFGRJQVQDKQTGCEVQTUQRGTCVGFKPVJG67/#NICG Ottobrunn. 6GEJ%GPVGT1VVQDTWPP RJQVQ6QDKCU*CUG67/

Projects ■ .KIJVFGRGPFGPVITQYVJMKPGVKEUKPƅCVRNCVGRJQVQDKQ- ■ Modeling of microalgae cultivation in open photobio- reactors reactors ■ Microalgae processes in open photobioreactors with ■ Characterization of new microalgae for open photobio- reduced water consumption reactors ■ Gas fermentation with %NQUVTKFKWOECTDQZKFKXQTCPU ■ Mass production of microalgae in open photobioreactors ■ Gas fermentation with Clostridium aceticum ■ Production of anti-oxidants with microalgae ■ Multi-purpose reactor for gas fermentations

Bioprocess Integration

bioseparations are required yielding rather low product yields. Therefore, existing bioseparation processes should be improved and combined to reduce the number of process steps. The focus is on bioprocess integration of fermentation/biocatalysis and downstream processing.

Highlight A three-dimensional deterministic model applying com- RWVCVKQPCNƅWKFF[PCOKEU %(& EQWRNGFYKVJVJGFKUETGVG element method (DEM) was developed and validated to simulate chromatographic column packing behavior FWTKPIGKVJGTƅQYQTOGEJCPKECNEQORTGUUKQP

Projects ■ Non-stationary hydrodynamics of chromatography columns ■ Novel methods for packing of preparative chromatogra- phy columns 5KOWNCVGFKPƅWGPEGQHRCTVKENGOKITCVKQPQPVJGƅWKFƅQYFKUVTKDWVKQPKPC ■ 2TGRCTCVKXGRWTKƄECVKQPQHRTQVGKPUXKCGZVTCEVKQP EJTQOCVQITCRJ[EQNWOP EQR[TKIJV&QTP67/ ■ Engineering of proteins for the control of crystallization processes In many cases, downstream processing is by far the most ■ Modeling and molecular dynamics simulation of protein cost-intensive step of a bioprocess. Often, multiple-step crystals

282 Biochemical Engineering

Technical Staff Selected Publications 2017 Georg Kojro ■ 2TCGVQTKWU(-KEM$$GJNGT-.*QPG Norbert Werth mann MN, Weuster-Botz D, Dietz H Markus Amann  $KQVGEJPQNQIKECNOCUURTQFWE (NQTKCP5GFNOCKGT VKQPQH&0#QTKICOK0CVWTG ■ -QNNGT#.ÒYG*5EJOKF8/WPFV5 Research Focus 9GWUVGT$QV\&  /QFGNUWRRQTV Prof. Dr.-Ing. ■ Micro-bioprocess engineering ed phototrophic growth studies with Dirk ■ Bioreactors 5EGPGFGUOWUQDVWUKWUEWNWUKPCƅCV Weuster-Botz ■ Biocatalysis plate photobioreactor. Biotechnol ■ (GTOGPVCVKQP $KQGPI Contact ■ Gasfermentation ■ 9GKPGT/6TÒPFNG,#NDGTOCPP|% www.biovt.mw.tum.de ■ Bioprocess integration 5RTGPIGT)#9GWUVGT$QV\&   [email protected] /GVCDQNKEEQPVTQNCPCN[UKUQH.RJGP[ 2JQPG  Competence lalanine production from glycerol with ■ Design and automation of bioreactor engineered E. coli using data from Management systems short-term steady-state perturbation Prof. Dr.-Ing. Dirk Weuster-Botz, Director ■ Bioprocess development and GZRGTKOGPVU$KQEJGO'PI, optimization 86-100 Administrative Staff ■ Metabolic analysis of microbial ■ #RGN#%2HCHƄPIGT%'$CUGFCJN|0 Marlene Schocher reactions in bioreactors /KVVYQNNGP0)ÒDGN,5CWVGT, Ellen Truxius ■ Metabolomics $TØEM69GWUVGT$QV\&  1RGP Gabriele Herbrik ■ Downstream processing thin-layer cascade reactors for saline microalgae production evaluated in a Research Scientists Infrastructure physically simulated Mediterranean &T-CVJTKP%CUVKINKQPG67/,WPKQT(GNNQY ■ Stirred-tank bioreactor systems up to a UWOOGTENKOCVG#NICN4GUGCTEJ Dr.-Ing. Dariusch Hekmat 100 l scale   &T#PPC.GPC*GKPU ■ (NCVRCPGNRJQVQDKQTGCEVQTU[UVGOU ■ &QTP/'UEJDCEJ(*GMOCV& &T.WFYKI-NGTOWPF YKVJJKIJRQYGT.'&U 9GWUVGT$QV\&  +PƅWGPEGQH Dipl.-Ing. Dipl.-Wirt.Ing. Andreas Apel ■ Parallel bioreactor systems automated different packing methods on the Sarah Poschenrieder, M.Sc. with lab robots hydrodynamic stability of chro ma to- ,WNKC6TÒPFNG/5E ■ Anaerobic work benches/sterile laminar ITCRJ[EQNWOPU,%JTQO# Tom Schwarzer, M.Sc. ƅQYYQTMDGPEJGU 89-101 Anja Koller, M.Sc. ■ Syngas labs (CO, CO, H) Benjamin Kick, M.Sc. ■ Phage lab Kathrin Doll, M.Sc. ■ Cooled lab (4° C) Martin Dorn, M.Sc. ■ Electronic/mechanical workshop %JTKUVKPC2HCHƄPIGT/5E ■ #PCN[VKECNNCD .%/5ƅQYE[VQOGVT[ Timm Severin, M.Sc. )%.%GVE Dipl.-Ing. Peter Riegler Alexander Mayer, M.Sc. Courses Xenia Priebe, M.Sc. ■ $KQEJGOKECN'PIKPGGTKPI(WPFCOGPVCNU Samantha Hensler, M.Sc. ■ Biochemical Engineering Christian Burger, M.Sc. ■ Bioprocesses Christoph Mähler, M.Sc. ■ Bioprocesses and Bioproduction Andres Martinez, M.Sc. ■ Industrial Bioprocesses Karl Behler, M.Sc. ■ Bioreactors/Bioreaction Engineering Ingmar Polte, M.Sc. ■ Environmental and Biochemical .CTC9QNH/5E Engineering Phillip Nowotny, M.Sc. ■ Separation of Macromolecular Johannes Hermann, M.Sc. Bioproducts Torben Schädler, M.Sc. ■ Practical Training on Biochemical (NQTKCP)QNQODGM/5E Engineering Michael Mertz, M.Sc. ■ Practical Training on Bioprocess Anton Rückel, M.Sc. Engineering Dominik Schäfer, M.Sc. Jacqueline Wagner, M.Sc.

283 Machine Tools and Manufacturing Technology

Perspectives for production

■ The Chair for Machine Tools and Manufacturing Technology is one of the largest research centers in Germany. In 2018 collaboration will be improved both within the institute’s research group and with other members of TUM in additive manufacturing.

Laser beam melting (LBM)

Founded in 1875 the Institute for Machine Tools and facturing of, and research with, large-scale components Industrial Management (iwb) at the Technical University RTQFWEGFD[NCUGTDGCOOGNVKPI6JGƄPCPEKCNUWRRQTV of Munich is one of the largest research institutions for of the DFG to enable this research opportunity is greatly production technology in Germany. appreciated.

It encompasses two chairs at the Faculty of Mechanical For the next few years the iwb will be involved in the Engineering in Garching near Munich. With regard to EU Horizon 2020 research project ‘PreCoM’, which light-weight structures that are optimally adapted to the investigates the concept of predictive maintenance in respective loads, bionic approaches such as the adap- conjunction with production planning, in order to increase tation of natural honeycomb and grid structures have machine availability. proven to be particularly suitable for achieving the desired goals in the area of additive production processes.

With the objective to use the suitable material in any location, the research acivities focus on the area of joining and separating cutting technologies focus on producing joints of dissimilar metals or metal to plastics that so far could not be produced.

The formerly Augsburg-based research capabilities for additive manufacturing, both machines and personnel, will be moved to a newly constructed lab within the iwb experimental hall at the beginning of 2018. This will improve the collaboration both within the institute’s research group and with other members of TUM. Automated simultaneous 5-axis milling of a topology-optimized, The development of this research topic is further sup- RCVKGPVURGEKƄEKORNCPV ported by a new EOS M400 machine which is located at the Ludwig Boelkow Campus in Ottobrunn for the manu-

284 Machine Tools and Manufacturing Technology

Machine Tools

In the context of the Machine Tools working group, we PCVKQPUKPQTFGTVQTGƅGEVVJGOCEJKPGHGCVWTGUKPFGVCKN analyze and optimize cutting production systems. The By coupling these with developed cutting-force models, studies focus on the examination of dynamic machine interactions between structure and process can be DGJCXKQTVJGEWVVKPIRTQEGUUCPFKPƅWGPEKCNVJGTOCNHCE- demonstrated. Furthermore, energy-related aspects which tors. Thanks to the consideration of aspects of instrumen- interact with the machine properties are in the focus of the tation and control, the study horizon is expanded beyond KPXGUVKICVKQPU6JGGPGTI[GHƄEKGPE[QHOCEJKPGVQQNUKU purely mechanical structures to complex mechatronic becoming more and more a competitive factor. systems. /QFGTPUKOWNCVKQPOGVJQFUUWEJCUVJGƄPKVGGNGOGPVU Projects and multiplebody simulation, are used for these exami- ■ SynErgie – Synchronized and energy-adaptive produc- tion technology for adapting industrial processes to a ƅWEVWCVKPIGPGTI[UWRRN[sRTQLGEVENWUVGTRTQFWEVKQP infrastructure ■ 'Ž&s+ORTQXGOGPVQHVJGGPGTI[GHƄEKGP[D[FCORKPI of machine structures ■ Local damping modeling for simulation and optimiza- tion of the dynamic behavior of machine tools ■ Increasing the working accuracy of milling robots ■ HyPoGaL – Highly dynamic nonlinear position control of galvanometer laser scanners ■ FORobotics – Mobile, ad-hoc cooperating robot teams ■ PreCoM – Predictive cognitive maintenance decision support system ■ CutSim III – Modelling, simulation and compensation of shape deviations in the milling process thermal pro- EGUUKPIKPƅWGPEGUHQTEQORNGZOCEJKPKPIRTQEGUUGU ■ $C

Additive Manufacturing

Additive manufacturing offers great design freedom but a new EOS M400 machine which is located at the Ludwig also involves novel challenges and research opportunities. Boelkow Campus in Ottobrunn for the manufacturing of, Scientists of the research group Additive Manufacturing and research with, large scale components produced by strive to provide solutions to these challenges across NCUGTDGCOOGNVKPI6JGƄPCPEKCNUWRRQTVQHVJG&()VQ a broad range of additive manufacturing technologies, enable this research opportunity is greatly appreciated. including among others electron beam melting (EBM), laser beam melting (LBM) and powder-binder-based Projects 3D printing (3DP). The efforts comprise both soft- and ■ HMTools – Development of a process chain on the hardware topics, i.e. simulation and process monitoring basis of 3D printing for the production of hard metal CPFCNUQRTQEGUUFGXGNQROGPVCPFVJGSWCNKƄECVKQPQH tools new materials. The formerly Augsburg-based research ■ AscentAM – Adding simulation to the corporate capabilities for additive manufacturing, both machines and environment for additive manufacturing and simula- personnel, will be moved to a newly constructed lab within tion-based compensation of warpage the iwb experimental hall at the beginning of 2018. This ■ KonRAT – Development of a small-scale powder will improve the collaboration both within the institute’s atomization plant and additive manufacturing of large research group and with other members of TUM. The parts for aerospace applications development of this research topic is further supported by

285 Machine Tools and Manufacturing Technology

Joining and Cutting Technology

Technical products go through several joining and separating steps until completion. These processing steps are particularly relevant for the high quality and economic success of the production. The aim of the research and development activities is to optimize production processes in terms of quality and productivity. For this purpose, the researchers have access to a machine park with modern laser beam sources, friction welding equipment and a wide range of measuring and analysis instruments. The team’s expertise ranges from process analysis, systems engineering and technology consulting to process simulation.

Projects ■ ExZellTUM II – Excellence center for battery cells at the Technical University of Munich Absorption measurement of green laser radiation using an integrating ■ FOREL II – Research and technology center for sphere TGUQWTEGGHƄEKGPVNKIJVYGKIJVUVTWEVWTGUHQTGNGEVTQ mobility of remote high-performance laser beam systems in ■ FSWLeg – Synthesis of non-equilibrium alloys using industrial applications friction stir processes ■ RoKtoLas – Robot-guided, scanner-based optical ■ 241.'+s2TQEGUUEJCKPHQTLQKPKPIƄDGTTGKPHQTEGF coherence tomography for remote laser beam welding polymers to metals in lightweight structures HQTƅGZKDNGRTQEGUUEJCKPUKPECTDQF[EQPUVTWEVKQP ■ 2TQ.CU-Ws'PJCPEGOGPVQHRTQEGUUGHƄEKGPE[CPF ■ RevisedBatt – Resonances, vibrations, shocks, external weld seam quality for laser welding using innovative mechanical forces and detection methods for Lithium- system technology Ion Batteries ■ RegTemp – Temperature control during friction stir ■ SPP 1640 (3rd funding phase) – Binding mechanisms welding during friction stir welding of mixed compounds ■ ReVeBa – Computer-based minimization of distortions ■ Click&Weld – Increased industrial applicability of for laser welding of complex structures friction stir welding through a knowledge-based and ■ 5WTHC.+$s5WTHCEGOQFKƄECVKQPUQHDCVVGT[OCVGTKCNU user-friendly operating concept ■ ZAktiSiLA – Design and development of a prototype ■ MoBaReg – Process torque based temperature control of a central active safety device for the monitoring for friction stir welding

Wire and arc additive manufacturing at iwb

286 Machine Tools and Manufacturing Technology

Dipl.-Ing. (Univ.) Michael Seebach Courses Thomas Semm, M.Sc. ■ Machine Elements and Manufacturing Christian Stadter, M.Sc. ■ Manufacturing Technologies Cosima Stocker, M.Eng. ■ Metal Cutting Manufacturing Processes Severin Teubner, M.Sc. ■ Metal Cutting Machine Tools 1 Sepp Wimmer, M.Sc. ■ Joining Technology Christoph Wunderling, M.Sc. ■ Laser Technology Prof. Dr.-Ing. Amanda Zens, M.Sc. ■ Quality Management Michael F. ■ Practical Course Additive Zaeh Technical Staff Manufacturing Armin Braun ■ Practical Course Development of Contact Michael Breuer Machine Tools www.iwb.mw.tum.de Alexander Degenhart ■ Practical Course Metal Cutting [email protected] Andreas Grünwald Machine Tools Phone +49.89.289.15500 Brigitte Hadler ■ Practical Course Welding Technologies Regina Spitzer ■ Principles of Engineering Design and Management Wolfgang Rissling Production Systems Prof. Dr.-Ing. Michael F. Zaeh, Director Stefan Seidl Marion Fritsch, Secretary Rainer Sollfrank Selected Publications 2017 ■ Bachmann et al. 2017 Bachmann, A.; Adjunct Professors Research Focus Gamper, J.; Krutzlinger, M.; Zens, A.; Hon.-Prof. Dr.-Ing. Christian Lammel ■ Machine tools Zaeh, M. F.: Adaptive model-based Hon.-Prof. Dipl.-Ing. Siegfried Petz ■ Joining and cutting technology temperature control in friction stir Hon.-Prof. Dipl.-Ing. Marco Einhaus ■ Additive manufacturing welding. The International Journal of Advanced Manufacturing Technology Visiting Lecturer Competence 54 (2017) 2, p. 49 Dr.-Ing. Andreas Wendt ■ Process and structural behaviour of ■ Haubold et al. 2017 Haubold, M. W.; machine tools Wulf, L.; Zaeh, M. F.: Validation of a Administrative Staff ■ Smart machine tools spatter detection algorithm for remote Ursula Fourier-Kamp ■ Hybrid manufacturing technologies laser welding applications. Journal Verena Sophia Hammerschmidt ■ Laser technology of Laser Applications 29 (2017) 2, Sandra Pichlmeier ■ Friction welding R| ■ Joining and cutting of CFRP ■ Popp et al. 2017 Popp, R. S.-H.; Liebl, Research Scientists ■ Process development and process C.; Zaeh, M. F.: Evaluation of the Andreas Bachmann, M.Sc. management in additive manufacturing GPGTI[ƅGZKDNGQRGTCVKQPQHOCEJKPG Fabian Bayerlein, M.Sc. ■ Simulation in additive manufacturing tool components. Procedia CIRP 63 Dipl.-Wirt.-Ing. Conrad Fischbach (2017), p. 76 81 Dipl.-Ing. (Univ.) Alexander Fuchs Infrastructure ■ Schreiber et al. 2017 Schreiber, S.; Andreas Ganser, M.Sc. ■ Additive Manufacturing Laboratory Theodossiadis, G. D.; Zaeh, M. F.: Dipl.-Ing. (Univ.) Johannes Glasschröder ■ Cutting machine tools Combustion synthesis of reactive Jan Habedank, M.Sc. ■ Laser tools nickel-aluminum particles as an Dipl.-Ing. (Univ.) Veit Hammerstingl ■ Friction welding equipment innovative approach for thermal joining Roman Hartl, M.Sc. ■ Industrial robots applications. IOP Conference Series: Dipl.-Ing. (Univ.) Martin Haubold ■ Environmental, safety and teaching Materials Science and Engineering 181 Manuel Keßler, M.Eng. laboratories (2017), p. 12008 Robin Kleinwort, M.Sc. ■ Energetic and geometrical parameters ■ Theodossiadis & Zaeh 2017 Markus Krutzlinger, Dipl.-Ing. (Univ.) ■ Material analysis systems Theodossiadis, G. D.; Zaeh, M. F.: Corinna Liebl, M.Sc. ■ Simulation environments Study of the heat affected zone Stefan Liebl, M.Sc. ■ Production line for battery cells within metals joined by using reactive Stefan Meyer, M.Sc. ■ Industrial robots multilayered aluminium-nickel Michael Milde, M.Sc. ■ Environmental/safety and teaching nanofoils. Production Engineering 11 Dipl.-Ing. (Univ.) Sebastian Pieczona laboratories (2017) 4-5, p. 401 408 Dipl.-Ing. (Univ.) Richard Popp ■ Energetic and geometrical parameters ■ Zaeh et al. 2017 Zaeh, M. F.; Kleinwort, Christian Rebelein, M.Sc. ■ Material analysis systems R.; Fagerer, P.; Altintas, Y.: Automatic Valerie Scharmer, M.Sc. ■ Simulation environments tuning of active vibration control Patrick Schmitz, M.Sc. systems using inertial actuators. CIRP Florian Schnös, M.Sc. #PPCNU  R| Sandra Schreiber, M.Sc.

287 Product Development and Lightweight Design

Multi-disciplinary design, numerical optimization, modelling and simulation, design methods, tools and processes

■ Joining the two former laboratories for product development and lightweight design offers great potential for research synergies.

In November 2017, the new laboratory was founded after combine the long and successful history of product devel- merging the two labs for product development and light- opment and lightweight design at TUM with new impulses YGKIJVUVTWEVWTGU6JGVYQUEKGPVKƄEFKUEKRNKPGURTQXKFG from engineering science and needs from industry. The a good balance between similarities and differences for primary focus of our future research will be on design and synergy. They share a strong focus on engineering design optimization of complex technical systems in particular with a comprehensive and interdisciplinary view, and are form aerospace and automotive. concerned with methods and tools to cope with com- plexity. At the same time, they are different in breadth and depth: while product development aims at applicability to a broad range of technical disciplines, lightweight design KUCDQWVURGEKƄEUQNWVKQPUVQVGEJPKECNRTQDNGOU The accomplishments of both former labs in 2017 are presented – for the last time in two separate parts. In 2018, we will re-align research directions to optimally

Part I: Lightweight Design

Morphing Wings

A concept for a morphing leading edge of a sailplane wing is developed in the project MILAN. Preliminary studies showed great potential for total aircraft drag decrease of up to 12% compared to conventional designs by mor- phing the front part of the wing in between a high speed CPFCNQYURGGFJKIJNKHVEQPƄIWTCVKQPVJWUOKVKICVKPI VJGFGUKIPEQORTQOKUGHQTFKHHGTGPVURGGFUQHCƄZGF IGQOGVT[EQPƄIWTCVKQP6JGUJCRGEJCPIGHTQOVJG original high speed airfoil to the actuated low speed-high lift airfoil is accomplished by deforming the wing shell precisely using several spanwise arranged ribs, designed as compliant mechanisms. Topology optimization is used to generate the geometry of the compliant mechanism ribs. First designs were accomplished using commercial topology optimization software. Currently a new topology optimization software environment is under development KPENWFKPIƄPKVGUVTCKPVJGQT[CPFUVTGUUEQPUVTCKPVU

Project ■ Milan (by Prof. Hornung)

Laser sintered concept study of a compliant mechanism actuation rib

288 Product Development and Lightweight Design

Highly Flexible Aircraft

/QFGNQHJKIJN[ƅGZKDNGYKPIUVTWEVWTGU

Future airliner wings have an increased aspect ratio for 6JGTGHQTGUVCIIGTGFƅWKFUVTWEVWTGKPVGTCEVKQPOGVJQFUKP lowering drag and the structure is extensively optimised in combination with a trim algorithm is developed. the direction of lightweight design. Therefore the next gen- (WTVJGTOQTGF[PCOKEƅKIJVOCPQGWXTGUQPCTGFWEGF GTCVKQPQHYKPIUCTGKPJGTGPVN[JKIJN[ƅGZKDNGCPFKORNKECVG order model are performed to investigate the dynamic further challenges in the aeroelastic design. behaviour. Within the investigated methods, the number The idea of a virtual aircraft model, which allows virtual of degrees of freedoms are typically reduced from millions ƅKIJVVGUVUVQRTGFKEVCKTETCHVNQCFUCPFRGTHQTOCPEGKU to some hundreds, without loss of the most important part of the research project VitAM. The combination of dynamic aircraft properties. The method enables to structural and aerodynamic models with an application KPXGUVKICVGYKPIKPUVCDKNKVKGUFWGVQIWUVUQTƅWVVGTKPCP DCEMITQWPFQPJKIJN[ƅGZKDNGYKPIUVTWEVWTGUVQCWPKƄGF early aircraft design stage with high accuracy. coupled aeroelastic aircraft model is in research focus. *KIJƄFGNKV[EQWRNGF%5/%(&OGVJQFUCTGWUGFHQT Project highly accurate load and aerodynamic drag prediction. ■ Vitam-Flex (by Prof. Hornung)

Rotating CFRP Disks for Neutron Spectroscopy

%CTDQPƄDGTTGKPHQTEGFRNCUVKEFKUMUYKVJCFKCOGVGTQHWR to 1000 mm and rotational speeds in vacuum aimed for up to 500 Hz (30.000 rpm) are studied for their vibration behavior at the Laboratory of Lightweight Structures. 1PGURGEKƄECRRNKECVKQPQHUWEJFKUMUKUVJGPGWVTQP VKOGQHƅKIJVURGEVTQUEQR[6JGUGFKUMUJCXGQPGQTOQTG EWVQWVUYJKEJECWUGUUVTGUURGCMUKPVJGUVTWEVWTG 6JGUVTGPIVJCPFVJGXKDTCVKQPDGJCXKQTQHUWEJFKUMU CFRP disk mounted on a spin test stand are researched in detail, and proper design and material selections are made. An improved design is generated by numerical design 6JGKPVGTCEVKQPDGVYGGPVJGFKUMCPFVJGJWDQPYJKEJ QRVKOK\CVKQPOGVJQFUYJKEJCNUQVCMGUVTGPIVJCPF VJGFKUMKUOQWPVGFCUYGNNCUVJGUVTWEVWTCNF[PCOKEUQH manufacturing constraints into account. the whole system, are considered. In particular, the effect QHVJGOGODTCPGUVKHHGPKPIQHVJGFKUMYJKEJKUECWUGF The computed results are validated by experimental D[VJGEGPVTKHWICNHQTEGUFWTKPITQVCVKQPKUSWCPVKƄGF testing.

289 Product Development and Lightweight Design

Satellite Antenna

The thermoelastic deformation behavior of a satellite antenna is investigated in the project H2KAR, which is a collaborative project with the space supplier companies INVENT GmbH and HPS GmbH, funded by the German Federal Ministery of Economic Affairs and Energy (BMWi). Thermoelastic deformations occur during orbiting of the satellite in space, which causes temperature changes of up to +150°C and -150°C. The deformations are investigated by heating the antenna and measuring the deformations by photogrammetry and temperatures with infrared thermos-grammetry. A concept HQTOGCUWTKPIVGORGTCVWTGUCPFUVTCKPUQPVJGTGƅGEVQT UWTHCEGYKVJCƄDGTQRVKECNUGPUQTYCUFGXGNQRGFGXCNW- CVGFCPFSWCNKƄGFHQTWUGKPQTDKV #4C[NGKIJDCEMUECVVGTKPIƄDGTQRVKECNUGPUQTECPOGCU- ure temperatures or strain continuously over the whole Fiber-optical sensor array bonded on antenna NGPIVJQHVJGƄDGTKPEQPVTCUVVQENCUUKECNƄDGTQRVKECN OGCUWTGOGPVOGVJQFU6JGƄDGTYCUDQPFGFQPVJG the launch and in orbit. First results show that the sensor TGƅGEVQTDCEMUWTHCEGYKVJCPGYJKIJRTGEKUKQPDQPFKPI withstands the applied environmental loads. RTQEGUU6JGUGPUQTYCUƄPCNN[VGUVGFKPCPGPXKTQPOGPVCN test campaign consisting of vibration-, acoustic- and Project thermal vacuum tests, which simulate the conditions of ■ H2Kar (by Prof. Hornung)

Flexible Flap Gap Cover

6JGWUGQHƄDGTTGKPHQTEGFGNCUVQOGTKEOCVGTKCNUHQTCP GNCUVKEƅCRICREQXGTHQTCRCUUGPIGTCKTETCHVYKPIKU investigated in the project FlexMat, in collaboration of VJG)GTOCP#GTQURCEG%GPVGT &.4 +PXGPV)OD*CPF TUM, with funding from the German Federal Ministery of Economic Affairs and Energy (BMWi). The elastomer OCVGTKCN'2&/UGTXGUCUOCVTKZOCVGTKCNYJKEJKU TGKPHQTEGFD[WPKFKTGEVKQPCNECTDQPƄDGTTGKPHQTEGFGRQZ[ 6JGGNCUVQOGTKEOCVGTKCNOCMGUVJGEQORQUKVGUJGCT compliant, which can be used for morphing purposes. A PGYOCPWHCEVWTKPIRTQEGUUHQTVJKPƄDGTTGKPHQTEGFGNCU- tomeric composites has been developed and evaluated. Homogenization-based simulation methods were used for #KTETCHVYKPIYKVJƅGZKDNGƅCRICREQXGT prediction of the material behavior.

Project ■ FlexMat (by Prof. Hornung).

290 Product Development and Lightweight Design

Part II: Product Development

Cost Management

In the area of cost management, the early phases of the product life cycle, the cost responsibility of design- ers and the necessary cooperation between various internal departments and external corporate points are GORJCUK\GF&GUKIPGTUCPFGPIKPGGTUCTGUWRRQTVGF by the research activities of the department for product development in various areas. Thus, methods and tools are designed to enable cost estimates during early phases QHRTQFWEVFGXGNQROGPVCPFVQOCMGVJGOVJQTQWIJCPF reliable.

Projects ■ FVA e.V. ■ diverse companies

%JCNNGPIGKPEQUVOCPCIGOGPVHQTGECUVCPFKPƅWGPEGQHXKUKDNGCPF hidden layers in product design

Systems Engineering

6JG.CDQTCVQT[HQT2TQFWEV&GXGNQROGPVCPF.KIJVYGKIJV based on the approach of structural complexity manage- &GUKIPJCUCNQPIVTCFKVKQPKPKPVGITCVGFRTQFWEVFGXGN- ment. opment. In recent years, research activities of systems #OCLQTTGUWNVKPVJKUƄGNFKUVJGIWKFGNKPGFGXGNQRGFHQT engineering were performed to react on the increasing COCTMGVQTKGPVGFVQRFQYPOQFWNCTK\CVKQPVCKNQTGFVQ KPVGTFKUEKRNKPCTKV[QHRTQFWEVFGXGNQROGPVCPFVQDGPGƄV machine and plant engineering. from synergies. Research focus of the laboratory is the FGXGNQROGPVQHRTQFWEVCTEJKVGEVWTGUCUCPKORQTVCPVNKPM Project between requirements analysis and design of individual ■ &()5($RTQLGEV#s#PCN[\KPIVJGF[PCOKEUQH EQORQPGPVU/GVJQFQNQIKECNN[UGGPVJGNCDOCKPN[YQTMU cyclic interactions in PSS

Initial situation of the project and aspects of mechatronics development

291 Product Development and Lightweight Design

Innovation & Creativity

FGXGNQROGPV6JGNCDOCKPN[TGƄPGUFGUKIPOGVJQFQN- ogies and adapts processes in companies. An essential component of research are applications within an indus- trial environment. Research helps to develop sustainable RTQFWEVCTEJKVGEVWTGUƄPFPGYKFGCUWUKPIOGVJQFQNQIKGU of the Open Innovation toolbox and implements new organizational models following the principles of open organization.

Projects ■ +&#)/'&RTQLGEVs+PVGTFKUEKRNKPCT[CIKNGOGFKECN engineering development Schematic dependency graph of the project ■ KMEagil project – Implementation of agile methods in small and medium sized enterprises to improve The current research activities of the Laboratory for development processes 2TQFWEV&GXGNQROGPVCPF.KIJVYGKIJV&GUKIPKPVJG ■ 2'5'/+0#4s&GXGNQROGPVQHC%QEQC2QF2GGNKPI ƄGNFQHKPPQXCVKQPCPFETGCVKXKV[CKOCVVJGKPVGITCVKQPQH Machine for Cocoa Plantations in Cameroon TGNGXCPVMPQYNGFIGHTQOXCTKQWUFKUEKRNKPGUQHRTQFWEV

Engineering Design Process

Research activities on engineering design processes HQEWUQPVJGFGXGNQROGPVQHGHƄEKGPVRTQEGFWTGUHQTVJG design of complex technical products and product service systems (PSS). The most important premise when analyzing and improv- KPIRTQEGUUGUKUVJGEQORCP[CPFUKVWCVKQPURGEKƄE support of developers. In particular, the underlying product structure, the organizational conditions and the dynamics of internal and external factors for a targeted FGUKIPRTQEGUUCTGVCMGPKPVQCEEQWPV

Projects ■ &()5($RTQLGEV$s%[ENGQTKGPVGFRNCPPKPICPF coordination of development processes ■ &()5($RTQLGEV%s.KHGE[ENGFTKXGPFGEKUKQP methodology in product-service system ■ &()5($RTQLGEV&s%[ENGOCPCIGOGPVFGUKIPQH PSS innovation processes through diagnosis and dis- solving of inconsistencies between models of different domains The Systemic Change Management Approach

292 Product Development and Lightweight Design

■ Innovation & creativity ■ $ÒJOGT#PPGVVG+UCDGN*QUVGVVNGT ■ Systems engineering Rafael; Richter, Christoph; Lindemann, ■ Engineering design processes 7FQ%QPTCFV,ÒTI-PQNN#NQKU ■ Cost management 6QYCTFU#IKNG2TQFWEV&GXGNQROGPVs 6JG4QNGQH2TQVQV[RKPI+%'&2TQE Competence QHVJG+PV%QPHQP'PIKPGGTKPI&GUKIP ■ Numerical modeling and optimization 2017, Vancouver (Canada), 21-25 Prof. Dr. of mechanical systems August 2017, 1-10 Markus ■ Adaptive structures and smart ■ Carro Saavedra, Cristina; Morales Zimmermann materials Quiles, Jose; Lindemann, Udo: ■ &GUKIPQRVKOK\CVKQPOGVJQFU %JCTCEVGTKUVKEUQH&GUKIP5KVWCVKQPU Contact ■ Structural mechanics and design +PƅWGPEKPIVJG-PQYNGFIGVQ4GWUG www.mw.tum.de/lpl/ concepts 4&/CPCIGOGPV%QPHGTGPEG UGMTGVCTKCV"RNOYVWOFG ■ Mechanical and environmental testing ■ Hermanutz, A.; Hornung, M.: High Phone +49.89.289.15151 ■ Systematic development of complex Fidelity Trim Calculation under Con- products sideration of Aeroelastic Effects of a Management ■ Methods in engineering design *KIJ#URGEV4CVKQ5YGRV9KPI+(#5& 2TQH&T/CTMWU

293

Appendix Honorary Doctorates

Herbert Kraibühler, 2015, in recognition of his remark- Rudolf Rupprecht, 1995, in appreciation of his excep- able achievements and ideas in the research and devel- VKQPCNGPIKPGGTKPITGNCVGFCEJKGXGOGPVUKPVJGƄGNFQH opment of innovative plastic processing and additive company leadership and contributions to maintaining manufacturing machinery Germany as an economic powerhouse

Reimund Neugebauer, 2012, in recognition of his out- Raymond Viskanta, 1994, in recognition of his remark- standing achievements in the research and development CDNGUEKGPVKƄECEJKGXGOGPVUKPVJGƄGNFUQHTCFKCVKQP QHTGUQWTEGGHƄEKGPVOCUURTQFWEVKQPVGEJPQNQI[CPF energy transmission as well as heat and materials trans- innovative mechatronic manufacturing systems portation

Norbert Reithofer, 2011, in recognition of his outstanding Wolfgang Bürgel, 1993, in recognition of his excellent achievements in the research, development and reali- CEJKGXGOGPVUKPVJGGPIKPGGTKPICURGEVUQHOCVGTKCNƅQY sation of new production technologies and innovative, and production logistics. future-oriented organisational forms for production Hans Jürgen Matthies, 1991, in recognition of his Bernhard Fischer, 2009, in recognition of his remark- QWVUVCPFKPIUEKGPVKƄEVGEJPKECNCPFEQOOGTEKCNQTICPK- able achievements in the research, development and sational achievements in agricultural engineering and for TGCNKUCVKQPQHGHƄEKGPVCPFGPXKTQPOGPVCNN[HTKGPFN[RQYGT special contributions in deepening our understanding of generation technologies oil hydraulics

Manfred Wittenstein, 2008, in recognition of his Gerhard PahlKPTGEQIPKVKQPQHJKUUEKGPVKƄE exceptional achievements and ideas in the research achievements in design and its relationship to machine and development of innovative propulsion systems and components and computer-aided technology forward-looking company leadership Rudolf Quack, 1990, in recognition of his outstanding Dieter Spath, 2007, in recognition of his outstanding re - UEKGPVKƄECEJKGXGOGPVUKPƄTKPICPFEQPVTQNVGEJPQNQI[ search and development achievements in the connection Eberhard von Kuenheim, 1988, in recognition of his out- between technical competence, industrial science and standing technical achievements in the area of automotive management and production technology and company leadership Frank E. Talke, 2005, in recognition of his exceptional Hans Dinger, 1987, in recognition of his outstanding research and development achievements in the mechan- achievements in the engineering science of combustion ics and tribology of magnetic memory systems and his engine construction international work in the area of engineering education Hans-C. Koch, 1986, in recongition of his exemplary Burkhard Göschel, 2004, in recognition of his exceptional VGEJPKECNCPFUEKGPVKƄECEJKGXGOGPVUKPVJGGPVKTGƄGNFQH research and development achievements as well as his car production technology KFGCUKPVJGƄGNFQHOGEJCVTQPKEUHQTVJGCWVQOQVKXG industry Helmuth Glaser, 1981, in recognition of his groundbreak- KPIUEKGPVKƄEYQTMKPVJGTOQF[PCOKEUGURGEKCNN[TGHTKIGTC- Volker Kronseder, 2003, in recognition of his remarkable tion and process technology and his successful career as achievements and ideas in the research and development CPCECFGOKEGFWECVQTCPFRWDNKUJGTQHUEKGPVKƄEYTKVKPIU of innovative bottling plants and plastics machines as well as for his company leadership Erwin Sick, 1980, in recognition of his contribution to the UEKGPVKƄECPFEQPUVTWEVKXGFGXGNQROGPVQHQRVKECNFGXKEGU Ali Hassan Nayfeh, 1999, in recognition of his exceptional with electronic signal processing CPFKPVGTPCVKQPCNN[TGEQIPKUGFUEKGPVKƄEEQPVTKDWVKQPUKP VJGƄGNFQHPQPNKPGCTF[PCOKEUCPFVJGKTCRRNKECVKQPUKP Ernst Gassner, 1979, in recognition of his great contri- engineering science butions to theoretical and experimental research in operational stability Bernd Pischetsrieder, 1997, in recognition of his out- standing achievements in company leadership and his innovative ideas in holistic system technology and system integration Only honorary doctorates since 1979 are shown here.

296 External Lecturers in WS 16/17 und SS 17

Name Professorship Lecture Title Since Dr.-Ing. Alexander Alekseev Plant and Process Technology Grundlagen der Kälteerzeugung und Industrielle Tief- SS 12 temperaturanlagen Univ.-Prof. Ph. D. P. Vellayani Aravind Energy Systems Thermodynamics in Energy Conversion 95 Dr. rer. nat. Manfred Benthaus Energy Systems Stromnetze und Energiemärkte SS 15 Dr.-Ing. Johann Blaha Materials Science and Mechanics of Werkstoffe für Motoren und Antriebssysteme: Otto- SS 09 Materials und Dieselmotoren Hon.-Prof. Dr.-Ing. Ulrich Butter Helicopter Technology Hubschrauber-Flugmechanik und -Flugregelung 95 Prof. Antonino Cardella Nuclear Technology Kernfusion Reaktortechnik SS 10 Dr.-Ing. Johann Dambeck Flight System Dynamics Navigation und Datenfusion 95 Dr.-Ing. Rainer Demuth Aerodynamics and Fluid Mechanics Aerodynamik von Hochleistungsfahrzeugen 95 Dr.-Ing. Marco Einhaus Machine Tools and Manufacturing Arbeitsschutz und Betriebssicherheit 95 Technology Dr. rer. nat. Jörg Eßlinger Materials Science and Mechanics of Werkstoffe für Motoren und Antriebssysteme: Luftstrahl- SS 06 Materials antriebe, extreme Anforderungen an besondere Materialien Peter Göttel Industrial Management and Assembly Projektmanagement für Ingenieure 95 Technologies Dr. Franz Grell Helicopter Technology Luft- und Raumfahrtmedizin für Ingenieure 95

Dr. rer. nat. Michael Grünewald Vibroacoustics of Vehicles and Machines Praktische Aspekte der technischen Akustik SS 11 Dr.-Ing. Marcus Heindl Medical Engineering Werkstoff- und Schadensanalyse an Kunststoffteilen SS 11 Dr.-Ing. Matthias Heller Flight System Dynamics Flugdynamische Herausforderungen hochgradig- SS 09 TGINGTIGUVØV\VGT-QPƄIWTCVKQPGP Dr.-Ing. Jörg Henne Turbomachinery and Flight Propulsion Technologie und Entwicklung von Triebwerken der 95 nächsten Generation Dr.-Ing. Robert Huber Applied Mechanics Anwendungsorientierte Simulation mechatronischer 95 Systeme Prof. Dr.-Ing. Andreas Hupfer Turbomachinery and Flight Propulsion Konstruktionsaspekte bei Flugantrieben SS 16 Dr.-Ing. Carsten Intra Metal Forming and Casting Produktionsmanagement im Nutzfahrzeugsektor 95 Dr.-Ing. Oliver Knab Space Propulsion Raumfahrtantriebe 2 95 Dr.-Ing. Alexander Kolb Thermodynamics -TCHVHCJT\GWI-NKOCVKUKGTWPI-ÀNVGVGEJPKM 95 Dr.-Ing. Detlef Koschny Astronautics Near-Earth Objects for Engineers and Physicists SS 15 Dr.-Ing. Jürgen Letschnik Astronautics Space Communication and Operations SS 16 Dr.-Ing. Heiko Meyer Automation and Information Systems Prozessleitsysteme in der verarbeitenden Industrie und 95 ihre vertikale Integration Dr.-Ing. Oswin Öttinger Carbon Composites Kohlenstoff und Graphit – Hochleistungswerkstoffe für 95 Schlüsselindustrien Dr.-Ing. Herbert Pfab Automotive Technology Baumaschinen SS 00 Dr.-Ing. Burkhard Pinnekamp Machine Elements Hochleistungsgetriebe für Schiffsantriebe, Wind-Energie- 95 Anlagen und industrielle Anwendungen Dr. Hans-Willi Raedt Metal Forming and Casting Massivumformung und Fertigungstechnik für Antriebstrang 95 und Fahrwerk im Automobil Dr.-Ing. Robert Reiter Machine Tools and Manufacturing Die Digitale Fabrik in der Automobilindustrie und im SS 05 Technology Flugzeugbau Dr.-Ing. Rainer Stetter Industrial Management and Assembly Mechatronik-Entwicklungsprojekte in der Praxis SS 07 Technologies Dr.-Ing. Joachim Thomas Machine Elements Kegel- und Hypoidzahnräder für Fahrzeugantriebe SS 09 Dr.-Ing. Lothar Wech Automotive Technology Verkehrsunfall-Analyse und passive Fahrzeugsicherheit 95 Dr.-Ing. Christian Weimer Carbon Composites Liefer- und Wertschöpfungskette Composites 95 Dr.-Ing. Christian Wende Medical Engineering Einführung in das Patent-, Marken- und Musterrecht für SS 11 Ingenieure Dr.-Ing. Andreas Wendt Machine Tools and Manufacturing Unternehmensexzellenz SS17 Technology

297 Habilitations 2017

Name Topic Mentor Date Dr.-Ing. Thorsten Schindler Angewandte Mechanik Prof. dr. ir. Daniel Rixen April 14, 2017

Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Florian Behncke Beschaffungsgerechte Produktentwicklung. Abstimmung von Prof. Dr.-Ing. Udo Lindemann January 17, 2017 Produktarchitektur und Liefernetzwerk in frühen Phasen der i.R. Entwicklung Dr.-Ing. Paul Stuke Vertical interior cooling system for passenger cars: Trials and Prof. Dr. phil. Klaus Bengler January 19, 2017 GXCNWCVKQPQHHGCUKDKNKV[VJGTOCNEQOHQTVCPFGPGTI[GHƄEKGPE[ Dr.-Ing. Patrick Saal Quantitative Phasenanalyse von ausferritischem Gusseisen Prof. Dr.-Ing. Wolfram Volk January 25, 2017 mithilfe der Neutronendiffraktometrie Dr.-Ing. Ariovist Ufer Entwicklung und Validierung einer Technologie zur wirt schaft- Prof. Dr.-Ing. Klaus Drechsler January 31, 2017 lichen Herstellung geometrisch komplexer Langfaser-Preforms unter Großserienrandbedingungen Dr.-Ing. Stefan Langer Kritische Änderungen in der Produktentwicklung – Analyse Prof. Dr.-Ing. Udo Lindemann February 2, 2017 und Maßnahmenableitung i.R. Dr.-Ing. Sarah Poschenrieder Prozess zur skalierbaren Herstellung von Nanokompartimenten Dr. rer. nat. Kathrin Castiglione, February 3, 2017 aus ABA-Triblock-Copolymeren TUM Junior Fellow Dr.-Ing. Maximilian Zimmer Berechnung und Optimierung von Geometrie und Eingriffs- Prof. Dr.-Ing. Karsten Stahl February 3, 2017 verhalten von Verzahnungen beliebiger Achslage Dr. rer. nat. Anja Koller Reaktionskinetik des lichtabhängigen Wachstums von Prof. Dr.-Ing. Dirk Weuster- February 6, 2017 Scenedesmus spec. in Flachplattenphotobioreaktoren Botz Dr.-Ing. Mathias Peter Hartmann Analysis and Compensation of Process Induced Deformations Prof. Dr.-Ing. Klaus Drechsler February 8, 2017 in Composite Structures Dr.-Ing. Christin Hölzel Belastungsreduzierung für das Hand-Arm-System bei Prof. Dr. phil. Klaus Bengler February 14, 2017 manuellen Montagetätigkeiten Dr.-Ing. Felix Günther Beitrag zur Co–Simulation in der Gesamtsystementwicklung Prof. Dr.-Ing. habil. Heinz February 14, 2017 des Kraftfahrzeugs Ulbrich i.R. Dr.-Ing. Rainer Rieck Discrete Controls and Constraints in Optimal Control Problems Prof. Dr.-Ing. Florian Holzapfel February 15, 2017 Dr.-Ing. Stefan Köglmeier Modellierung der akustischen Wellenausbreitung in Raketen- Prof. Dr.-Ing. Thomas February 21, 2017 schubkammern unter Verwendung nichtlinearer Störungs- Sattelmayer gleichungen Dr.-Ing. Nan Chen Experimental and Numerical Investigation of a Centrifugal Prof. Dr.-Ing. Oskar Haidn February 21, 2017 Compressor Stage with Variable Inlet Guide Vanes Dr.-Ing. Hans-Christian Roth Design of nano-scale enzyme carriers and their separation Prof. Dr. rer. nat. Sonja February 23, 2017 from highly viscous liquors Berensmeier Dr.-Ing. Elias Breunig High Precision Alignment and Integration of Modular X-Ray Prof. Dr.-Ing. Horst Baier i.R. February 23, 2017 Space Mirrors via a Synthesis of Simulation, Experiment and VJG&GƅGEVQOGVT[/GVJQF Dr.-Ing. Charalampos Daniilidis Planungsleitfaden für die systematische Analyse- und Prof. Dr.-Ing. Udo Lindemann March 6, 2017 Verbesserung von Produktarchitekturen i.R. Dr.-Ing. Jan-Fabian Meis Produktionsseitiges Anforderungsmanagement Prof. Dr.-Ing. Gunther Reinhart March 6, 2017 Dr.-Ing. Sebastian Eberhardt Large-eddy simulations of supersonic mixing with application Prof. Dr.-Ing. Nikolaus Adams March 7, 2017 to scramjets Dr.-Ing. Constantin von Saucken Entwicklerzentrierte Hilfsmittel zum Gestalten von Prof. Dr.-Ing. Udo Lindemann March 8, 2017 Nutzererlebnissen i.R. Dr.-Ing. Johannes Kirn Investigation of a shape adaptive aircraft wing leading edge Prof. Dr.-Ing. Horst Baier i.R. March 8, 2017 with pneumatic actuation Dr.-Ing. Stephan Jin Siong Derivation and Evaluation of Electric Vehicle Concepts for Prof. Dr.-Ing. Markus March 13, 2017 Schickram World Cities Lienkamp Dr.-Ing. Florian Kohlhuber Fahrtsynchrone Adaption physikalischer Fahrzeug- und Prof. Dr.-Ing. Markus March 14, 2017 Reifenmodellparameter zur Verbesserung von Dynamik- Lienkamp regelsystemen

298 Doctorates 2017

Name Topic Supervisor Date Dr. rer. nat. Benjamin Kick Reaktionstechnische Untersuchungen zur Herstellung von Prof. Dr.-Ing. Dirk Weuster- March 17, 2017 Einzelstrang DNA mit dem Bakteriophagen M13 Botz Dr.-Ing. Andreas Ebner Konzeption eines Virtual Reality unterstützten, teambasierten Prof. Dr.-Ing. Willibald March 17, 2017 Planungssystems für die Baustelleneinrichtungsplanung Günthner i.R. Dr.-Ing. Philipp Andersch On the Modeling and Analysis of Helicopter Rotor Dynamics Prof. Dr.-Ing. Manfred Hajek March 21, 2017 for a Frictional Blade Attachment Dr.-Ing. Ludwig Friedmann Echtzeit-Simulation des Rotorabwinds von Hubschraubern und Prof. Dr.-Ing. Manfred Hajek March 23, 2017 Kipprotor-Flugzeugen mit der Lattice-Boltzmann Methode Dr.-Ing. Moritz Grawunder Aerodynamic Design Optimisation for Utility Helicopter Drag apl. Prof. Dr.-Ing. Christian March 24, 2017 Reduction Breitsamter Dr.-Ing. Matthias Friemel Methoden zur Charakterisierung des thermoelastischen Prof. Dr.-Ing. Horst Baier i.R. March 27, 2017 Verhaltens dimensionsstabiler CFK-Werkstoffe bei einer hohen Zahl von Temperaturzyklen Dr.-Ing. Fubiao Zhang Physically Integrated Reference Model Based Flight Control Prof. Dr.-Ing. Florian Holzapfel March 30, 2017 Design Dr.-Ing. Michael Mihatsch Numerical Prediction of Erosion and Degassing Effects in Prof. Dr.-Ing. Nikolaus Adams March 30, 2017 Cavitating Flows Dr.-Ing. Stefan Jaensch 1PVJGGHƄEKGPVPWOGTKECNOQFGNKPIQHPQPNKPGCTUGNHGZEKVGF Prof. Wolfgang Polifke, Ph.D. March 30, 2017 thermoacoustic oscillations Dr.-Ing. Joona Arttu Alarik Topology Optimization of Thermally Loaded, Additively Prof. Dr.-Ing. Oskar Haidn March 30, 2017 Haikonen (geb. Seppälä) Manufactured Turbo Components Dr.-Ing. Isabell Franck Sparse Variational Bayesian algorithms for large-scale inverse Prof. Phaedon-Stelios March 31, 2017 problems with applications in biomechanics Koutsourelakis, Ph.D. Dr.-Ing. Ulrich Kleinhans Fly Ash Formation and Deposition during Pulverized Fuel Prof. Dr.-Ing. Hartmut March 31, 2017 Combustion: Numerical and Experimental Investigations Spliethoff Dr.-Ing. Benedikt Schott Stabilized Cut Finite Element Methods for Complex Interface Prof. Dr.-Ing. Wolfgang Wall March 31, 2017 Coupled Flow Problems Dr. rer. nat. Ludwig Klermund Surface Functionalization of Nano-scale Membrane Reactors Dr. rer. nat. Kathrin Castiglione, April 4, 2017 for Multienzyme Syntheses TUM Junior Fellow Dr.-Ing. Peter Sachnik /GVJQFKMHØTITCVHTGKG5EJPKVVƅÀEJGPDGKO5EJGTUEJPGKFGP Prof. Dr.-Ing. Wolfram Volk April 6, 2017 Dr.-Ing. Oliver Oberinger Modellbildung und Berechnung von Rotor-Zelle Kopplungs- Prof. Dr.-Ing. Manfred Hajek April 7, 2017 erscheinungen am Hubschrauber und deren Interpretation OKVVGNU'PGTIKGƅWUUOGVJQFGP Dr.-Ing. Joachim Kreutzer Messmethoden für die Detektion der Flüssigkeitsaufnahme zur Prof. Dr. rer. nat. Tim C. Lüth April 12, 2017 Prävention von Dehydratation Dr.-Ing. Ioanna Michailidou &GUKIPVJGGZRGTKGPEGƄTUVs#UEGPCTKQDCUGFOGVJQFQNQI[ Prof. Dr.-Ing. Udo Lindemann April 20, 2017 for the design of complex, tangible consumer products i.R. Dr.-Ing. Franz Viertler Visual Augmentation for Rotorcraft Pilots in Degraded Visual Prof. Dr.-Ing. Manfred Hajek April 21, 2017 Environment Dr.-Ing. Tim Fricke Flight Control with Large Time Delays and Reduced Sensory Prof. Dr.-Ing. Florian Holzapfel April 21, 2017 Feedback Dr. rer. nat. Constantin Nowald 0CPQRCTVKENG$KQRQN[OGT5[UVGOUHQT/GFKECN#RRNKECVKQPU Prof. Dr. rer. nat. Oliver Lieleg April 24, 2017 Dr.-Ing. Christoph Ebel *QEJIGUEJYKPFKIMGKVUWOƅGEJVGPHØTFKG(GTVKIWPIXQP Prof. Dr.-Ing. Klaus Drechsler April 24, 2017 Faserverbundbauteilen Dr.-Ing. Wolfgang Raffelt Hochdruck-RTM-Prozessentwicklung für die automobile Prof. Dr.-Ing. Klaus Drechsler April 25, 2017 Großserie Dr.-Ing. Petra Fröhlich Process development and validation of thermoplastic complex Prof. Dr.-Ing. Klaus Drechsler April 25, 2017 shape thermoforming Dr.-Ing. Thomas Kopp 'KPƅWUUFGT9GTM\GWIUVGKƄIMGKVCWH5EJGTUEJPGKFRTQ\GUUWPF Prof. Dr.-Ing. Wolfram Volk April 26, 2017 Werkzeugverschleiß beim offenen Schnitt Dr.-Ing. Felix Schranner Weakly Compressible Models for Complex Flows Prof. Dr.-Ing. Nikolaus Adams April 27, 2017 Dr.-Ing. Arne Herberg Planung und Entwicklung multifunktionaler Kernmodule in Prof. Dr.-Ing. Udo Lindemann April 28, 2017 komplexen Systemarchitekturen und -portfolios i.R. Dr.-Ing. Oliver Schneider Prozessaufnahmemethode zur Unterstützung des RFID- Prof. Dr.-Ing. Willibald May 2, 2017 Einsatzes in der Intralogistik Günthner i.R. Dr.-Ing. Fabiola Cappia Investigation of very high burnup UO2 fuels in Light Water Prof. Rafael Macián-Juan, May 4, 2017 Reactors Ph.D. Dr.-Ing. Philipp Seidenspinner Methoden zur Vorselektion sauerstoffhaltiger Kraft stoff- Prof. Dr.-Ing. Georg May 5, 2017 komponenten Wachtmeister Dr.-Ing. Johannes Neumayer Characterisation and simulation of adhesively bonded joints Prof. Dr.-Ing. Klaus Drechsler May 5, 2017 with laminated adherends for crash applications

299 Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Vera Hoferichter Boundary Layer Flashback in Premixed Combustion Systems Prof. Dr.-Ing. Thomas May 5, 2017 Sattelmayer Dr.-Ing. Falk Schröder Vorgehensweise zur Implementierung von logistischen Prof. Dr.-Ing. Willibald May 9, 2017 Kennzahlensystemen im Umfeld der Automobilindustrie Günthner i.R. Dr.-Ing. Alexane Margossian Forming of tailored thermoplastic composite blanks: Prof. Dr.-Ing. Klaus Drechsler May 9, 2017 material characterisation, simulation and validation Dr.-Ing. Johannes Wolfgang Stock Remote-Laserstrahltrennen von kohlenstofffaserverstärktem Prof. Dr.-Ing. Michael Zäh May 9, 2017 Kunststoff Dr.-Ing. Andreas Johanning Methodik zur Ökobilanzierung im Flugzeugvorentwurf Prof. Dr.-Ing. Mirko Hornung May 10, 2017 Dr.-Ing. Matthias Bittner Utilization of Problem and Dynamic Characteristics for Solving Prof. Dr.-Ing. Florian Holzapfel May 11, 2017 Large Scale Optimal Control Problems Dr.-Ing. Daniel Häffelin Verfahren zur Integration von Folien in den RTM-Prozess Prof. Dr.-Ing. Klaus Drechsler May 12, 2017 (resin transfer molding) für endlosfaserverstärkte Schalenteile Dr.-Ing. Andreas Hees 5[UVGO\WT2TQFWMVKQPURNCPWPIHØTTGMQPƄIWTKGTDCTG Prof. Dr.-Ing. Gunther Reinhart May 16, 2017 Produktionssysteme Dr.-Ing. Stefan Grubwinkler (CJTRTQƄNDCUKGTVG'PGTIKGXGTDTCWEJURTÀFKMVKQPHØTXGTPGV\VG Prof. Dr.-Ing. Markus May 17, 2017 Elektrofahrzeuge Lienkamp Dr.-Ing. Lars Holt Improvement and validation of a computer model for the Prof. Rafael Macián-Juan, May 18, 2017 thermo-mechanical fuel rod behavior during reactivity Ph.D. transients in nuclear reactors Dr.-Ing. Reinhold Franz Johann Über das Fließverhalten von Epoxidharzsystemen und Prof. Dr.-Ing. Klaus Drechsler May 19, 2017 Meier XKDTCVKQPUWPVGTUVØV\VG*CT\KPƄNVTCVKQPURTQ\GUUG Dr.-Ing. Marcus Arnold Verbesserung der Materialeigenschaften von CFK durch den Prof. Dr.-Ing. Klaus Drechsler May 19, 2017 gezielten Einsatz von thermoplastischen Fadengelegen Dr.-Ing. Clotaire Geffray Uncertainty Propagation Applied to Multi-Scale Thermal- Prof. Rafael Macián-Juan, May 19, 2017 Hydraulics Coupled Codes: A Step Towards Validation Ph.D. Dr.-Ing. Fedor Baklanov 2NCVHQTOCWVQPQOQWU(CWNVVQNGTCPV#VVKVWFG*GCFKPI Prof. Dr.-Ing. Florian Holzapfel May 24, 2017 Reference and Navigation Systems Dr.-Ing. Christopher Buchmann Untersuchungen zur Steigerung der Prozessrobustheit bei Prof. Dr.-Ing. Klaus Drechsler May 24, 2017 der Fertigung faserverstärkter Luftfahrtbauteile Dr.-Ing. Martina Wickel Änderungen besser managen – Eine datenbasierte Methodik Prof. Dr.-Ing. Udo Lindemann May 24, 2017 zur Analyse technischer Änderungen i.R. Dr.-Ing. Stefan Walser Development and Application of a Fourier Transform based Prof. Rafael Macián-Juan, May 30, 2017 /GVJQFQNQI[HQTVJG+FGPVKƄECVKQPQH+PUVCDKNKV[KP$QKNKPI Ph.D. Water Reactors at a local Scale Dr.-Ing. Mattias Träger Additive Fertigung von Kunststoffzahnrädern. Kon struk- Prof. Dr. rer. nat. Tim C. Lüth May 31, 2017 tions algorithmen, automatischer Entwurf von Stirnrad stufen, Herstellbarkeit und Tragfähigkeit Dr.-Ing. Peer Helmbrecht Die Änderung von Fahrerverhaltensmustern durch Nutzung Prof. Dr. phil. Klaus Bengler May 31, 2017 eines Elektrofahrzeuges – Gewöhnung an die fahrdynamischen und konzeptionellen Besonderheiten und Anwendung GHƄ\KGPVGT(CJTUVTCVGIKGP Dr.-Ing. Jörg Pause Bewertung der Wissensqualität von Kostenelementen für Prof. Dr.-Ing. Gunther Reinhart June 7, 2017 Kalkulationen am Beispiel der Automobilproduktion Dr.-Ing. Christian Plehn A Method for Analyzing the Impact of Changes and their Prof. Dr.-Ing. Gunther Reinhart June 14, 2017 Propagation in Manufacturing Systems Dr.-Ing. Veronika Schömig Prozessentwicklung zur Gewinnung von Mucinen aus Prof. Dr. rer. nat. Sonja June 19, 2017 tierischem Gewebe Berensmeier Dr.-Ing. Thaddäus Baier 'PVYKEMNWPIWPF8GTKƄ\KGTWPIGKPGU-QP\GRVU\WT4QDWUVGP Dr.-Ing. Matthias Heller, June 19, 2017 4GIGNWPIFGT5GKVGPDGYGIWPI\WMØPHVKIGT-NGKPƅWI\GWIG Rudolf Diesel Industry Fellow at TUM-IAS Dr.-Ing. Philipp Gwinner Schwingungsarme Achsgetriebe elektromechanischer Prof. Dr.-Ing. Karsten Stahl June 19, 2017 Antriebsstränge – Auslegung schwingungsarmer Stirnradverzahnungen für den automobilen Einsatz in hochdrehenden, elektrisch angetriebenen Achsgetrieben Dr.-Ing. Liang Si 6QYCTFUC4QDWUV+P5KVW*GCNVJ/QPKVQTKPICPF+FGPVKƄECVKQP Prof. Dr.-Ing. Horst Baier i.R. June 21, 2017 Technique for Thin-walled Fiber Composite Structures under Various Types of Adverse Disturbances Dr.-Ing. Johannes Coy 'KPPGWGU8GTHCJTGP\WT3WCPVKƄ\KGTWPIXQP2CTMKPUQP Prof. Dr. rer. nat. Tim C. Lüth June 22, 2017 symptomen für die Tiefenhirnstimulation – Verfahren, Gerät und klinische Bewertung

300 Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Hansjörg Schultheiß Zum Verschleißverhalten einsatzgehärteter Zahnradpaarungen Prof. Dr.-Ing. Karsten Stahl June 23, 2017 in Abhängigkeit des Schmierungsmechanismus bei Fett- schmierung Dr.-Ing. Michael Josef Sebastian Untersuchungen zu dem Betriebsverhalten und den Betriebs- Prof. Dr.-Ing. Oskar Haidn June 28, 2017 Gurtner ITGP\GPGKPGTOGJTUVWƄIGP5ETCOLGV$TGPPMCOOGT Dr.-Ing. Christian Heise Survivable Flight Control with Guaranteed Stability and Prof. Dr.-Ing. Florian Holzapfel June 28, 2017 Performance Characteristics Dr.-Ing. David Kelterborn Erweiterung eines Systems vorbestimmter Zeiten zur Prof. Dr.-Ing. Willibald June 29, 2017 Bewertung der körperlichen Belastung in der Produktions- Günthner i.R. logistik Dr.-Ing. Veronika Bühler Gradual Impregnation during the Production of Thermoplastic Prof. Dr.-Ing. Klaus Drechsler July 3, 2017 (geb. Radlmaier) Composites Dr.-Ing. Christian Pötsch Experimentelle Untersuchungen zur inneren und äußeren Prof. Dr.-Ing. Georg July 3, 2017 Gemischbildung am hochaufgeladenen Ottomotor mit Wachtmeister Luftmengenbegrenzung Dr.-Ing. Danilo Schmidt Increasing Customer Acceptance in Planning Product-Service Prof. Dr.-Ing. Udo Lindemann July 4, 2017 Systems i.R. &T+PI5VGHƄ*QRRGPJGKV System zum proaktiven Bestandsmanagement von Langsam- Prof. Dr.-Ing. Willibald July 6, 2017 drehern Günthner i.R. &T+PI%JTKUVKPC2HCHƄPIGT Reaktionstechnische Untersuchungen zur Lipidherstellung mit Prof. Dr.-Ing. Dirk Weuster- July 7, 2017 Nannochloropsis sp. in verschiedenen Photobioreaktoren Botz Dr.-Ing. Kristina Speth Experimentelle Untersuchungen zur Stickoxidbildung und Prof. Dr.-Ing. Hartmut July 7, 2017 -minderung bei der Verbrennung von Biomassen und Hausmüll Spliethoff Dr.-Ing. Lisa-Magdalena Herbst Entwicklung einer Methodik zur Ableitung raumfunktionaler Prof. Dr.-Ing. Udo Lindemann July 10, 2017 (geb. Schmid) Kundenanforderungen in der Automobilentwicklung i.R. Dr.-Ing. Fabian Michael Distel Methodische Auslegung ultraschallbasierter berührungsloser Prof. Dr.-Ing. Gunther Reinhart July 10, 2017 Handhabungssysteme Dr.-Ing. Paul Bockelmann Process Control in Compression Molding of Composites Prof. Dr.-Ing. Klaus Drechsler July 13, 2017 Dr.-Ing. Daniel Roppenecker Entwicklung und Validierung eines generativ gefertigten Snake- Prof. Dr. rer. nat. Tim C. Lüth July 17, 2017 Like Manipulators für die minimal-invasive Chirurgie Dr.-Ing. Theodosia Kourkoutsaki A Multiphysics Simulation Toolkit Developed to Address Prof. Dr.-Ing. Klaus Drechsler July 17, 2017 Scale-up Challenges of Out-of-Autoclave Composites Manufacturing Dr.-Ing. Christoph Schütz Trajectory Planning for Redundant Manipulators – Prof. Dr.-Ing. habil. Heinz July 18, 2017 Optimization, Real Time Methods, Agricultural Robots Ulbrich i.R. Dr.-Ing. Xiang Wang Analysis and Evaluation of the Dual Fluid Reactor Concept Prof. Rafael Macián-Juan, July 20, 2017 Ph.D. Dr.-Ing. Michael Jürgens )TGP\ƅÀEJGPRJÀPQOGPGOGVCNNKUEJ\XGTUVÀTMVGT-QJNGPUVQHH Prof. Dr.-Ing. Klaus Drechsler July 21, 2017 faserverbundverbindungen Dr.-Ing. Kristina Däuschinger Abrufsteuerung bei Bedarfsschwankungen in der automobilen Prof. Dr.-Ing. Willibald July 24, 2017 (geb. Laschinger) Beschaffungs- und Produktionslogistik Günthner i.R. Dr.-Ing. Burkhard Seifert 2GTHQTOCPEG+ORTQXGOGPVUQH*WOKFKƄECVKQP&GJWOKFKƄECVKQP Prof. Dr.-Ing. Thomas July 26, 2017 Desalination Systems with Natural Convection Sattelmayer Dr.-Ing. Peter Stich Interaktiver simulationsgestützter Entwurf mechatronischer Prof. Dr.-Ing. Gunther Reinhart July 27, 2017 Verarbeitungssysteme Dr.-Ing. Christian Roth Multi-dimensional Coupled Computational Modeling in Prof. Dr.-Ing. Wolfgang Wall July 28, 2017 Respiratory Biomechanics Dr.-Ing. Jakob Weiland Thermal Design of Resistively Heated Tools for Composite Prof. Dr.-Ing. Klaus Drechsler August 3, 2017 Manufacturing Dr.-Ing. Denis Kiefel Quantitative Porositätscharakterisierung von CFK-Werkstoffen Prof. Dr.-Ing. Christian Große August 3, 2017 OKVFGT/KMTQ%QORWVGTVQOQITCƄG Dr.-Ing. Claas Olthoff Dynamic Simulation of Extravehicular Activities Prof. Dr. rer. nat. Dr. h.c. Ulrich August 7, 2017 Walter Dr.-Ing. Sebastian Heckner

301 Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Benjamin Lütke Dynamic Stall on a Pitching Double-Swept Rotor Blade Tip apl. Prof. Dr.-Ing. Christian September 8, 2017 Breitsamter Dr.-Ing. Philipp Maximilian Schäfer %QPUQNKFCVKQPQHECTDQPƄDGTTGKPHQTEGF2QN[COKFGVCRGU Prof. Dr.-Ing. Klaus Drechsler September 8, 2017 using laser-assisted tape placement Dr.-Ing. Andreas Loos 5VTÒOWPIUDGGKPƅWUUWPIFWTEJ0CDGPUVTWMVWTKGTWPIKP Prof. Dr.-Ing. Oskar Haidn September 14, 2017 deckbandlosen Statoren von Axialhochdruckverdichtern – Numerische Untersuchungen Dr.-Ing. Stephan Lellek Pollutant Formation in Premixed Natural Gas Swirl Flames Prof. Dr.-Ing. Thomas September 15, 2017 with Water Injection Sattelmayer Dr.-Ing. Klaus Moser Methode zur Untersuchung des Betriebsverhaltens stufenloser Prof. Dr.-Ing. Bernd-Robert September 18, 2017 Umschlingungsgetriebe Höhn i.R. Dr.-Ing. Ulrich Lammer Funktionsvereinigung in der Lagertechnik Prof. Dr.-Ing. Willibald September 18, 2017 Günthner i.R. Dr.-Ing. Julia Freis Wechselwirkungen und Auswirkungen von Planungs- Prof. Dr.-Ing. Willibald September 18, 2017

alternativen auf die Gesamtenergiebilanz und die CO2- Günthner i.R. Emissionen von Logistikzentren Dr.-Ing. Hermann Hajek .ÀPIUF[PCOKMWPF#PVTKGDUCMWUVKMXQPGNGMVTKƄ\KGTVGP Prof. Dr. phil. Klaus Bengler September 19, 2017 Straßenfahrzeugen – Beschreibung und Gestaltung des emotionalen Erlebens Dr.-Ing. Tobias Rammelmeier Vermeidung und prozessintegrierte Erkennung von Kom- Prof. Dr.-Ing. Willibald September 19, 2017 missionierfehlern auf Basis der Pick-by-Vision-Technologie Günthner i.R. Dr.-Ing. Natalie Mayer Integrated simulation approach from process simulation to Prof. Dr.-Ing. Klaus Drechsler September 19, 2017 structural analysis for composite components considering manufacturing effects Dr.-Ing. Robin Taubert 'KPƅWUUXQPPKEJVNKPGCTGO/CVGTKCNXGTJCNVGPCWHFKG'PV Prof. Dr.-Ing. Klaus Drechsler September 21, 2017 wicklung und Auswirkung von Zwischenfaserbrüchen in Verbundlaminaten Dr.-Ing. Michael Krause Modeling Driver Distraction Prof. Dr. phil. Klaus Bengler September 21, 2017 Dr.-Ing. Thorsten Nikolaus Hans Finite Element Simulation of the braiding process Prof. Dr.-Ing. Klaus Drechsler September 25, 2017 Dr.-Ing. Samuel Reimer Bio-Kinematic Design of Individualized Lift-Assist Chairs for Prof. Dr. rer. nat. Tim C. Lüth September 27, 2017 the Support of Sit-to-Stand Movement Dr.-Ing. Mathias Martin Dibon Fast Valves for Massive Gas Injection in Tokamaks Prof. Dr. Rudolf Neu September 29, 2017 Dr.-Ing. Konrad Entsfellner 'KPOQFWNCTMQPƄIWTKGTDCTGU#UUKUVGP\U[UVGO\WT Prof. Dr. rer. nat. Tim C. Lüth October 4, 2017 Perforatorführung bei der Stapedotomie Dr.-Ing. Lin Fu 0WOGTKECNOGVJQFUHQTEQORWVCVKQPCNƅWKFF[PCOKEU PD Dr.-Ing. Xiangyu Hu October 5, 2017 Dr.-Ing. Martin Dorn Modeling of the transient hydrodynamic behavior of Prof. Dr.-Ing. Dirk Weuster- October 6, 2017 preparative chromatography columns Botz Dr.-Ing. Eva Klenk Ein analytisches Modell zur Bewertung der Leistung von Prof. Dr.-Ing. Willibald October 9, 2017 Routenzugsystemen bei schwankenden Transportbedarfen Günthner i.R. Dr. rer. nat. Tom Schwarzer Membrane functionalization of nano-scale enzyme membrane Dr. rer. nat. Kathrin Castiglione, October 12, 2017 reactors for asymmetric syntheses TUM Junior Fellow Dr.-Ing. Michael Roth 'HƄEKGPV5CHGV[/GVJQF-KVHQT7UGTFTKXGP%WUVQOK\CVKQP Prof. Dr.-Ing. Udo Lindemann October 18, 2017 i.R. Dr.-Ing. Qixiong Li Ablagerungsbildungsmechanismen – Modellbildung und Prof. Dr.-Ing. Georg October 19, 2017 Simulation der Partikelablagerung im Brennraum bei Rapsöl- Wachtmeister betrieb Dr.-Ing. Emad Sadeghipour A New Approach to Assess and Optimize the Frontal Crash Prof. Dr.-Ing. Markus October 19, 2017 Compatibility of Vehicle Structures with Focus on the European Lienkamp Fleet of Passenger Cars Dr.-Ing. Robert Wittmann Robust Walking Robots in Unknown Environments – Prof. Dr.-Ing. habil. Heinz October 23, 2017 Dynamic Models, State Estimation and Real-Time Trajectory Ulbrich i.R. Optimization Dr.-Ing. Andreas Ehrl Determination of Transport Parameters of Binary Electrolyte Prof. Dr.-Ing. Wolfgang Wall October 24, 2017 Solutions for the Use in Numerical Simulations Dr. rer. nat. Sebastian Nano-bio interactions at the aqueous interface of iron oxide Prof. Dr. rer. nat. Sonja October 24, 2017 Schwaminger nanoparticles Berensmeier Dr.-Ing. Kilian Förner Nonlinear Aeroacoustic Characterization of Resonators Prof. Wolfgang Polifke, Ph.D. October 25, 2017 Dr.-Ing. Josef Huber 8GTHCJTGP\WT-NCUUKƄMCVKQPXQP7PIÀP\GPDGKFGTQRVKUEJGP Prof. Dr.-Ing. Gunther Reinhart October 26, 2017 Prüfung von Batterieseparatoren Dr.-Ing. Mathias Sommerer Multiple-Use-Technologien in der Fusionsforschung und Prof. Dr. mont. habil. Dr. rer. October 26, 2017 industriellen Anwendungen: Mikrostrukturelle Aspekte des nat. h.c. Ewald Werner thermozyklischen Bruchverhaltens von Wolfram

302 Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Nepomuk Heimberger Strukturbasierte Koordinationsplanung in komplexen Prof. Dr.-Ing. Udo Lindemann October 26, 2017 (geb. Chucholowski) Entwicklungsprojekten i.R. Dr.-Ing. Steffen Kahlert #PCN[UGFGT.CUVƅGZKDKNKVÀVXQPKPFWUVTKGNNGP-9-)W& Prof. Dr.-Ing. Hartmut October 27, 2017 Kraftwerken Spliethoff Dr.-Ing. Daniel Kammerl Modellbasierte Planung von Produkt-Service-Systemen Prof. Dr.-Ing. Udo Lindemann October 27, 2017 i.R. Dr.-Ing. Maximilian Strebel Spontanschäden an nasslaufenden Lamellenkupplungen Prof. Dr.-Ing. Karsten Stahl November 2, 2017 Dr.-Ing. Sonja Hofauer Fahrer-Fahrzeug-Interaktion einer automatisierten, kraftstoff- Prof. Dr.-Ing. Markus November 6, 2017 GHƄ\KGPVGP(CJT\GWINÀPIUHØJTWPI Lienkamp Dr.-Ing. Markus Baar Kennwerte zur Tragfähigkeit kleinmoduliger Kronen rad- Prof. Dr.-Ing. Karsten Stahl November 7, 2017 verzahnungen unterschiedlicher Werkstoffpaarung Dr.-Ing. Karl Simon Radler Periodic Free Vortex Wake Simulation Prof. Dr.-Ing. Manfred Hajek November 10, 2017 Dr.-Ing. Mark-Philipp Kurowski Modellierung und Simulation der Verschlackung bei der Prof. Dr.-Ing. Hartmut November 13, 2017 Kohlevergasung unter Berücksichtigung der Asche schmelz- Spliethoff temperaturen Dr.-Ing. Jae You Aeroacoustic Characteristics of a Shrouded Helicopter Tail apl. Prof. Dr.-Ing. Christian November 13, 2017 Rotor Breitsamter Dr.-Ing. Ugur Karban Scale-resolved and stochastic approaches for noise prediction Prof. Wolfgang Polifke, Ph.D. November 14, 2017 in duct singularities Dr.-Ing. Bernhard Sauerer Ordnungsreduzierte Simulationsmodelle und Berücksichtigung Prof. Dr.-Ing. Horst Baier i.R. November 14, 2017 der additiven Fertigung in der mathematischen Optimierung mechanischer Strukturen Dr.-Ing. Christin Rapp Atmosphärische Plasmabeschichtung von orthopädischen Prof. Dr.-Ing. Harald Klein November 14, 2017 Implantaten Dr.-Ing. Alexander Belitzki Rechnergestützte Minimierung des Verzugs laser strahl- Prof. Dr.-Ing. Michael Zäh November 16, 2017 geschweißter Bauteile Dr.-Ing. Verena Knott Evaluation von Exoskeletten zur Lastenhandhabung in der Prof. Dr. phil. Klaus Bengler November 21, 2017 Logistik mithilfe des standardisierten Einsatzes der Spiro- ergometrie Dr.-Ing. Carolin Wickborn Erweiterung der Flankentragfähigkeitsberechnung von Prof. Dr.-Ing. Karsten Stahl November 23, 2017 5VKTPTÀFGTPKPFGT9GTMUVQHHVKGHGs'KPƅWUUXQP9GTMUVQHH eigenschaften und Werkstoffdefekten Dr.-Ing. Felix Meier 'KPƅWUUFGT#NWOKPKWO/KMTQUVTWMVWTCWHFCU5EJÀFKIWPIU Prof. Dr. mont. habil. Dr. rer. November 23, 2017 verhalten von integrierten Schaltungen nat. h.c. Ewald Werner Dr.-Ing. Jose Ignacio Tijero Cavia 5KOWNCVKQPQHVJQTKWOOCVGTKCNRTQRGTVKGUWPFGTƄUUKQPTGCEVQT Prof. Rafael Macián-Juan, November 24, 2017 conditions Ph.D. Dr.-Ing. Thorsten Gläsner 4GFW\KGTWPIFGT-CPVGPTKUUGORƄPFNKEJMGKVXQP/GJTRJCUGP Prof. Dr.-Ing. Hartmut November 27, 2017 UVÀJNGPFWTEJUVWƄIGU5EJGTUEJPGKFGP Hoffmann i.R. Dr.-Ing. David Allaverdi 5[UVGOCVKEKFGPVKƄECVKQPQH(NGZKDNG&GUKIP1RRQTVWPKVKGUKP Prof. Dr.-Ing. Udo Lindemann November 29, 2017 offshore drilling systems i.R. Dr.-Ing. Thomas Aicher Automatic backwards compatibility of automated material Prof. Dr.-Ing. Birgit Vogel- November 29, 2017 ƅQYUQHVYCTG Heuser Dr.-Ing. Ulrich Mandel Mechanism Based Constitutive Model for Composite Prof. Dr.-Ing. Klaus Drechsler November 29, 2017 Laminates Dr.-Ing. Jonas Koch Manufacturing Change Management – a Process-Based Prof. Dr.-Ing. Gunther Reinhart November 30, 2017 Approach for the Management of Manufacturing Changes Dr.-Ing. Georg Meingaßner Methodik zur Untersuchung des Reibungsverhaltens Prof. Dr.-Ing. Karsten Stahl December 4, 2017 nasslaufender Lamellenkupplungen bei Langsamlauf- und Mikroschlupf Dr.-Ing. Theo Fabian Kiesel Flexible Multi-Body Simulation of a Complex Rotor System Prof. Dr.-Ing. Steffen Marburg December 4, 2017 Using 3D Solid Finite Elements Dr.-Ing. Alexander Lang Im Spannungsfeld zwischen Risiken und Chancen – Eine Prof. Dr.-Ing. Udo Lindemann December 5, 2017 Methode zur Ableitung von Handlungsempfehlungen zur i.R. Öffnung der Produktentwicklung Dr.-Ing. Sebastianus Petermeijer A vibrotactile interface to support the driver during the take- Prof. Dr. phil. Klaus Bengler December 5, 2017 over process Dr.-Ing. Fabian Hellmundt Adaptive Flight Control for Fault Tolerance Prof. Dr.-Ing. Florian Holzapfel December 6, 2017 Dr.-Ing. Timm Severin Computational Fluid Dynamics Assisted Design of Thin-Layer Prof. Dr.-Ing. Dirk Weuster- December 6, 2017 Cascade Photobioreactor Components Botz Dr.-Ing. Tanut Ungwattanapanit Optimization of Steered-Fibers Composite Stiffened Panels Prof. Dr.-Ing. Horst Baier i.R. December 8, 2017 including Postbuckling Constraints handled via Equivalent Static Loads

303 Doctorates 2017

Name Topic Supervisor Date Dr.-Ing. Seung Oh Modellierung und Entwicklung eines Flur förder zeug- Prof. Dr.-Ing. Willibald December 15, 2017 reifenmodells als Mehrkörpersystem Günthner i.R. Dr.-Ing. Patrick Stenner Erprobungsplanung zur Konzeptabsicherung von Elektro- Prof. Dr.-Ing. Markus December 15, 2017 fahrzeugen Lienkamp Dr.-Ing. Sebastian Kehl Bayesian Calibration of Nonlinear Cardiovascular Models Prof. Dr.-Ing. Michael Gee December 19, 2017 for the Predictive Simulation of Arterial Growth Dr.-Ing. Myriam Koch Methodik zur Einführung von Jobrotation in der Logistik Prof. Dr.-Ing. Willibald December 19, 2017 Günthner i.R. Dr.-Ing. Markus Spindler Zwei-Schichten-Architektur zur modellbasierten Erstellung Prof. Dr.-Ing. Willibald December 20, 2017 FGT5VGWGTWPIUUQHVYCTGHØTCWVQOCVKUKGTVG/CVGTKCNƅWUU Günthner i.R. systeme Dr.-Ing. Anja Kölzsch Active Flow Control of Delta Wing Leading-Edge Vortices apl. Prof. Dr.-Ing. Christian December 20, 2017 Breitsamter Dr.-Ing. Georg Götz /GVJQFG\WT5VGKIGTWPIFGT(QTOCVƅGZKDKNKVÀVXQP Prof. Dr.-Ing. Gunther Reinhart December 21, 2017 Verpackungs maschinen Dr.-Ing. Martin Schmid Kognitive Prozesssteuerung zur Steigerung der Ressourcen- Prof. Dr.-Ing. Gunther Reinhart December 21, 2017 GHƄ\KGP\KPFGT&TWEMKPFWUVTKG Dr.-Ing. Andreas Haslbeck An Integrative Evaluation of Airline Pilots’ Manual High- Prof. Dr. phil. Klaus Bengler December 22, 2017 Precision Flying Skills in the Age of Automation

304

Technical University of Munich Department of Mechanical Engineering

Boltzmannstrasse 15 85748 Garching near Munich Germany www.mw.tum.de

You can reach the Garching Research Centre (Garching-Forschungszentrum) using the U6 undergroung line (get off at ‘Garching-Forschungszentrum’), the bus lines 230 and 690 as well as via the A9 motorway (take the ‘Garching Nord’ exit) and the B11 federal highway. Ernst-Otto-Fischer-Straße

Am Coulombwall

Freisinger Landstraße

Lichtenbergstraße

Walter-Meißner-Straß e

A9 Garching Nord

ße

tra s

ann

Boltzm Ludwig-Prandt l-Straße