Exploring-Hoch-Ende Fin.F Kopie

Total Page:16

File Type:pdf, Size:1020Kb

Exploring-Hoch-Ende Fin.F Kopie INTRODUCTION Natural Standards The aim of the two studies in this volume is to explore the technical and cultural dimen- sions of the engagement of two late 19th century physicists in measurement projects. Hen- ry Augustus Rowland and Albert Abraham Michelson were educated in physics and engineering in the United States, developed their physics in dialogue with European mas- ters, visited the continent, and as experimentalists and laboratory leaders set out to leave their professorial mark on a growing discipline in their homeland. Both physicists exem- plify the linkage between engineering and physics that has been regarded as typical of the United States in the late nineteenth century, but both stressed the importance of purity. Their personal engagement with industry shows that they saw a strong and mutual inter- play between scientific work and industry; but accorded science a very particular role in this relationship. Rowland’s experimental programs clearly demonstrate his certainty that advanced industry offered science the most appropriate machines and technologies for modern experimental work, while attention to detail and control of the environment would enable scientists to use these means with unprecedented accuracy. Their work bringing scientific accuracy to the most basic industrial technology, the screw, is emblem- atic of both Rowland and Michelson’s engagement with industrial concerns. It is charac- teristic to downplay the importance of their measurement projects, but as these papers will demonstrate, Rowland and Michelson understood the search for standards to be produc- tive of new science in a variety of ways. For example, as strongly bent on a universal sys- tem of units as he was, Rowland showed that the regime of absolute standards employed in his experiments entailed new and unexpected effects. Similarly, Michelson’s search for a suitable natural standard disclosed a fine structure to the spectra of elements that had not hitherto been visible with the finest diffraction gratings. The exploration of their encoun- ter with the different cultures of physics in their day, their engagement with instruments and their work with measurement will provide a new perspective on the changing culture of precision. The papers were written on the occasion of a workshop “Instruments, Travel and Science: Itineraries of Precision from the Seventeenth to the Twentieth Century” organised by Marie-Noëlle Bourguet, Christian Licoppe and H. Otto Sibum. But the topic of natural standards has been further investigated in the Independent Research Group “Experimental History of Science” at the Max Planck Institute for the History of Science. NATURAL STANDARDS Exploring the Margins of Precision H. Otto Sibum EXPLORING THE MARGINS OF PRECISION This paper will take you on a journey through Europe during the years 1875 and 1876. Our traveller is the American civil engineer and instructor of physics at Rensselaer Poly- technic, Henry A. Rowland. He was sent (and accompanied for part of the journey) by the President of Johns Hopkins University, Daniel Coit Gilman, with the aim of studying the material culture of science in Europe. In particular he was to survey workmanship in lab- oratory physics, the quality of instrument making and the most important research topics pursued by European physicists. Equipped with substantial funds and looking forward to becoming the founding director of the new physics laboratory at Johns Hopkins Univer- sity in Baltimore, the twenty seven-year old physicist expected to do his most interesting and challenging fieldwork. Historians of science have paid little attention to this European trip, let alone to integrate Rowland’s experiences as a traveller with an understanding of his early laboratory physics at Johns Hopkins.1 Instead historians of physics customarily begin their accounts of Rowland’s career as a physicist with his famous optical investigations, the production and distribution of dif- fraction gratings, which represent the height of precision spectroscopy.2 When it is no- ticed at all, Rowland’s first major research “On the Mechanical Equivalent of Heat” (a 124 page text which appeared in the Proceedings of the American Academy of Arts and Science in 1880), is seen simply as an attempt to replicate a thirty-year old experiment to achieve an exact value for the mechanical equivalent of heat in absolute measures.3 By reconstituting his European experiences in great detail we will provide a hitherto neglect- ed perspective on this experiment, and simultanously give new insights about an impor- tant moment of change in the development of what has been called the culture of precision in the 19th century. 1. For this article I am making use in particular of Rowland’s “European Trip “diary, held at the Johns Hopkins University, The Milton S. Eisenhower Library, Special Collections, Rowland papers, Ms 6, Box 22 (archive material hereafter cited as JHU, Ms..., Rowland papers) and the relevant private and official correspondence by him held in JHU. The few accounts which refer to Rowland’s travel describe it either as a masterpiece of self-education, Samuel Rezneck, “The Education of an American Scientist: H.A. Rowland, 1848-1901”, American Journal of Physics, vol. 28, no. 1-9 (1960): 155-162 or convinc- ingly show relations between his travel and his later electro-magnetic research see John David Miller, “Rowland and the Nature of Electric Currents”, ISIS, vol. 63, no. 216 (1972): 5-27. 2. See for example George K. Sweetnam, “The Command of Light: Rowland’s School of Physics and the Spectrum,” (Unpublished Ph.D. dissertation at Princeton Univ., 1996). Idem, “Precision Implemented: Henry Rowland, the Concave Diffraction Grating, and the Analysis of Light,” in M. Norton Wise (ed.), The Values of Precision,(Princeton: Princeton University Press, 1995), pp. 283-310; Klaus Hentschel, “The Discovery of the Redshift of Solar Fraunhofer lines by Rowland and Jewell in Baltimore around 1890”, Historical Studies in the Physical Sciences (HSPS), vol. 23, no. 2 (1993): 219-277. 3. Henry A. Rowland, “On the Mechanical Equivalent of Heat, with Subsidary Researches on the Variation of the Mercurial from the Air Thermometer, and on the Variation of the Specific Heat of Water”, Pro- ceedings of the American Academy of Arts and Sciences, vol. XV(1880): 75-200, reprinted in The Phys- ical Papers of Henry Augustus Rowland, (Baltimore, Johns Hopkins University, 1902), pp. 343-468; Idem, “Appendix to Paper on the Mechanical Equivalent of Heat, Containing the Comparison with Dr. Joule’s Thermometer,” Proceedings of the American Academy of Arts and Sciences, vol. XVI (1881): 38-45. The Physical Papers of Henry Augustus Rowland, pp. 469-480. 3 H. OTTO SIBUM During the second half of the century precision measurement became an icon for the exact sciences, but it was clear to many that their striving for precision using ever more sensitive devices pushed the work of physics to its limits. In private correspondence with Rowland the German doyen of precision measurement Friedrich Kohlrausch brought out an important problematic with his discussion of the standards of accuracy that an envis- aged “international laboratory” would force on physicists’ experimental work. He con- ceded that “if an international laboratory wants to bestow unity upon science and technology this laboratory has to work much more precise than physi- cists have currently done... To bring a bunch of experienced physicists for this purpose permanently together seems impossible. Every one of us certainly knows that he would work best at home.”4 The tension between the local and global expressed in this remark points to a pressing issue of the time: the embodied character of experimental knowledge. Experimentalists’ insistence on working best at home or maintaining physical contact with objects and in- struments in producing new effects and experimental knowledge ran counter the modern view of science, which implied that true knowledge could only be achieved if it was in- dependent of the competencies of individual scientists or the peculiarities of a specific place. This paper will take a close look at a very delimited period of time in which preci- sion measurement became an ultimate technique to discriminate between what counted as local and what as scientific knowledge.5 When he met British scientists, Rowland experienced at first hand the work required to establish a “coherent system of units” with its absolute measures, as it was being 4. “Ich meine das die Verbürgung auf höchstens 1/1000 Fehler vorausgesetzt werden muß, wenn ein inter- nationales Laboratorium die Einheit von Wissenschaft und Technik octroyren will. Zu diesem Zwecke aber müßte dieses Laboratorium wesentlich genauer arbeiten, als die Physiker bis jetzt gethan haben... Eine Anzahl erfahrener Physiker aber zu diesem Zwecke dauernd zu vereinigen, wird unmöglich sein. Es weiß ja auch jeder von uns, daß er zu Hause am besten arbeitet”, Kohlrausch to Rowland 28 April, 1882, JHU, Rowland papers, MS 6. 5. Historians of science have investigated the 19th century culture of precision in a number of ways. See for example Theodore Porter, Trust in Numbers: the pursuit of objectivity in science and public life, (Princeton: Princeton University Press, 1995); M. Norton Wise (ed.), The Values of Precision, 1995, op. cit.; Kathryn M. Olesko, Physics as a Calling: Discipline and Practice in the Königsberger Seminar for Physics (Ithaca, N.J.: Cornell University Press, 1991), Lorraine Daston and Peter Galison, “The Image of Objectivity”, Representations, vol. 40 (1992): 81-128. Lorraine Daston, “The Moral Economy of Sci- ence”, Osiris, vol. 10 (1995): pp. 3-24. Simon Schaffer, “Accurate Measurement is an English Science”, in: M. Norton Wise (ed.), The Values of Precision, op.cit. (note 2), pp. 135-172. This paper investigates the meaning of experiment within this context. 4 EXPLORING THE MARGINS OF PRECISION promoted by the British Association for the Advancement of Science.6 But he soon rec- ognised that the aims of this programme were far from being fully realised.
Recommended publications
  • Cathode Rays 89 Cathode Rays
    Cathode Rays 89 Cathode Rays Theodore Arabatzis C The detection of cathode rays was a by-product of the investigation of the discharge of electricity through rarefied gases. The latter phenomenon had been studied since the early eighteenth century. By the middle of the nineteenth century it was known that the passage of electricity through a partly evacuated tube produced a glow in the gas, whose color depended on its chemical composition and its pressure. Below a certain pressure the glow assumed a stratified pattern of bright and dark bands. During the second half of the nineteenth century the discharge of electricity through gases became a topic of intense exploratory experimentation, primarily in Germany [21]. In 1855 the German instrument maker Heinrich Geißler (1815– 1879) manufactured improved vacuum tubes, which made possible the isolation and investigation of cathode rays [23]. In 1857 Geissler’s tubes were employed by Julius Pl¨ucker (1801–1868) to study the influence of a magnet on the electrical dis- charge. He observed various complex and striking phenomena associated with the discharge. Among those phenomena were a “light which appears about the negative electrode” and a fluorescence in the glass of the tube ([9], pp. 122, 130). The understanding of those phenomena was advanced by Pl¨ucker’s student and collaborator, Johann Wilhelm Hittorf (1824–1914), who observed that “if any ob- ject is interposed in the space filled with glow-light [emanating from the negative electrode], it throws a sharp shadow on the fluorescent side” ([5], p. 117). This effect implied that the “rays” emanating from the cathode followed a straight path.
    [Show full text]
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • Front Matter (PDF)
    PROCEEDINGS OF THE OYAL SOCIETY OF LONDON Series A CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER. VOL. LXXXV. LONDON: P rinted for THE ROYAL SOCIETY and S old by HARRISON AND SONS, ST. MARTIN’S LANE, PRINTERS IN ORDINARY TO HIS MAJESTY. N ovember, 1911. LONDON: HARRISON AND SONS, PRINTERS IN ORDINARY TO HTS MAJESTY, ST. MARTIN’S LANE. CONTENTS --- 0 0 ^ 0 0 ----- SERIES A. VOL. LXXXV. No. A 575.—March 14, 1911. P AG-E The Chemical Physics involved in the Precipitation of Free Carbon from the Alloys of the Iron-Carbon System. By W. H. Hatfield, B. Met. (Sheffield University). Communicated by Prof. W. M. Hicks, F.R.S. (Plates 1—5) ................... .......... 1 On the Fourier Constants of a Function. By W. H. Young, Se.D., F.R.S................. 14 The Charges on Ions in Gases, and some Effects that Influence the Motion of Negative Ions. By Prof. John S. Townsend, F.R.S............................................... 25 On the Energy and Distribution of Scattered Rontgen Radiation. By J. A. Crowtlier, M.A., Fellow of St. John's College, Cambridge. Com­ municated by Prof. Sir J. J. Thomson, F.R.S...........................*.............................. 29 The Origin of Magnetic Storms. By Arthur Schuster, F.R.S...................................... 44 On the Periodicity of Sun-spots. By Arthur Schuster, F.R.S..................................... 50 The Absorption Spectx*a of Lithium and Caesium. By Prof. P. V. Bevan, M.A., Royal Holloway College. Communicated by Sir J. J. Thomson, F.R.S.............. 54 Dispersion in Vapours of the Alkali Metals. By Prof. P. V. Bevan, M.A., Royal Holloway College.
    [Show full text]
  • 1 Ethers, Religion and Politics In
    ORE Open Research Exeter TITLE Ethers, religion and politics in late-Victorian physics: beyond the Wynne thesis AUTHORS Noakes, Richard JOURNAL History of Science DEPOSITED IN ORE 16 June 2008 This version available at http://hdl.handle.net/10036/30065 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication ETHERS, RELIGION AND POLITICS IN LATE-VICTORIAN PHYSICS: BEYOND THE WYNNE THESIS RICHARD NOAKES 1. INTRODUCTION In the past thirty years historians have demonstrated that the ether of physics was one of the most flexible of all concepts in the natural sciences. Cantor and Hodge’s seminal collection of essays of 1981 showed how during the eighteenth and nineteenth centuries British and European natural philosophers invented a range of ethers to fulfil diverse functions from the chemical and physiological to the physical and theological.1 In religious discourse, for example, Cantor identified “animate” and spiritual ethers invented by neo-Platonists, mystics and some Anglicans to provide a mechanism for supporting their belief in Divine immanence in the cosmos; material, mechanistic and contact-action ethers which appealed to atheists and Low Churchmen because such media enabled activity in the universe without constant and direct Divine intervention; and semi-spiritual/semi-material ethers that appealed to dualists seeking a mechanism for understanding the interaction of mind and matter. 2 The third type proved especially attractive to Oliver Lodge and several other late-Victorian physicists who claimed that the extraordinary physical properties of the ether made it a possible mediator between matter and spirit, and a weapon in their fight against materialistic conceptions of the cosmos.
    [Show full text]
  • Einstein, History, and Other Passions : the Rebellion Against Science at the End of the Twentieth Century
    Einstein, history, and other passions : the rebellion against science at the end of the twentieth century The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Holton, Gerald James. 2000. Einstein, history, and other passions : the rebellion against science at the end of the twentieth century. Cambridge, MA: Harvard University Press. Published Version http://www.hup.harvard.edu/catalog.php?isbn=9780674004337 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23975375 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA EINSTEIN, HISTORY, ANDOTHER PASSIONS ;/S*6 ? ? / ? L EINSTEIN, HISTORY, ANDOTHER PASSIONS E?3^ 0/" Cf72fM?y GERALD HOLTON A HARVARD UNIVERSITY PRESS C%772^r?<%gf, AizziMc^zzyeZZy LozzJozz, E?zg/%??J Q AOOO Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark claim, the designations have been printed in capital letters. PHYSICS RESEARCH LIBRARY NOV 0 4 1008 Copyright @ 1996 by Gerald Holton All rights reserved HARVARD UNIVERSITY Printed in the United States of America An earlier version of this book was published by the American Institute of Physics Press in 1995. First Harvard University Press paperback edition, 2000 o/ CoMgre.w C%t%/og;Hg-zM-PMMt'%tz'c7t Dzztzz Holton, Gerald James.
    [Show full text]
  • Spin-Or, Actually: Spin and Quantum Statistics
    S´eminaire Poincar´eXI (2007) 1 – 50 S´eminaire Poincar´e SPIN OR, ACTUALLY: SPIN AND QUANTUM STATISTICS∗ J¨urg Fr¨ohlich Theoretical Physics ETH Z¨urich and IHES´ † Abstract. The history of the discovery of electron spin and the Pauli principle and the mathematics of spin and quantum statistics are reviewed. Pauli’s theory of the spinning electron and some of its many applications in mathematics and physics are considered in more detail. The role of the fact that the tree-level gyromagnetic factor of the electron has the value ge = 2 in an analysis of stability (and instability) of matter in arbitrary external magnetic fields is highlighted. Radiative corrections and precision measurements of ge are reviewed. The general connection between spin and statistics, the CPT theorem and the theory of braid statistics, relevant in the theory of the quantum Hall effect, are described. “He who is deficient in the art of selection may, by showing nothing but the truth, produce all the effects of the grossest falsehoods. It perpetually happens that one writer tells less truth than another, merely because he tells more ‘truth’.” (T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860) Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi, teachers, colleagues, friends. arXiv:0801.2724v3 [math-ph] 29 Feb 2008 ∗Notes prepared with efficient help by K. Schnelli and E. Szabo †Louis-Michel visiting professor at IHES´ / email: [email protected] 2 J. Fr¨ohlich S´eminaire Poincar´e Contents 1 Introduction to ‘Spin’ 3 2 The Discovery of Spin and of Pauli’s Exclusion Principle, Historically Speaking 6 2.1 Zeeman, Thomson and others, and the discovery of the electron.......
    [Show full text]
  • Mathematics of the Gateway Arch Page 220
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook of the American Mathematical Society Collection February 2010 Volume 57, Number 2 An Invitation to Cauchy-Riemann NEW 4TH NEW NEW EDITION and Sub-Riemannian Geometries 2010. XIX, 294 p. 25 illus. 4th ed. 2010. VIII, 274 p. 250 2010. XII, 475 p. 79 illus., 76 in 2010. XII, 376 p. 8 illus. (Copernicus) Dustjacket illus., 6 in color. Hardcover color. (Undergraduate Texts in (Problem Books in Mathematics) page 208 ISBN 978-1-84882-538-3 ISBN 978-3-642-00855-9 Mathematics) Hardcover Hardcover $27.50 $49.95 ISBN 978-1-4419-1620-4 ISBN 978-0-387-87861-4 $69.95 $69.95 Mathematics of the Gateway Arch page 220 Model Theory and Complex Geometry 2ND page 230 JOURNAL JOURNAL EDITION NEW 2nd ed. 1993. Corr. 3rd printing 2010. XVIII, 326 p. 49 illus. ISSN 1139-1138 (print version) ISSN 0019-5588 (print version) St. Paul Meeting 2010. XVI, 528 p. (Springer Series (Universitext) Softcover ISSN 1988-2807 (electronic Journal No. 13226 in Computational Mathematics, ISBN 978-0-387-09638-4 version) page 315 Volume 8) Softcover $59.95 Journal No. 13163 ISBN 978-3-642-05163-0 Volume 57, Number 2, Pages 201–328, February 2010 $79.95 Albuquerque Meeting page 318 For access check with your librarian Easy Ways to Order for the Americas Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA Call: (toll free) 1-800-SPRINGER Fax: 1-201-348-4505 Email: [email protected] or for outside the Americas Write: Springer Customer Service Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301 Fax : +49 (0) 6221-345-4229 Email: [email protected] Prices are subject to change without notice.
    [Show full text]
  • Preface by the Series Editor, Professor M. Ceccarelli
    THE MACHINES OF LEONARDO DA VINCI AND FRANZ REULEAUX HISTORY OF MECHANISM AND MACHINE SCIENCE Vo l u m e 2 Series Editor G.M.L. CECCARELLI Aims and Scope of the Series This book series aims to establish a well defined forum for Monographs and Pro- ceedings on the History of Mechanism and Machine Science (MMS). The series publishes works that give an overview of the historical developments, from the earli- est times up to and including the recent past, of MMS in all its technical aspects. This technical approach is an essential characteristic of the series. By discussing technical details and formulations and even reformulating those in terms of modern formalisms the possibility is created not only to track the historical technical devel- opments but also to use past experiences in technical teaching and research today. In order to do so, the emphasis must be on technical aspects rather than a purely histor- ical focus, although the latter has its place too. Furthermore, the series will consider the republication of out-of-print older works with English translation and comments. The book series is intended to collect technical views on historical developments of the broad field of MMS in a unique frame that can be seen in its totality as an En- cyclopaedia of the History of MMS but with the additional purpose of archiving and teaching the History of MMS. Therefore the book series is intended not only for re- searchers of the History of Engineering but also for professionals and students who are interested in obtaining a clear perspective of the past for their future technical works.
    [Show full text]
  • L'éther, Entre Science Et Technologie En France Aux Dernières Lueurs Du
    1 Les théories électromagnétiques de l’éther : leur diffusion française, en particulier dans l’enseignement supérieur technique et les revues dédiées à l’électricité à la fin du XIXe siècle. 2 Remerciements Ce manuscrit de thèse est le fruit d’un travail de trois ans, réalisé au sein de l’équipe d’Histoire de l’Astronomie du Syrte, à l’Observatoire de Paris. Pour le mener à bien, j’ai reçu l’aide de nombreuses personnes. Ainsi, je souhaite ici remercier : — Mon directeur de thèse M. Christian BRACCO, pour les nombreux conseils qu’il m’a apportés, pour la confiance qu’il m’a accordée, ainsi que pour sa bonne humeur et pour toutes les discussions que nous avons eues pendant ces années. — Les deux rapporteurs de ma thèse, M. Olivier DARRIGOL et Mme Virginie FONTE- NEAU, pour tous leurs précieux conseils pendant mon mémoire de master et pendant mes années de thèse. — Tous les membres de mon jury : M. David AUBIN, M. Alain BELTRAN, que j’ai eu le plaisir de côtoyer pendant ma thèse et qui m’ont apporté leurs avis, Mme Muriel GUEDJ et M. Arnaud LANDRAGIN qui ont accepté de juger ce travail — Mme Michela MALPANGOTTO, qui m’a soutenu dès le début de ce projet de thèse, et M. Michel BLAY pour ses conseils dans la construction de ce sujet. — Le Comité d’Histoire de l’Électricité et de l’Énergie de la Fondation EDF, qui m’a apporté un soutien financier et académique. Au cours de ce travail, j’ai effectué de nombreuses recherches qui ont été possibles grâce au concours de plusieurs personnes, que je remercie chaleureusement : — MM.
    [Show full text]
  • Joseph Sweetman Ames 1864-1943
    NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA BIOGRAPHICAL MEMOIRS VOLUME XXIII SEVENTH MEMOIR BIOGRAPHICAL MEMOIR OF JOSEPH SWEETMAN AMES 1864-1943 BY HENRY CREW PRESENTED TO THE ACADEMY AT THE ANNUAL MEETING, 1944 JOSEPH SWEETMAN AMES 1864-1943 BY HENRY CREW There are times when a single act characterizes the entire life of a man. Such an occasion was the publication of his first scientific paper by Joseph S. Ames. He had just taken his bachelor's degree at Johns Hopkins University; was an assistant in the laboratory and was, at the same time, working toward a doctor's degree. On his way to those experimental results which later formed his doctor's dissertation, he had met for the first time the then recently invented concave grating. This remark- able instrument he mastered, in theory and in practice, so com- pletely that he was invited by its inventor to describe, for the leading journal of physics, its construction, adjustment and use. This he did with such accuracy, clarity and completeness that this first paper soon became and remained, on both sides of the Atlantic, the standard guide for the Rowland mounting. The outstanding features of this paper (Phil. Mag. 2j, 369, 1889) are simplicity, logical sequence, accuracy, fine perspective; and these are also the outstanding features of Ames' life. Two great English poets have taught us that the child is father to the man; a dictum which every man who has lived through two generations has verified for himself. It is there- fore well worthwhile to follow the rather meagre record of this man's ancestry in order to discover, if possible, among his fore- bears and friends—for these latter are often one's most im- portant ancestors—the origin of some of those qualities so highly cherished by men who knew him.
    [Show full text]
  • Against Method (AM for Short)
    First published by New Left Books, 1975 Revised edition published by Verso 1988 Third edition published by Verso 1993 © Paul Feyerabend 1975, 1988, 1993 All rights reserved Verso UK: 6 Meard Street, London WIV 3HR USA: 29 West 35th Street, New York, NY 10001-2291 Verso is the imprint of New Left Books British Library Cataloguing in Publication Data available ISBN 0-86091-48 1-X ISBN 0-8609 1 -646-4 US Library of Congress Cataloging in Publication Data available Typeset by Keyboard Services, Luton Printed and bound in Great Britain by Biddies Ltd, Guildford and King's Lynn Contents Preface vii Preface to the Third Edition IX Introductionto the Chinese Edition 1 Analytical Index 5 Introduction 9 Parts1-20 14 Postscript on Relativism 268 Index 273 Preface In 1970 Imre Lakatos, one of the best friends I ever had, corneredme at a party. 'Paul,' he said, 'you have such strange ideas. Why don't you write them down? I shall write a reply, we publish the whole thing and I promise you - we shall have lots of fun.' I liked the suggestion and started working. The manuscript of my part of the book was finished in 1972 and I sent it to London. There it disappeared under rather mysterious circumstances. lmre Lakatos, who loved dramatic gestures, notified Interpol and, indeed, Interpol found my manu­ script and returned it to me. I reread it and made some final changes. In February 1974, only a few weeks after I had finished my revision, I was informed of Imre's death.
    [Show full text]
  • From Clockwork to Crapshoot: a History of Physics
    From Clockwork to Crapshoot a history of physics From Clockwork to Crapshoot a history of physics Roger G. Newton The Belknap Press of Harvard University Press Cambridge, Massachusetts • London, England • 2007 Copyright © 2007 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Newton, Roger G. From clockwork to crapshoot : a history of physics / Roger G. Newton p. cm. Includes bibliographical references. ISBN-13: 978–0–674–02337–6 (alk. paper) ISBN-10: 0–674–02337–4 (alk. paper) 1. Physics—History. I. Title. QC7.N398 2007 530.09—dc22 2007043583 To Ruth, Julie, Rachel, Paul, Lily, Eden, Isabella, Daniel, and Benjamin Preface This book is a survey of the history of physics, together with the as- sociated astronomy, mathematics, and chemistry, from the begin- nings of science to the present. I pay particular attention to the change from a deterministic view of nature to one dominated by probabilities, from viewing the universe as running like clockwork to seeing it as a crapshoot. Written for the general scientifically inter- ested reader rather than for professional scientists, the book presents, whenever needed, brief explanations of the scientific issues involved, biographical thumbnail sketches of the protagonists, and descrip- tions of the changing instruments that enabled scientists to discover ever new facts begging to be understood and to test their theories. As does any history of science, it runs the risk of overemphasizing the role of major innovators while ignoring what Thomas Kuhn called “normal science.”To recognize a new experimental or observa- tional fact as a discovery demanding an explanation by a new theory takes a community of knowledgeable and active participants, most of whom remain anonymous.
    [Show full text]